Abstract

Resveratrol has beneficial effects on aging, inflammation and metabolism, which are thought to result from activation of the lysine deacetylase, sirtuin 1 (SIRT1), the cAMP pathway, or AMP-activated protein kinase. Here we report that resveratrol acts as a pathway-selective estrogen receptor-α (ERα) ligand to modulate the inflammatory response but not cell proliferation. A crystal structure of the ERα ligand-binding domain (LBD) as a complex with resveratrol revealed a unique perturbation of the coactivator-binding surface, consistent with an altered coregulator recruitment profile. Gene expression analyses revealed significant overlap of TNFα genes modulated by resveratrol and estradiol. Furthermore, the ability of resveratrol to suppress interleukin-6 transcription was shown to require ERα and several ERα coregulators, suggesting that ERα functions as a primary conduit for resveratrol activity.

Article and author information

Author details

  1. Jerome C Nwachukwu

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sathish Srinivasan

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nelson E Bruno

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alex A Parent

    University of Illinois, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Travis S Hughes

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Julie A Pollock

    University of Illinois, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Olsi Gjyshi

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Valerie Cavett

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jason Nowak

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ruben D Garcia-Ordonez

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. René Houtman

    PamGene International, Den Bosch, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  12. Patrick R Griffin

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Douglas J Kojetin

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. John A Katzenellenbogen

    University of Illinois, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Michael D Conkright

    The Scripps Research Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Kendall W Nettles

    The Scripps Research Institute, Jupiter, United States
    For correspondence
    knettles@scripps.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Leemor Joshua-Tor, Cold Spring Harbor Laboratory, United States

Version history

  1. Received: December 12, 2013
  2. Accepted: April 5, 2014
  3. Accepted Manuscript published: April 25, 2014 (version 1)
  4. Version of Record published: May 13, 2014 (version 2)

Copyright

© 2014, Nwachukwu et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,212
    Page views
  • 556
    Downloads
  • 108
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jerome C Nwachukwu
  2. Sathish Srinivasan
  3. Nelson E Bruno
  4. Alex A Parent
  5. Travis S Hughes
  6. Julie A Pollock
  7. Olsi Gjyshi
  8. Valerie Cavett
  9. Jason Nowak
  10. Ruben D Garcia-Ordonez
  11. René Houtman
  12. Patrick R Griffin
  13. Douglas J Kojetin
  14. John A Katzenellenbogen
  15. Michael D Conkright
  16. Kendall W Nettles
(2014)
Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network
eLife 3:e02057.
https://doi.org/10.7554/eLife.02057

Share this article

https://doi.org/10.7554/eLife.02057

Further reading

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Tien M Phan, Young C Kim ... Jeetain Mittal
    Research Article

    The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.