Lip movements entrain the observers' low-frequency brain oscillations to facilitate speech intelligibility

  1. Hyojin Park  Is a corresponding author
  2. Christoph Kayser
  3. Gregor Thut
  4. Joachim Gross
  1. University of Glasgow, United Kingdom

Abstract

During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker's lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker's lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing.

Article and author information

Author details

  1. Hyojin Park

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Hyojin.Park@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Christoph Kayser

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Gregor Thut

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Joachim Gross

    Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Ethics

Human subjects: This study was approved by the local ethics committee (CSE01321; University of Glasgow, Faculty of Information and Mathematical Sciences) and conducted in conformity with the Declaration of Helsinki. All participants provided informed written consent before participating in the experiment and received monetary compensation for their participation.

Version history

  1. Received: January 18, 2016
  2. Accepted: May 3, 2016
  3. Accepted Manuscript published: May 5, 2016 (version 1)
  4. Version of Record published: June 9, 2016 (version 2)

Copyright

© 2016, Park et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,681
    views
  • 829
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hyojin Park
  2. Christoph Kayser
  3. Gregor Thut
  4. Joachim Gross
(2016)
Lip movements entrain the observers' low-frequency brain oscillations to facilitate speech intelligibility
eLife 5:e14521.
https://doi.org/10.7554/eLife.14521

Share this article

https://doi.org/10.7554/eLife.14521

Further reading

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.