Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors

  1. Christopher A Natale
  2. Elizabeth K Duperret
  3. Junqian Zhang
  4. Rochelle Sadeghi
  5. Ankit Dahal
  6. Kevin Tyler O'Brien
  7. Rosa Cookson
  8. Jeffrey D Winkler
  9. Todd W Ridky  Is a corresponding author
  1. Perelman School of Medicine, University of Pennsylvania, United States
  2. University of Pennsylvania, United States

Abstract

The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17β-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics.

Article and author information

Author details

  1. Christopher A Natale

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Christopher A Natale, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.
  2. Elizabeth K Duperret

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Junqian Zhang

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Rochelle Sadeghi

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  5. Ankit Dahal

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  6. Kevin Tyler O'Brien

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  7. Rosa Cookson

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  8. Jeffrey D Winkler

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Jeffrey D Winkler, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.
  9. Todd W Ridky

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    ridky@mail.med.upenn.edu
    Competing interests
    Todd W Ridky, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#803381) of the University of Pennsylvania.

Version history

  1. Received: February 9, 2016
  2. Accepted: April 11, 2016
  3. Accepted Manuscript published: April 26, 2016 (version 1)
  4. Version of Record published: May 11, 2016 (version 2)

Copyright

© 2016, Natale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,191
    Page views
  • 1,050
    Downloads
  • 83
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher A Natale
  2. Elizabeth K Duperret
  3. Junqian Zhang
  4. Rochelle Sadeghi
  5. Ankit Dahal
  6. Kevin Tyler O'Brien
  7. Rosa Cookson
  8. Jeffrey D Winkler
  9. Todd W Ridky
(2016)
Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors
eLife 5:e15104.
https://doi.org/10.7554/eLife.15104

Share this article

https://doi.org/10.7554/eLife.15104

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.