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Biomedical research relies on statistical anal-
yses of data sets comprised of multiple 
variables and, in particular, on analyses of 

the relationships between pairs of variables within 
those data sets. In a typical analysis, data repre-
senting two variables are displayed in a two- 
dimensional scatter plot and the method of 
ordinary least squares is used to fit a regression 
line to the data. Here we examine an under-
appreciated aspect of this approach: the slope 
of the regression line depends on which of the 
two variables we select as the independent vari-
able. This means that the method of ordinary 
least squares can be used to calculate two dif-
ferent regression lines for the same scatter plot. 
While this issue has long been appreciated in the 
statistics community, it is not as widely known 
among biomedical researchers (Cornbleet and 
Gochman, 1979). The ubiquity of scatter plots and 
regression lines in biomedical research suggests 
that a brief discussion of this issue would be useful.

Consider a data set composed of pairs of vari-
ables, with individual data points represented 
by (x1, y1), (x2, y2), and so on. In some studies, 
there may be a symmetric relationship between xi 
and yi: for example, they might represent blood 
pressure measurements from pairs of siblings in a 
cohort study. Alternatively, there may be an asym-
metry in the relationship between the variables: 

for example, xi might represent the dose of an 
antihypertensive drug, and yi might represent 
the change in blood pressure in a group of sub-
jects treated with various doses of the drug. In this 
example, drug dose is the independent variable 
and change in blood pressure is the dependent 
variable.

Typically, one is interested in determining the 
most likely value of the dependent variable given 
the value of the independent one. Thus, in the 
example described above one might be inter-
ested in predicting the change in blood pres-
sure in response to different doses of the drug. 
However, there are many instances in which it is 
not clear that one variable depends on the other 
(independent) variable. For example, individuals 
with metabolic syndrome have elevated levels 
of both serum triglyceride and elevated fasting 
glucose levels: therefore, in a cohort that contains 
both metabolic syndrome patients and control 
subjects, one would expect these two variables 
to be correlated, with a clustering of metabolic 
syndrome patients at the high end of both distri-
butions (Ford et al., 2002). Although it would 
be inappropriate to consider one of these varia-
bles independent and the other dependent in a 
mechanistic sense, one might still be interested 
in calculating the expected level of serum tri
glycerides given the level of fasting glucose, or 
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How to draw the line in 
biomedical research
The use of the least squares method to calculate the best-fitting line 
through a two-dimensional scatter plot typically requires the user to 
assume that one of the variables depends on the other. However, in 
many cases the relationship between the two variables is more 
complex, and it is not valid to say that one variable is independent and 
the other is dependent. When analysing such data researchers should 
consider plotting the three regression lines that can be calculated for 
any two-dimensional scatter plot.
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the expected level of fasting glucose given the 
level of serum triglycerides. As described below, 
estimations in either direction begin with the 
calculation of a best-fitting regression line.

The method of least squares
The straight line that constitutes the best fit to 
a set of data points in the x-y plane is typically 
calculated by minimizing the sum of the squares 
of the distances from the points to the line—a 
method that was introduced by Legendre and 
Gauss more than two hundred years ago. If one 
variable, conventionally represented by the y-axis, 
is known to depend on the other variable, con-
ventionally represented by the x-axis, then one 
generally calculates a best-fitting line that repre-
sents the expected value of the dependent vari-
able (y) as a function of the independent variable 
(x): this is known as the regression of y on x. In this 
case, the distance from a data point to the regres-
sion line (also known as the residual) is taken as 
the vertical distance from the point to the line 
(Figure 1A; Bulmer, 1965). This approach, referred 
to as ordinary least squares regression, is the 
default mode for line fitting in several commonly 
used software packages; for example, it is the 
algorithm represented by the ‘Trend line’ and 
‘Linest’ functions in Microsoft Excel.

If, on the other hand, the y-axis represents 
the independent variable and the x-axis repre-
sents the dependent variable, the best-fitting line 
can be calculated by taking the residuals as the 
horizontal distances from the points to the line, 
the regression of x on y (Figure 1B). Except in the 
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Figure 1. Different types of best-fitting straight lines. 
These graphs show the best-fitting straight lines 
through the same five data points as calculated by 
minimizing the sum of the squares of the vertical 
residuals, which assumes that x is the independent 
variable (A); horizontal residuals, which assumes that 
y is the independent variable (B); and perpendicular 
residuals which involves no assumptions about the 
variables (C).

limiting case in which all of the data points lie 
precisely on a straight line, these two best-fitting 
regression lines will not coincide.

A third type of best-fitting line can be calcu-
lated by squaring the perpendicular distances 
from the points to the line (Figure 1C). This 
method is referred to as an orthogonal or Deming 
regression. The latter name refers to the statistician 
W Edward Deming who described the method in 
the 1940s (Deming, 1943). The Deming regres-
sion method is symmetric with respect to the 
two variables and therefore makes no assump-
tions regarding dependence and independence 
(Cornbleet and Gochman, 1979; Linnet, 1993, 
1998; Glaister, 2001).

For a scatter plot in which the data points do 
not fall on a straight line, the best-fitting line 
calculated with vertical residuals will have a rela-
tively shallow slope (Figure 1A), whereas the 
best-fitting line calculated with horizontal residuals 
will have a steeper slope (Figure 1B). The best-
fitting line calculated with perpendicular residu-
als will have an intermediate slope (Figure 1C). 
The data can also be described by a correlation 
coefficient (R) that is agnostic with respect to the 
dependence or independence of the variables 
(Bulmer, 1965). It is conventional to calculate the 
square of the correlation coefficient (R2), which is 
equal to the slope of the regression line for y on x 
(that is, calculated using vertical residuals) divided 
by the slope of the regression line for x on y (hor-
izontal residuals). Thus, if the data points fall on 
a straight line (R2 = 1), the slopes of these two 
best-fitting lines will be equal. With increasing 
scatter in the data (R2 < 1), the slopes of the two 
best-fitting lines will diverge. If the data points 
are completely uncorrelated (R2 = 0), then the 
best-fitting lines calculated with vertical and hori-
zontal residuals will have slopes of 0 and infinity, 
respectively.

Examples with real data: three 
lines are better than one
These considerations are illustrated by three 
scatter plots in a paper on post-traumatic stress 
disorder by Kerry Ressler and co-workers (Ressler 
et al., 2011). The best-fitting lines for these three 
plots were calculated with vertical residuals (green 
lines in Figure 2). In each case, these differ sub-
stantially from the best-fitting lines calculated 
with horizontal residuals (blue lines), as expected 
from the relatively low values of R2 for the three 
data sets; the best-fitting lines calculated with 
perpendicular residuals (red lines) occupy inter-
mediate positions.
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As noted above, the choice of algorithm to 
use in calculating the best-fitting line reflects a 
decision regarding which variable is independent 
and which is dependent. In Ressler et al. the vari-
ables in the three scatter plots are: severity of 
post-traumatic stress disorder (PTSD) symptoms 
vs. serum concentration of pituitary adenylate 
cyclase activating polypeptide (PACAP, also known 
as ADCYAP1; Figure 2A); severity of PTSD symp-
toms vs. PACAP receptor gene methylation (also 
known as ADCYAP1R; Figure 2B); and abundance 
of PACAP receptor mRNA in the cerebral cortex 
vs. abundance of PACAP mRNA in the cerebral 
cortex (Figure 2C). In this example, as in many 
biological systems, the cause and effect relation-
ships between the variables are likely to be com-
plex. For example, while it is possible that PACAP 
secretion may alter the severity of PTSD symp-
toms, it is also possible that stress associated with 
PTSD may alter PACAP secretion. Furthermore, 
it is possible that these two variables may have 
no direct cause-and-effect relationship, and that 
changes in neural circuitry alter stress level and 
PACAP secretion by distinct mechanisms. A sim-
ilar argument can be applied to the other pairs of 
variables.

Visual inspection of Figure 2 shows that the 
individual regression lines for y on x (green) or x 
on y (blue) do not fully capture the trend in the 
data points within any of the scatter plots. Plotting 
both regression lines gives a fuller picture of 
the data, and comparing their slopes provides  
a simple graphical assessment of the correlation 
coefficient. Plotting the orthogonal regression 
line (red) provides additional information because 

it makes no assumptions about the dependence 
or independence of the variables; as such, it 
appears to more accurately describe the trend in 
the data compared to either of the ordinary least 
squares regression lines.

Conclusion
The ordinary least squares method is well suited 
to the analysis of data sets in which one variable 
influences or predicts the value of a second vari-
able. In biological systems, where causal rela-
tionships between variables are often complex, 
deciding that one variable depends on the other 
may be somewhat arbitrary. Moreover, even when  
a causal chain appears to be well established 
mechanistically, feedback regulation at the molec-
ular, cellular or organ system level can undermine 
simple models of dependence and independence. 
Therefore, we would like to suggest that unless 
the data analysis calls exclusively for a regression 
of y on x (or x on y), scatter plots should be pre-
sented with three best-fitting lines–calculated with 
horizontal, vertical and perpendicular residuals–to 
facilitate a more balanced assessment of trends in 
the data. Given the ubiquity of the ordinary least 
squares method in the analysis of two-dimensional 
scatter plots, this small change in the standard 
approach to data presentation should prove useful 
across the full range of biomedical sciences.
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Figure 2. Best-fitting straight lines for three data sets reported by Ressler and co-workers (Ressler et al., 2011). 
For each of these data sets, best-fitting lines have been calculated by minimizing the sum of the squares of vertical 
residuals (green), horizontal residuals (blue) or perpendicular residuals (red). The variables in each data set are 
explained in the text; the data are taken from Figures 1a (A), 4a (B) and 4c (C) in Ressler et al. The agreement 
between the three lines is relatively poor, as expected from the low values of R2, where R is the correlation 
coefficient. The orthogonal or Deming regression shown by the red lines is not available in Microsoft Excel, 
but it can be calculated with Excel add-in freeware provided by Jon Peltier (peltiertech.com/WordPress/deming-
regression-utility), with the “r” statistics package (www.r-project.org), and with various commercial software 
packages including Analyse-it (analyse-it.com) and MedCalc (www.medcalc.org/).
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