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targeting centromeric protein A to the
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National Cancer Institute, Bethesda, United States

Abstract The centromere is a specialized chromatin region marked by the histone H3 variant

CENP-A. Although active centromeric transcription has been documented for over a decade, the

role of centromeric transcription or transcripts has been elusive. Here, we report that centromeric

a-satellite transcription is dependent on RNA Polymerase II and occurs at late mitosis into early G1,

concurrent with the timing of new CENP-A assembly. Inhibition of RNA Polymerase II-dependent

transcription abrogates the recruitment of CENP-A and its chaperone HJURP to native human

centromeres. Biochemical characterization of CENP-A associated RNAs reveals a 1.3 kb molecule

that originates from centromeres, which physically interacts with the soluble pre-assembly HJURP/

CENP-A complex in vivo, and whose down-regulation leads to the loss of CENP-A and HJURP at

centromeres. This study describes a novel function for human centromeric long non-coding RNAs in

the recruitment of HJURP and CENP-A, implicating RNA-based chaperone targeting in histone

variant assembly.

DOI: https://doi.org/10.7554/eLife.03254.001

Introduction
Specialized chromatin domains called centromeres play an essential role in chromosome segrega-

tion, serving as a platform for kinetochore complex formation, which in turn binds spindle microtu-

bules at mitosis (Verdaasdonk and Bloom, 2011). Although centromeric DNA sequence is not

uniform across species, centromere function is conserved (Sullivan, 2009). In humans, AT-rich 171

bp a-satellite repeats lacking any known genes are the primary DNA component of the centromere

(Waye and Willard, 1987). Centromeres are characterized by the presence of the centromeric his-

tone H3 variant (CENH3/CENP-A in human). Centromeric chromatin has long been considered het-

erochromatic, despite exhibiting a bivalent organization with heterochromatin-like post-translational

modifications (PTMs), such as H3 and H4 hypo-acetylation, and transcription-coupled PTMs, includ-

ing dimethylation on H3 lysine 4 (H3K4me2) (Sullivan and Karpen, 2004; Heintzman et al., 2007;

Zhou et al., 2011). The function of such bivalent modifications has remained mysterious. Indeed,

despite the common assumption that centromeres are largely dormant, a number of recent studies

have pointed to the importance of transcription at centromeres in multiple organisms, which appears

to be essential for the maintenance of centromere integrity (Hall et al., 2012). Chemical inhibition of

either RNA Polymerase I (RNAPI), or RNA Polymerase II (RNAPII), results in loss of the inner kineto-

chore protein CENP-C, and in chromosome mis-segregation (Wong et al., 2007; Chan et al., 2012).

Centromeric RNA components also seem to contribute to the structural integrity of the mitotic cen-

tromere (Wong et al., 2007). However, the exact timing of centromeric transcription, the polymer-

ase involved, the identity of centromeric RNAs and their precise role in maintaining native

centromere integrity in human cells has been elusive.
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In this study, we report that centromeric RNAs play a critical role in the maintenance of the

human centromere in vivo. Using chromatin immunoprecipitation (IP), and immunofluorescence (IF)

on chromatin fibers, we find that RNAPII, in conjunction with TATA-box binding protein (TBP) local-

izes to, and actively transcribes native human centromeres from late mitosis to early G1 (eG1). Bio-

chemical purification and sequencing of the RNA associated with human centromeric chromatin at

eG1 reveals a 1.3 kb long transcript. This RNA physically interacts with CENP-A and its chaperone

HJURP (Holliday junction recognition protein) in the pre-assembly soluble state in vivo. Targeted

sequence-specific knockdown of the transcript results in the formation of multipolar spindles and

lagging chromosomes in subsequent mitoses, leading to chromosome instability. IF analysis of cen-

tromeric chromatin fibers demonstrates that these cellular and nuclear phenotypes arise specifically

from the abrogation of CENP-A and HJURP localization to the centromere. Together, our data

describe a direct physical role for a centromeric long non-coding RNA (lncRNA) in HJURP targeting,

subsequent CENP-A loading, and the maintenance of centromere integrity. Our study supports the

possibility that an lncRNA-based mechanism is involved in targeting CENP-A and its chaperone

HJURP to the centromere.

Results

RNAPII is associated with native human centromeres at eG1
Centromeric transcription has been previously described in human cells, and RNAPII has been impli-

cated in this process (Saffery et al., 2003; Wong et al., 2007; Bergmann et al., 2011; Chan et al.,

2012). To investigate the timing of centromeric transcription, we used synchronized HeLa cells at

G2, eG1, and G1/S to track the activated form of RNAPII (i.e., serine two phosphorylated, RNAPIIS2P)

on centromeric chromatin fibers throughout the cell cycle by IF (Figure 1—figure supplement 1).

RNAPIIS2P co-localizes with the inner kinetochore protein CENP-B and centromeric a-satellite DNA

specifically at eG1 (Figure 1A, Figure 1—figure supplement 2A). We also noted that TBP, a partner

eLife digest Before a cell divides, it copies its chromosomes. Initially, the two copies of each

chromosome remain linked via their centromeres. These regions also serve as the attachment sites

for the proteins that pull these two copies apart, and eventually segregate the chromosomes equally

between the two newly formed cells.

Chromosome segregation is the main function of centromeres; and in most organisms, the DNA

in these regions is highly repetitive and is not thought to encode any proteins. However, it has been

observed that cells need enzymes called RNA polymeraseswhich transcribe stretches of DNA into

RNA moleculesto be able to separate the copies of their chromosomes correctly. This suggests that

RNAs transcribed from centromeres might be required for cell division, but the identity and function

of these RNAs remained elusive.

Quénet and Dalal have now discovered that an RNA polymerase localizes to the DNA in human

centromeres and produces RNA molecules during the early stages of the cell cycle. Two proteins–

one called CENP-A and another that functions as its chaperone–that normally bind to the

centromere and determine its structure were found less often in this region of the chromosome if

the activity of the RNA polymerase was inhibited. Qunet and Dalal identified a specific RNA

molecule that is transcribed from the centromeric DNA, which directly binds to the CENP-A protein

and its chaperone before CENP-A is assembled onto the centromeric DNA. Reducing the levels of

this RNA within the cells made them unable to separate their chromosomes correctly during cell

divisions. Qunet and Dalal also demonstrated that this centromeric RNA is needed to specifically

target both the CENP-A protein, via its chaperone, to the centromere.

The findings of Qunet and Dalal demonstrate that RNAs produced from a specific part of the

chromosome can help target DNA-binding proteins back to that region’s DNA sequence. Following

on from this work, the next challenge will be to determine if other RNA molecules are used for the

same purpose in humans and other species.

DOI: https://doi.org/10.7554/eLife.03254.002
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of RNAPII normally involved in transcription initiation (Vannini and Cramer, 2012), is localized on

eG1 CENP-A-rich fibers (Figure 1A). These data suggest that centromeres are actively transcribed

by RNAPII machinery at eG1.

We next sought to establish whether there was a physical interaction between CENP-A chromatin

and RNAPII. In order to achieve this, we extracted chromatin from non-synchronized cells after a

short MNase digestion, to obtain long chromatin arrays that are rich in tri-, tetra-, and penta-nucleo-

somes (Figure 1—figure supplement 2B). From this input chromatin, centromeric chromatin was

immunoprecipitated with specific antibodies against either CENP-A, or the inner kinetochore protein

CENP-C or no antibody (mock IP). The mock IP control shows no enrichment of any of the centro-

meric proteins tested (Figure 1—figure supplement 2C). As expected, Western blots revealed

reciprocal co-purification of CENP-A and CENP-C (Figure 1B, left and middle panels). RNAPII and

its partner TBP also co-purified with CENP-A and CENP-C (Figure 1B, left and middle panels). To

further establish an interaction between RNAPII and centromeric proteins, we performed the recip-

rocal experiment, precipitating RNAPIIS2P from solubilized chromatin, and testing for centromeric

partners. While Western blots revealed little or no interaction of RNAPII with CENP-C, a robust and

Figure 1. Active RNA Polymerase II (RNAPIIS2P) and TATA-box binding protein (TBP) are associated with centromeric chromatin at early G1 (eG1). (A)

Chromatin fibers prepared from synchronized HeLa cells at eG1, G1/S, and G2 phases were co-stained for RNAPIIS2P and TBP (green) with centromeric

proteins CENP-B and CENP-A (red), respectively. The DAPI raw image is shown for a representative chromatin fiber (cyan). Three independent

experiments were performed and in each, a minimum of five fibers were analyzed per slide (co-localization on the same chromatin fiber at eG1:

between CENP-B and RNAPIIS2P = 10/15; and between CENP-A and TBP = 9/16). Scale bar: 1 mm. (B) CENP-A, CENP-C or RNAPIIS2P were

immunoprecipitated, and co-purifying partners were detected on Western blots (1.5% of input and UB, 75% of IP). Co-IF, co-immunofluorescence; IP,

immunoprecipitate; UB, unbound.

DOI: https://doi.org/10.7554/eLife.03254.003

The following figure supplements are available for figure 1:

Figure supplement 1. Scheme presenting the strategy for HeLa cell synchronization and treatment with drugs (actinomycin D or a-amanitin) inhibiting

either RNA Polymerase I or RNA Polymerase II activity.

DOI: https://doi.org/10.7554/eLife.03254.004

Figure supplement 2. Active RNA Polymerase II (RNAPIIS2P) is associated with centromeric a-satellite sequences on chromatin fibers at early G1 (eG1).

DOI: https://doi.org/10.7554/eLife.03254.005
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reproducible binding of RNAPII to TBP and CENP-A was observed (Figure 1B, right panel). Thus,

active RNAPII machinery is physically associated with CENP-A chromatin at eG1.

RNAPII transcribes native human centromeres at late mitosis-eG1
Recent studies have indicated that RNAPII transcribes centromeres at mitosis (Chan et al., 2012).

However, our RNAPII localization data above showed RNAPII enrichment occurs primarily at eG1

(Figure 1A). To examine the consequence of eG1 RNAPII localization at centromeres, HeLa cells

were synchronized at G2, mitosis and eG1, and briefly treated (2 hr) with drugs to specifically block

either RNAPI (actinomycin D) or RNAPII (a-amanitin) activity (Figure 1—figure supplement 1) (Ben-

saude, 2011). After RNA extraction and retro-transcription, we determined the expression of control

genes and centromeric a-satellite repeats by semi-quantitative PCR. As expected, actinomycin D

and a-amanitin inhibited transcription of target genes of RNAPI (e.g., 18S rRNA) or RNAPII (e.g.,

GAPDH), respectively (Figure 2, left and middle graphs). Compared to non-treated conditions, acti-

nomycin D treatment or a-amanitin treatment in G2 phase had no impact on centromeric a-satellite

expression (Figure 2, right graph). Consistent with a previous study (Chan et al., 2012), RNAPII inhi-

bition in mitotic cells revealed a decrease (15.6%) in centromeric transcripts (Figure 2, right graph).

However, when RNAPII was blocked in eG1, a larger reduction (35.1%) was observed (Figure 2, right

graph). These results suggest that RNAPII transcribes centromeres not solely at mitosis, but also

throughout eG1.

Centromeric transcription at early G1 (eG1) is required for HJURP and
CENP-A targeting to the centromere
The synchrony of centromeric transcription and CENP-A recruitment onto centromeres at late mito-

sis-eG1 led us to examine whether active transcription is required for CENP-A loading. To test this

hypothesis, we briefly treated eG1-synchronized cells with a-amanitin (2 hr) to block RNAPII activity

as above, and quantified potential changes in intensity for CENP-A or CENP-B IF signal using

ImageJ. Consistent with its role as a constitutive centromeric DNA-binding protein

(Verdaasdonk and Bloom, 2011), CENP-B staining intensity was heterogeneous (Figure 3B, Fig-

ure 3—figure supplement 1), but identical in both non-treated (NT) and a-amanitin-treated cells

(Figure 3A,B; Supplementary file 1), demonstrating that its localization is independent of centro-

meric transcription. Whereas punctate CENP-A spots can be seen under both conditions, when

Figure 2. Transcription of centromeres is dependent on RNA Polymerase II (RNAPII) and occurs at early G1 (eG1).

G2 (green), mitotic (M; blue), and eG1 (black) synchronized cells were treated 2 hr with either actinomycin D or a-

amanitin, to block RNA Polymerase I or RNAPII, respectively. After RNA purification and retro-transcription,

expression levels of control target genes (18S rRNA and GAPDH) and centromeric a-satellite transcripts were

assessed by semi-quantitative PCR. The graph represents the average of three biological replicates, the y-axis

plots the ratio (± SD) of gene expression after treatment (actinomycin D or a-amanitin) compared to the non-

treated condition. p-values indicating statistical significance are presented where appropriate above the

histograms. *p>0.1, **0.001 < p < 0.05, and ***p<0.001.

DOI: https://doi.org/10.7554/eLife.03254.006
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RNAPII was blocked, the intensity of the CENP-A signal was decreased by ~50% in cells (Figure 3A,

B; Supplementary file 1). To ensure that this decrease was not due to reduced expression of

CENP-A or its chaperone HJURP, total levels of both proteins were quantified by Western blot. No

noticeable changes in protein levels were detected upon a-amanitin treatment (Figure 3—figure

supplement 1B). These data indicate that equal amounts of CENP-A and HJURP were available at

eG1, but potentially unable to load at the centromere.

The decrease of CENP-A signal at centromeres during eG1 after RNAPII inhibition might be due

to either the loss of pre-existing CENP-A, or a defect in targeting of newly synthesized CENP-A by

its chaperone HJURP. To discriminate between these two hypotheses, we analyzed the localization

of CENP-A, CENP-B, RNAPIIS2P, and HJURP on chromatin fibers, with or without a-amanitin treat-

ment at eG1. Consistent with the known effect of a-amanitin on RNAPII (i.e., blocking RNAPII elon-

gation without inducing the release of RNAPII) (Nguyen et al., 1996; Bensaude, 2011), inhibition of

Figure 3. RNA Polymerase II (RNAPII)-dependent transcription is required for the recruitment of CENP-A and its

chaperone HJURP onto the centromere at early G1 (eG1). (A) eG1 synchronized HeLa cells were treated or not

(NT) with a-amanitin (a-ama) for 2 hr before staining for centromeric proteins CENP-A or CENP-B (green). The

DAPI raw image is shown for a representative cell (cyan). Three independent experiments were performed and in

each, a minimum of 30 cells were analyzed per slide. Scale bar: 5 mm. (B) Signal intensity of CENP-A and CENP-B

spots from (A) was quantified using ImageJ, and relative ratios of a-amanitin vs non-treated conditions were

determined. Means ± SD from three independent experiments is represented on the graph. Quantification values

are tabulated in Supplementary file 1. (C) Centromeric proteins CENP-A and CENP-B (red) were co-stained with

HJURP (green) and RNAPII phosphorylated on serine 2 (RNAPIIS2P, green), respectively, on centromeric chromatin

fibers prepared from eG1 synchronized cells treated or not with a-amanitin for 2 hr (cyan, DAPI). Three

independent experiments were performed and in each, a minimum of five chromatin fibers were analyzed per

slide (co-localization on the same chromatin fiber after a-amanitin compared to non-treated: between CENP-B

and RNAPIIS2P = 9/15 vs 10/15; and between CENP-A and HJURP = 2/15 vs 9/15). Scale bar: 1 mm. Co-IF, co-

immunofluorescence.

DOI: https://doi.org/10.7554/eLife.03254.007

The following figure supplement is available for figure 3:

Figure supplement 1. Inhibition of RNA Polymerase II-dependent transcription at early G1 (eG1) does not affect

CENP-A and HJURP protein levels.

DOI: https://doi.org/10.7554/eLife.03254.008
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transcription did not affect RNAPIIS2P localization onto the centromeric fiber (Figure 3C, first top

panel). Similarly, CENP-B localization onto centromeric chromatin fibers remained unaffected as well

(Figure 3C, first panel). Consistent with the whole cell data presented above (Figure 3A,B), after

RNAPII inhibition, not only were CENP-A signals reduced on chromatin fibers (Figure 3C, second

panel), HJURP was almost completely lost (Figure 3C, second panel). The loss of HJURP (Figure 3C)

combined with the ~50% decrease of CENP-A signal after a-amanitin treatment (Figure 3B), sug-

gests that RNAPII-dependent transcription is required for the targeting of HJURP, and for the subse-

quent loading of new CENP-A to the centromeric chromatin fiber at eG1.

A 1.3 kb centromeric RNA binds the soluble HJURP/CENP-A pre-
assembly complex at early G1 (eG1)
Previous data have documented the existence of ncRNA at centromeres in multiple species

(Hall et al., 2012). In humans, no genes have been annotated within native centromeres, suggesting

a transcription event at a-satellite DNA repeats most likely leads to the synthesis of ncRNAs. In order

to characterize potential centromeric transcripts, we sought to purify them biochemically. Total

RNAs were extracted from cells, DNase I treated to remove genomic contamination, separated on

denaturing gels, transferred to Northern blots, and subjected to hybridization with radiolabelled

centromeric a-satellite probes, in order to reveal potential complementary transcripts. Northern

blots revealed a unique centromeric RNA species migrating at approximately ~1.3 kb (Figure 4A,

Figure 4—figure supplement 1A). Control experiments were performed to exclude the possibility

of trace genomic DNA contamination contributing to the 1.3 kb band. Treatment of RNA samples

with RNase A (Figure 4—figure supplement 1B), or purification of RNA from cells treated with a-

amanitin (Figure 4—figure supplement 1C), both demonstrated the absence of the 1.3 kb band on

Northern blots, supporting the interpretation that the 1.3 kb band derives solely from an RNA

species.

The inhibition of transcription was accompanied by the loss of CENP-A and HJURP at the centro-

mere during eG1 (Figure 3C), and our results above (Figure 4A) supported the possibility of a

unique RNA species present at centromeres in eG1. A logical prediction arising from these data is

that centromeric transcripts might physically associate with the soluble pre-assembly HJURP/

CENP-A complex in vivo. Indeed, computational RNA-binding prediction algorithms revealed poten-

tial RNA binding residues in both HJURP and CENP-A (Figure 4—figure supplement 2;

Wang et al., 2010). Thus, to further test this hypothesis, we probed for physical interactions

between CENP-A and its chaperone HJURP with centromeric a-satellite transcripts.

After a brief MNase digestion of eG1-synchronized cells, we immunoprecipitated CENP-A and

HJURP from both, the soluble fraction (composed of free histones and nuclear factors, SF), and the

chromatin fraction (composed of chromatin and associated complexes, CF) (Experimental Scheme,

Figure 4—figure supplement 3). CENP-A and HJURP complexes were immunoprecipitated from SF

and CF. Mock IPs pulled down neither CENP-A nor HJURP (Figure 4—figure supplement 4A). Con-

sistent with HJURP chaperoning CENP-A at eG1 (Dunleavy et al., 2009; Foltz et al., 2009;

Shuaib et al., 2010), these proteins co-purified from both SF and CF (Figure 4—figure supplement

4A). From these IPs, RNAs were purified, electrophoresed, transferred to Northern blots, and subse-

quently hybridized to the same radiolabelled centromeric a-satellite probes as above (Figure 4A).

These Northern blots revealed no RNA signal in the mock IP (Figure 4—figure supplement 4B). In

contrast, the 1.3 kb RNA is physically associated with CENP-A in both SF and CF (Figure 4B), and

interacts with HJURP only in the SF (Figure 4B). These data provide evidence that the 1.3 kb centro-

meric RNA physically associates with the soluble HJURP/CENP-A pre-assembly complex at eG1.

CENP-A associated RNA localizes to centromeres
We next sought to purify, clone using a conventional TOPO T/A cloning strategy and sequence

CENP-A-associated RNA (Experimental Scheme, Figure 4—figure supplement 3). This sequencing

approach was moderately successful, yielding one sequence of ~675 nucleotides (cenRNA#1, Fig-

ure 5—figure supplement 1). This RNA sequence is unique and contains four semi-regular spaced

28 bp repeats with a weak homology (~52%) to the canonical CENP-B box (Supplementary file 2),

but does not map to the currently annotated human genome sequence, to any other organisms, or

to plasmids. Over the course of the subsequent two years after publication, we made additional
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attempts to map centromeric RNAs, turning to a high-throughput approach coupled to CENP-A and

HJURP RIP-Seq. These data yielded ~435 centromeric-mapping RNA sequences (Quénet et al.,

2016), which, by RNA FISH localize to centromeres (unpublished). However, the initial cloned Cen-

RNA#1 sequence did not map to this database of centromeric RNAs. This led us to re-sequence 6

clones of CenRNA#1, which led to the rescue of 12 N’s and 27 base calls changed in the 675bp

sequence (Figure 1). We then performed an expanded sequence search across multiple sequence

databases beyond the publicly available NCBI catalog, including the HeLa genome (after obtaining

permission from the HeLa DGAP working group), as well as an industrial database for cloning vec-

tors Supplementary files 2, 3, 4. Much to our dismay, we discovered that cenRNA#1 arose largely

from fusions of adapters used in the RNA cloning approach and described in Pfeffer et al. (Figure 2;

Pfeffer et al., 2005). Based on this evidence, we no longer believe that the original sequence pro-

vided for putative cenRNA#1 represents a human centromeric transcript.

In our initial version, we seek to assess the functional role of cenRNA#1 by an shRNA strategy to

down-regulate specifically its expression (Figure 5—figure supplement 1). The two shRNAs were

generated from the putative sequence of cenRNA#1, against the 28bp repeat element sequence.

Cells were transfected with control scrambled (shRNAscram) or shRNAcenRNA#1 constructs, and

selected with puromycin Cells transfected with shRNAscram displayed no changes in morphology and

density, whereas cells treated with shRNAcenRNA#1 displayed significant loss of cell density (down by

Figure 4. The pre-assembly soluble HJURP/CENP-A complex binds a 1.3 kb centromeric transcript at early G1

(eG1). (A) Total RNAs from HeLa cells were separated on denaturing gel and visualized by Northern blot with

radiolabeled centromeric a-satellite probes. (B) Co-immunoprecipitated RNAs by CENP-A or HJURP were

analyzed by Northern blot as in (A). CF, chromatin fraction; IP, immunoprecipitate; MW, molecular weight; SF,

soluble fraction; UB, unbound.

DOI: https://doi.org/10.7554/eLife.03254.009

The following figure supplements are available for figure 4:

Figure supplement 1. Centromeric transcripts are 1.3 kb in length.

DOI: https://doi.org/10.7554/eLife.03254.010

Figure supplement 2. HJURP and CENP-A display potential RNA binding residues.

DOI: https://doi.org/10.7554/eLife.03254.011

Figure supplement 3. Scheme presenting the strategy for RNA-chromatin immunoprecipitation, RNA purification,

and sub-cloning for sequencing.

DOI: https://doi.org/10.7554/eLife.03254.012

Figure supplement 4. Mock IPs demonstrate specificity of the 1.3 kb RNA binding to CENP-A and HJURP.

DOI: https://doi.org/10.7554/eLife.03254.013
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~70%, relative to control), and presented aberrant morphology (Figure 5—figure supplement 4A

and 2B).

We decided to readdress this experiment. Based on the re-sequencing results, three base calls

within each shRNA were changed, which removes their uniqueness within cenRNA#1 and changes

the percent identity to 26/29 bases (Supplementary file 6). Neither shRNA had a significant match

to the human genome or known transcripts. However, the best hit is to a lncRNA on chromosome 3

(15/29 bases), which is proximal to the centromere, but not in the pericentromere

(Supplementary file 7). This proximity may potentially explain the positive IF/FISH signal observed

in our initial manuscript of CENP-A with cenRNA#1DNA probe (Figure 5). An independent repro-

duction of the down-regulation of cenRNA#1 by shRNA approach yielded the same chromosome

defect as before (M. Bui, data not shown). To re-test whether some fraction of cenRNA#1 matching

sequence plays a role in chromosomal integrity, we next designed a locked nucleic acid antisense

oligonucleotide (LNA ASO) and analyzed mitosis integrity. Indeed, LNA ASO targeting cenRNA#1

led to modestly increased rates of lagging chromosomes and cells with multi-polar spindles, when

compared to either un-transfected, mock transfected, or scrambled transfected cells (28% and 13%

compared to 10% and 3% for scrambled control; (Figure 5—figure supplement 5). This result may

suggest a potential function for some fraction of this non-centromeric sequence on chromosome

segregation and mitotic integrity, but which is not connected to the main findings of our original

manuscript.

Targeting destruction of centromeric a-satellite transcripts results in
severe mitotic defects
We were curious whether it was the act of centromeric transcription alone, or the product of tran-

scription (i.e., centromeric RNAs), that was necessary for HJURP and CENP-A targeting to the cen-

tromere at eG1. To distinguish between these hypotheses, we further examined functional

consequences arising from the targeted loss of total centromeric a-satellite RNA, without inhibiting

RNAPII transcription.

Using the centromeric a-satellite consensus sequence (Waye and Willard, 1987), we designed

two shRNAs targeting a-satellite sequences (shRNAsat1 and shRNAsat2) to destroy centromeric tran-

scripts (Figure 6—figure supplement 1A).

At 6 days post-transfection with the control scrambled (shRNAscram) or shRNAsat constructs and

puromycin selection, the expression level of centromeric a-satellite transcript was analyzed by

qtPCR. Compared to control shRNAscram, cells transfected with shRNAsat constructs displayed a sig-

nificant decrease (~70%) of the centromeric a-satellite transcript (Figure 6— figure supplement

1B), confirming targeted destruction was accomplished.

Evaluation of cell morphology by phase contrast microscopy revealed that shRNAsat-transfected

cells were less dense (down by ~70%, relative to control) and exhibited abnormal morphology

(Figure 6A). Phenotypes included a large and flat cytoplasm, cellular protrusions, and multinucleate

cells (Figure 6A). To better elucidate cell defects, we stained with b-actin, which revealed cells with

several nuclei and atypical shape (Figure 6B). Reduced cell density and morphological abnormalities

could result from cells exiting the replicative cell cycle and undergoing senescence (Kuilman et al.,

2010). We performed b-galactosidase staining to test for senescence (Bandyopadhyay et al.,

2005). Senescent BJ cells were used as positive control, and displayed the expected blue color after

the b-galactosidase assay (Figure 6—figure supplement 2). However, no significant increase in

senescence was seen in either shRNAscram or shRNAsat-transfected cells (Figure 6—figure supple-

ment 2).

The kinds of cellular morphological changes observed above (Figure 6A,B) have previously been

linked to defects in cell division, specifically in mitosis (Carone et al., 2013). To test this alternative

possibility, shRNA-transfected cells were synchronized at mitosis, and at 6 days post-transfection,

stained for markers of mitotic spindles (a-tubulin) and centromeres (CENP-B), respectively. shRNAs-

cram-transfected cells displayed normal mitotic structures (Figure 6C). In contrast, almost half (42.2%)

of shRNAsat-transfected cells presented abnormal mitoses, with multipolar spindles and lagging

chromosomes (Figure 6C).
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Targeting destruction of centromeric a-satellite transcripts results in
abrogation of CENP-A and HJURP targeting at early G1 (eG1)
A mechanistic explanation for the observed mitotic aberrances in the centromeric transcript

depleted cells (Figure 6C) could be loss of centromere integrity, driven by deficient targeting of

HJURP/CENP-A complexes to centromeres. We were curious whether the loss of centromeric tran-

scripts directly abrogated CENP-A and HJURP localization at centromere. Because the loss of cen-

tromeric transcripts resulted in reduced cell density and mitotic defects (Figure 6), there were

insufficient cells for biochemical experiments. Thus, we turned to chromatin fibers to investigate this

Figure 5. The identified cenRNA#1 transcript associated with CENP-A has a centromeric origin. (A) CENP-A

(green) was co-stained with Xist DNA FISH probe (FISH XistDNA, red) on chromatin fibers (cyan, DAPI). Two

independent experiments were performed and in each, a minimum of eight chromatin fibers were analyzed per

slide (co-localization on the same chromatin fiber between CENP-A and FISHXistDNA = 0/18). Scale bar: 1 m m. (B)

Chromatin fibers were either co-stained by IF/FISH with CENP-A (green) and cenRNA#1DNA (red), or IF/double-

FISH with CENP-A (green), cenRNA#1DNA (red) and centromeric a-satellite probes (gray). The DAPI raw image is

shown for a representative chromatin fiber (cyan). Two independent experiments were performed and in each, a

minimum of eight chromatin fibers were analyzed per slide (co-localization on the same chromatin fiber between

CENP-A and cenRNA#1DNA and FISH a-satellite compared to no co-localization = 9/20 vs 11/20). Scale bar: 1 mm.

FISH, fluorescencein situ hybridization; IF, immunofluorescence.

DOI: https://doi.org/10.7554/eLife.03254.014

The following figure supplements are available for figure 5:

Figure supplement 1. Sequence of cenRNA#1.

DOI: https://doi.org/10.7554/eLife.03254.015

Figure supplement 2. Alignment of the original cenRNA1 with new sequencing results.

DOI: https://doi.org/10.7554/eLife.03254.025

Figure supplement 3. Map of re-sequenced cenRNA#1

DOI: https://doi.org/10.7554/eLife.03254.026

Figure supplement 4. shRNAcenRNA#1-transfected cells have a cell survival defect.

DOI: https://doi.org/10.7554/eLife.03254.016

Figure supplement 5. The down-regulation of cenRNA#1 leads to chromosome defects. shRNAcenRNA#1-

transfected cells have a cell survival defect.

DOI: https://doi.org/10.7554/eLife.03254.027

Quénet and Dalal. eLife 2014;3:e03254. DOI: https://doi.org/10.7554/eLife.03254 9 of 20

Research article Neuroscience

https://doi.org/10.7554/eLife.03254.014
https://doi.org/10.7554/eLife.03254.015
https://doi.org/10.7554/eLife.03254.025
https://doi.org/10.7554/eLife.03254.026
https://doi.org/10.7554/eLife.03254.016
https://doi.org/10.7554/eLife.03254.027
https://doi.org/10.7554/eLife.03254


issue. After synchronization at eG1, chromatin fibers were isolated from shRNAscram cells, or the few

remaining of shRNAsat-transfected cells, and stained for RNAPII and centromeric proteins. In both,

shRNAscram- or shRNAsat-transfected cells, RNAPIIS2P remains associated with centromeric chromatin

fibers (Figure 7, first top panel), confirming that RNAPII localization and transcription of centromeres

are independent of centromeric transcripts. Additionally, CENP-B and CENP-C localization was also

unaffected at centromeres (Figure 7, second and third panels). In contrast, on centromeric fibers

from shRNAsat-transfected cells, CENP-A and HJURP were barely detectable (Figure 7, fourth and

fifth panels). These data suggest that at eG1, CENP-A targeting through its chaperone HJURP is

dependent not just on active transcription itself, nor on processes that facilitate centromeric tran-

scription (Barnhart et al., 2011; Wang et al., 2014), but specifically requires the presence of

Figure 6. Targeted down-regulation of centromeric a-satellite transcript results in mitotic defect. (A) Six days post-

transfection of empty vector, control scrambled (shRNAscram), or a-satellite shRNA (shRNAsat1, shRNAsat2), cell

morphology was observed by phase contrast microscopy. Scale bar: 100 pixels. (B) Cells were treated as in (A) and

stained for b-actin (green) and DAPI (cyan) to reveal alterations in cell morphology. Scale bar: 5 mm. (C) Cells were

treated as in (A), synchronized in mitosis and stained for a-tubulin (green), CENP-B (red) and DAPI (cyan/blue).

Three independent experiments were performed and in each, a minimum of 30 cells were analyzed per slide.

Scale bar: 5 mm. IF: immunofluorescence.

DOI: https://doi.org/10.7554/eLife.03254.017

The following figure supplements are available for figure 6:

Figure supplement 1. Down-regulation of centromeric RNAs by a targeted shRNA approach.

DOI: https://doi.org/10.7554/eLife.03254.018

Figure supplement 2. Down-regulation of centromeric transcripts does not induce senescence.

DOI: https://doi.org/10.7554/eLife.03254.019
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centromeric transcripts. The long-term loss of these centromeric transcripts leads to mitotic defects

(Figure 6), which are physically underpinned by the loss of HJURP recruitment and CENP-A loading

(Figure 7) to native centromeres.

Discussion
Active transcription is thought to be essential for centromere structure and function (Saffery et al.,

2003; Wong et al., 2007; Bergmann et al., 2011; Chan et al., 2012). In this study, we investigated

the mechanistic contribution of transcription, and centromeric transcripts, to centromeric integrity.

We show that RNAPII and TBP are loaded onto and transcribe human centromeric chromatin at eG1

(Figure 1). This cell cycle regulated centromeric transcription is required for the synthesis of centro-

meric RNAs (Figure 2). Biochemical purification and analysis reveal a 1.3 kb transcript which is physi-

cally associated with CENP-A and HJURP in the soluble pre-assembly state (Figure 4). Targeted

destruction of this centromeric RNA leads to the loss of centromere integrity and subsequent mitotic

and cellular defects (Figure 6), which are mechanistically underpinned by the loss of HJURP and

Figure 7. Targeted down-regulation of centromeric a-satellite abrogates HJURP/CENP-A targeting to centromeric chromatin at early G1 (eG1).

Chromatin fibers were prepared from shRNAscram, shRNAsat1, or shRNAsat2-transfected cells synchronized at eG1. To visualize centromeric domains, co-

IF was performed for CENP-B (red), CENP-C (green) and RNA Polymerase II (phosphorylated on serine 2, RNAPIIS2P, green), whereas CENP-A (red) and

HJURP (red) antibodies were co-stained with a DNA FISH probe against centromeric a-satellite DNA repeats (green). The DAPI raw image is shown for

a representative chromatin fiber (cyan). Three independent experiments were performed and in each, five chromatin fibers were analyzed per slide (co-

localization on the same chromatin fiber in shRNAsat1 or shRNAsat2-transfected cells: between CENP-B and RNAPIIS2P = 9/15 and 8/15; CENP-B and

CENP-C = 14/15 and 13/15; between CENP-A and centromeric a-satellite DNA = 3/15 and 1/15; between HJURP and centromeric a-satellite DNA = 1/

15 and 0/15, respectively). Scale bar: 1 mm. FISH, fluorescence in situ hybridization; IF, immunofluorescence.

DOI: https://doi.org/10.7554/eLife.03254.020

The following figure supplement is available for figure 7:

Figure supplement 1. .A speculative model proposing a mechanism by which centromeric long non-coding RNAs target soluble HJURP/CENP-A

complexes to centromeres at early G1 (eG1).

DOI: https://doi.org/10.7554/eLife.03254.021
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CENP-A recruitment to centromeres at eG1 (Figure 7). Altogether, these data reveal a hitherto

unsuspected function for lncRNAs in RNA-dependent chaperone targeting to centromeres in human

cells (Figure 7—figure supplement 1).

Several specific questions arise from our observations. First, no active genes have ever been

described in human centromeres, making the identification of RNAPII (Figure 1; Saffery et al.,

2003) and TBP at the centromere surprising. Because the repetitive nature of centromeric a-satellite

DNA has thus far disallowed complete sequencing, successful annotation of transcriptional motifs

that may exist in human centromeres remains to be accomplished. Our data show that centromeric

transcription is an event integral to the epigenetic maintenance of centromere integrity, and discov-

ering precisely where such motifs lie within active centromeres is an exciting avenue of research.

Second, our functional characterization of a 1.3 kb centromeric lncRNA deriving from centromeric

transcription reveals its interaction with CENP-A and HJURP at eG1. Specific depletion of centro-

meric a-satellite transcripts affects the recruitment of both CENP-A and HJURP proteins, directly

implicating centromeric RNA in CENP-A and HJURP targeting onto centromeres at eG1. We note

that previous data have shown that HJURP loading is also dependent on its interaction with the

Mis18 complex, in a CDK1-dependent manner (Barnhart et al., 2011; Moree et al., 2011;

Müller et al., 2014; Wang et al., 2014). However, mutations of CDK1-phosphorylated sites in

HJURP only partially abrogate its recruitment in vivo, highlighting the existence of other hitherto

unknown CENP-A loading factors (Wang et al., 2014). We speculate centromeric lncRNAs are, in

fact, the missing factor. Thus, of immediate interest is the elucidation of the structure of the 1.3 kb

centromeric RNA with its cognate binding domains in CENP-A and HJURP.

Third, the exact molecular process involved in targeting lncRNA-nucleoprotein complexes to cen-

tromeres is an unexpected and novel avenue to pursue. For example, whereas it is well known that

Xist RNA binds its cognate DNA locus only in cis (Plath et al., 2002), it is unknown if centromeric

transcripts can bind in cis solely to the centromere of origin, or in trans, across all centromeres. An

attractive possibility is centromeric RNAs originate from multiple centromeres and serve a redundant

function to ensure accurate targeting of CENP-A/HJURP to homologous centromeres.

Fourth, our study has potential evolutionary implications. Prior studies have described RNA origi-

nating from centromeres in multiple species (Bouzinba-Segard et al., 2006; Carone et al., 2009). In

mouse cells, a 120 nucleotide minor satellite RNA is associated with centromeres (Bouzinba-

Segard et al., 2006), and in tammar wallaby, centromeric transcription results in the production of

~40 nucleotides crasiRNAs (centromere repeats-associated short interacting RNAs) (Carone et al.,

2009; Lindsay et al., 2012; Carone et al., 2013). A logical explanation for the difference in size of

ncRNAs generated in different organisms may be the divergent nature of the centromeric DNA

sequences across species, which in turn may lead to divergence in the type of centromeric RNAs

produced. However, despite this difference, over-expression or down-regulation of mouse minor sat-

ellite RNA, or crasiRNAs in tammar wallaby, or the 1.3 kb centromeric human RNA identified in our

study, leads to similar cellular and mitotic defects. Our data reveal that such RNAs generated from

human centromeric transcription bind HJURP and CENP-A in the soluble form and that mitotic loss

seen in cells depleted of these lncRNAs is specifically linked to abrogation of HJURP-mediated tar-

geting of CENP-A. Thus, our data suggest an evolutionarily conserved basis for the phenomena of

centromeric transcription seen in other organisms. We speculate that accurate CENP-A targeting

onto active centromeres probably requires a dual-lock system, coupling chromatin-bound centro-

meric factors (such as Mis18), which facilitate cell-cycle regulated centromeric transcription, which in

turn results in the production of a lncRNA/CENP-A/chaperone complex that can effectively target

CENP-A back to pre-existing active centromeric sites (Figure 7—figure supplement 1).

It is noteworthy that transcription-coupled, chaperone-mediated histone variant assembly governs

much of chromatin biology. Our report potentially reveals an RNA-based mechanism by which spe-

cialized histone-variant driven chromatin structures might be maintained in vivo.

Materials and methods

LNA ASO sequence and LNA probes
LNA ASOs were designed and purchased by QIAGEN (previously Exiqon). Supplementary file 9 lists

sequences of these LNA ASO sequence.
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Down-regulation of cenRNA#1
Transfection of HeLa cells with LNA ASO were conducted as in (Bui et al., 2017). Briefly, cells were

seeded 24 hours before transfection to allow no more than 75% confluency, and transfected using

Lonza’s Amaxa Cell Line Nucleofector Kit R (Cat #VCA-1001) with Amaxa Biosystems Nucleofector II

electroporation system using program O-005. After transfection, cells were grown on coverslips with

fresh DMEM medium.

Immuno-fluorescence of mitotic cells
The day following LNA ASO transfection, cells were synchronized with a double thymidine block and

released for 10.5 hours on the third day, to enrich for anaphase-cytokinesis staged cells. IF experi-

ments were performed as described previously (Bui et al., 2012). Cells were fixed with 4% parafor-

maldehyde in 1X PBS (#14190-144; Gibco by Life Technologies) for 15 min, permeabilized with 0.5%

Triton X-100 in 1X PBS for 10 min, and blocked with 3% bovine serum albumin (BSA, #BP9706-100;

Fisher Scientific) in 1X PBS. Coverslips were immuno-stained for CENP-C and a-tubulin for one hour

each (Supplementary file 8). After three washes in 1X PBS, 0.1% Tween (#P7949-500ML; Sigma-

Aldrich), cells were incubated with secondary antibody (goat anti-guinea pig or anti-mouse IgG (H

+L) secondary antibodies, Alexa Fluor568 and Alexa Fluor488 conjugates (Thermo Fisher Scientific))

in 1X PBS for 1 hour at RT in the dark. Finally, cells were washed three times for 5 min at RT. Cover-

slips were mounted with anti-fade mounting medium Prolong Gold with DAPI.

Microscopy observation and analysis
IF slides were observed with a DeltaVision Elite RT microscopy imaging system (GE Healthcare) con-

trolling an interline charge-coupled device camera (Coolsnap) mounted on an inverted microscope

(IX-70; Olympus). Images were captured by using a 60X objective at 0.2mm z-sections and analyzed

with Image J (1.50e; Java 1.6.0_20).

Antibodies
Antibodies are commercially available, except the custom CENP-A antibody (available upon request)

used for CENP-A detection on Western blot. Supplementary file 8 lists all antibodies used for each

experiment.

Cell culture and RNA polymerase inhibition
HeLa cells were grown at 37˚C in a humidified atmosphere containing 5% CO2, in Dulbecco’s modi-

fied Eagle’s medium high in glucose and L-glutamine (#11965; Gibco, Grand Island, NY) supple-

mented with 10% Fetal Bovine Serum (#26140 – 079; Gibco) and 1X Pen/Strep solution (#10378 –

016; Gibco).

All synchronizations were done by double thymidine block (0.5 mM, #T9250; Sigma-Aldrich, Saint

Louis, MO). After a first block of 19 hr, cells were released for 9 hr, followed by a second thymidine

block of 16 hr. Cells then were released for the appropriate time (9 hr for G2, 10 hr for mitosis, and

11 hr for eG1, Figure 1—figure supplement 1). Synchronization was assessed by flow cytometry.

Cells were stained with propidium iodide (#P817045, Invitrogen, Grand Island, NY) and analyzed on

a FACScalibur (Becton Dickinson, San Jose, CA). Synchronized cells were treated with either 0.2 mg/

ml of actinomycin D (#A2263, Sigma-Aldrich) or 2 mg/ml of a-amanitin (#A1410; Sigma-Aldrich) to

analyze the effect of RNAPI and RNAPII inhibition, respectively, on centromere transcription.

RNA extraction, retro-transcription and polymerase chain reaction
(PCR)
RNAs were extracted by Trizol reagent (#15596 – 026; Ambion, Grand Island, NY) according to man-

ufacturer protocol. Briefly, cells were resuspended in Trizol, and following 5 min incubation at room

temperature (RT), 200 ml of chloroform (#BP1145-1, Fisher Scientific, Pittsburgh, PA) was added.

After centrifugation at 12,000 rpm for 15 min at 4˚C, the clear phase was mixed with 500 ml of iso-

propanol (#534021, Sigma-Aldrich) and centrifuged. The pellet was washed with 75% ethanol

(diluted from 100% ethanol, #61509 – 0010, Acros Organics, Pittsburgh, PA) and resuspended in

water complemented with DNase I buffer, DNase I (#M0303; New England Biolabs NEB, Ipswich,

MA), and RNase inhibitor (#M0314, NEB) to avoid genomic DNA contamination. After incubation for

Quénet and Dalal. eLife 2014;3:e03254. DOI: https://doi.org/10.7554/eLife.03254 13 of 20

Research article Neuroscience

https://doi.org/10.7554/eLife.03254


30 min at 37˚C, the DNase I activity was inhibited by addition of 5 mM EDTA (#351-027-721, Quality

Biological, Gaithersburg, MD) and incubation at 65˚C for 10 min. RNAs were purified a second time

by phenol:chloroform:isoamyl alcohol (25:24:1; #AC327115000) method and ethanol precipitated.

RNAs were conserved at �80˚C until further analysis.

After quantification by UV-spectroscopy (230, 260, and 280 nm) and verification of RNA quality

on 1.5% agarose gel, equivalent concentrations of RNA were subjected to retro-transcription, using

the SuperScript III First-Strand Synthesis System with random hexamer primers (#18080 – 051), and

amplified with Takara PCR kit (#RR001B; Clontech Laboratories Inc., Mountain View, CA). Control

reactions without the reverse transcriptase or complementary DNA were performed to rule out DNA

contamination and non-specific amplification, respectively. Primer sequences are included in

Supplementary file 3 (Dunham et al., 1992). PCR conditions were defined for each analyzed

sequence. The setup for GAPDH and centromeric a-satellite were 3 min 94˚C; [10 s 98˚C, 30 s 57˚C,
30 s 72˚C] 30 cycles; 5 min 72˚C. The conditions for 18S rRNA were 3 min 94˚C; [10 s 98˚C, 30 s

52˚C, 30 s 72˚C] 30 cycles; 5 min 72˚C. Finally, the PCR status for cenRNA#1 were 3 min 94˚C; [10 s

98˚C, 30 s 57˚C, 30 s 72˚C] 45 cycles; 5 min 72˚C.

Immunofluorescence (IF)
Cells were grown on poly-D-Lysine-treated coverslips in six-well plate and synchronized by double

thymidine block. After two washes with cold 1� PBS, they were prefixed for 30 s with cold 4% para-

formaldehyde (PFA, #15714 s; Electron Microscopy Sciences, Hatfield, PA) in PEM (80 mM K-PIPES

pH6.8, 5 mM EGTA pH7.0, 2 mM MgCl2). Following three washes with cold PEM, soluble proteins

were extracted for 5 min on ice with 0.5% Triton X-100 (#327372500, Acros Organics) in CSK (10

mM PIPES pH6.8, 100 mM NaCl, 300 mM sucrose, 1 mM EGTA, 3 mM MgCl2). Few drops of 4%

PFA in PEM were added for 5 min. Slides were then incubated with fresh 4% PFA in PEM for 40 min

on ice. After three washes with PEM, cells were permeabilized with 0.5% Triton X-100 in PEM for 30

min at RT, washed again three times, and blocked in 1�— TBS, 3% Bovine Serum Albumin, 5% nor-

mal goat serum (#005-000-121; Jackson ImmunoResearch, West Grove, PA) for 1 hr at RT. Finally

cells were incubated with the primary antibody diluted in 1�— TBS, 1% Bovine Serum Albumin, 5%

normal goat serum over-night (O/N) at 4˚C in a humidified chamber. Slides were washed three times

for 5 min at RT with 1�— TBS, 0.1% Tween 20 (#P7949, Sigma-Aldrich), and incubated with second-

ary antibody for 1 hr at RT. After washing, the same protocol was repeated for co-IF, and then cells

were stained with DAPI (40,6-diamidino-2-phenylindole, #D9542; Sigma-Aldrich) in 1�— TBS and

mounted with mowiol solution (Amé et al., 2009).

For b-actin IF, a classic protocol was used. Briefly, cells were fixed with 2% PFA, 1� PBS for 10

min on ice. After three washes with 1� PBS, 0.1% Triton X-100, 1% Bovine Serum Albumin, cells

were incubated with the primary antibody diluted in 1� PBS, 0.1% Triton X-100, 1% Bovine Serum

Albumin, 5% normal goat serum O/N at 4˚C in a humidified chamber. Slides were washed three

times for 5 min at RT and incubated with secondary antibody for 1 hr at RT. After washing, cells

were stained with DAPI in 1� PBS and mounted with mowiol solution.

Chromatin fiber protocol was adapted from Sullivan (2010). Trypsinized HeLa cells were incu-

bated in hypotonic buffer (75 mM KCl) for 10 min at RT, before cytospining for 10 min at 400 rpm.

Slides were immersed in freshly prepared fiber lysis buffer (2.5 mM Tris HCl pH7.5, 0.5 M NaCl, 1%

Triton X-100, 0.4 M urea) for 15 min at RT, then in fixation buffer (4% formaldehyde (#F8775; Sigma-

Aldrich), 1X PBS, final pH 7.4) for 10 min at RT, and finally in permeabilization buffer (1X PBS; 0.1%

Triton X-100) for 7 min at RT. After blocking (1X PBS, 0.5% Bovine Serum Albumin, 0.01% Triton

X-100), chromatin fibers were stained O/N at 4˚C in a humidified chamber with primary antibody

diluted in blocking solution complemented with 1% normal goat serum. Slides were washed three

times for 5 min at RT with 1X PBS, 0.05% Tween 20, before incubation with secondary antibody for 1

hr at RT. After washing, the protocol was repeated for co-IF, and the fibers were then stained with

DAPI in 1� PBS and mounted with mowiol solution.

When FISH was performed, antibody protein complexes were crosslinked (8% formaldehyde

diluted in distilled water) for 10 min at RT, denaturated in 70% formamide (#F47670; Sigma-Aldrich),

2X SSC buffer (#46 – 020 CM, Corning, Manassas, VA) for 8 min at 78˚C, and then incubated with

denaturated probed (tagged with biotin-16-dUTP [#11093070910, Roche, Indianapolis, IN] or CyTM5

dUTP [#PA55022, GE Healthcare, Pittsburgh, PA] by nick translation method) O/N at 37˚C in a
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humidified chamber. Slides were washed 5 min at 45˚C three times with 50% formamide, 2X SSC

solution, and four times with 2X SSC, 0.05% Tween 20 solution. Slides were blocked in 4X SSC, 0.1%

Tween 20, 3% Bovine Serum Albumin for 30 min at RT. Following the incubation with the secondary

antibody at 37˚C for 1 hr, slides were washed four times for 5 min each at 45˚C with 4X SSC, 0.1%

Tween 20, stained with DAPI in 2X SSC, and mounted coverslip with mowiol solution.

All samples were observed with a DeltaVision RT system (Applied Precision, Issaquah, WA) con-

trolling an interline charge-coupled device camera (Coolsnap, Roper Scientific, Martinsried, Ger-

many) mounted on an inverted microscope (IX-70; Olympus, Center Valley, PA). Images were

captured by using a 60�— at 0.2 mm z sections for cell and 100�— objective at 0.1 mm z sections

for chromatin fiber, deconvolved, and projected by using softWoRx (Applied Precision). Three inde-

pendent experiments were performed and in each, 5–10 chromatin fibers or 30–50 cells were ana-

lyzed per slide.

IF analysis
To quantify IF signals, the acquisition of pictures for all samples of an experiment was performed

with the same time of exposure during the same day to avoid variability from the instrument. Using

ImageJ (ImageJ 1.43U), signal intensity of each CENP-A or CENP-B spot inside of the nucleus (as

defined by the DAPI staining) was extracted. The background level of the nucleus was subtracted

from the average value of the spot intensity per cell. For each experiment, the average value of the

spot intensity per cell and the ratio signal intensity in treated condition vs signal intensity in non-

treated condition was measured. The mean and standard deviation values of three experiments are

presented in the Supplementary file 1.

Chromatin extraction and immunoprecipitation (IP)
Five F175 flasks of HeLa cells (70–80% of confluence) were used for IP. Cells were trypsinized

(#25300; Gibco) and washed three times with cold 1� PBS, 0.1% Tween 20 coupled with 5 min cen-

trifugation at 800 rpm at 4˚C. Nuclei were isolated in TM2 buffer (20 mM Tris HCl pH8, 2 mM

MgCl2, 0.5 mM PMSF) complemented with 0.5% NP40 substitute (#74385, Sigma-Aldrich), and

washed once with TM2 buffer. Chromatin was digested 2 min at 37˚C with 0.2 unit/ml of MNase

(#N3755; Sigma-Aldrich) in 0.1 M TE buffer (0.1 M NaCl, 10 mM Tris HCl pH8, 0.2 mM EGTA) com-

plemented with 2 mM CaCl2. The reaction was stopped by addition of 10 mM EGTA and transferred

to ice. After centrifugation for 5 min at 800 rpm at 4˚C, the nuclear pellet was resuspended in 1 ml

low-salt buffer (0.5� PBS, 5 mM EGTA, 0.5 mM PMSF, protease inhibitor cocktail [#05892953001;

Roche]), and the chromatin was extracted O/N at 4˚C in an end-over-end rotator. An aliquot of the

supernatant obtained after centrifugation for 5 min at 8000 rpm at 4˚C was saved as input (1.5%). At

4˚C, sample was precleared with protein A/G Plus agarose beads (#sc-2003; Santa Cruz Biotechnol-

ogy, Dallas, TX) for 30 min at 4˚C in an end-over-end rotator, incubated with the primary antibody

for 4 hr, followed by IP with protein A/G Plus agarose beads for 2 hr. After centrifugation, an aliquot

was saved as unbound (UB, 1.5%), and the bead-associated IP was washed three times with low-salt

buffer, and stored at �20˚C in Laemmli buffer (30 ml) for Western blot analysis.

RNA-chromatin IP and RNA purification
A general scheme is presented on Figure 4—figure supplement 3. Five F175 flasks of eG1-synchro-

nized HeLa cells (70–80% of confluency) were used for IP. After trypsinization, cells were washed two

times with cold 1� PBS, 0.1% Tween 20, fixed 10 min at RT with 1% formaldehyde, quenched by

addition of 125 mM glycine, and washed twice with cold 1X PBS, 0.1% Tween 20. Samples were

treated as described above (i.e., Chromatin extraction and immunoprecipitation) in presence of 10

mM Ribonucleoside Vanadyl Complex (RVC, #1402; NEB). After centrifugation 5 min at 800 rpm at

4˚C following the MNase digestion, the supernatant was saved and named soluble fraction, whereas

the nuclear pellet was suspended in 1 ml low-salt buffer (0.5� PBS, 5 mM EGTA, 0.5 mM PMSF, pro-

tease inhibitor cocktail, 10 mM RVC) and chromatin was extracted O/N at 4˚C. The supernatant

obtained after centrifugation 5 min at 8000 rpm at 4˚C was named chromatin fraction. IPs were per-

formed as described previously with both fractions (i.e., Chromatin extraction and immunoprecipita-

tion). After washes, bead-associated IPs were divided in two equal samples for protein analysis by

Western blot and for RNA study.
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For RNA study, RNA protein complexes were eluted from protein A/G Plus agarose beads by

incubation in an end-over-end rotator for 15 min at RT with 250 ml elution buffer (1% SDS; 0.1 M

NaHCO3). The supernatant was saved and the elution step was repeated once more. All samples

(input, unbound and IP) were denatured at 65˚C for 2 hr with 200 mM NaCl. Proteins were digested

with 20 mg of proteinase K (#AM2548; Ambion) in the presence of 40 mM Tris HCl pH6.5, 10 mM

EDTA at 42˚C for 45 min. To avoid genomic DNA contamination, samples were treated with DNase I

for 30 min at 37˚C. The reaction was stopped by addition of 5 mM EDTA, and RNAs were purified

by phenol:chloroform:isoamyl alcohol method and ethanol precipitation. Samples were stored at

80˚C until further use in retro-transcription PCR and Northern blot.

Western blot
Samples in Laemmli buffer were denatured 5 min at 95˚C, plunged on ice for 2 min, loaded into a 4

20% SDS-PAGE (#456 – 1093; Biorad, Hercules, CA) for separation in 1�— Tris Glycine SDS Running

Buffer (#161 – 0732; Biorad), and transferred to Whatman nitrocellulose membrane (#10439396;

Sigma-Aldrich) in Tris Glycine transfer buffer (#351-087-131; Quality Biological) diluted in 20% etha-

nol. Membrane was blocked in Odyssey blocking buffer (#927 – 40000; Li-Cor, Lincoln, NE) diluted

in 1� PBS (1:1) at RT for 1 hr, and incubated with primary antibody diluted in blocking buffer com-

plemented with 0.1% Tween 20 O/N at 4˚C. After three washes in 1� PBS, 0.1% Tween 20, the

membrane was incubated with the secondary antibody conjugated to IRDye680 (#926 – 68072 and

#926 – 68073; Li-Cor) diluted in blocking buffer complemented with 0.1% Tween 20% and 0.05%

SDS for 1 hr at RT. The membrane was washed in the same conditions than previously and proteins

were detected by scan on Odyssey CLx scanner (Li-Cor).

Protein quantification
eG1-synchronized HeLa cells treated with a-amanitin (as described in Cell culture and RNA Polymer-

ase inhibition) were resuspended in lysis buffer (20 mM Tris HCl pH7.5, 400 mM NaCl, 2 mM dithio-

threitol, 1% Nonidet P40 substitute, 0.5 mM PMSF, protease inhibitor cocktail). After three cycles of

freezing and thawing, extract was centrifuged for 20 min at 12,000 rpm at 4˚C. The cleared suspen-

sion was quantified by UV spectroscopy, and 50 mg of proteins were resuspended in Laemmli buffer.

After separation into a 4 20% SDS-PAGE, transfer to a nitrocellulose membrane and incubation with

primary and secondary antibodies (as described in Western Blot), proteins were detected by scan on

Odyssey CLx scanner and quantified with ImageStudioLite software (Li-Cor). For each experiment,

the ratio of signal intensity in treated condition vs signal intensity in non-treated condition was mea-

sured. The means and standard deviations of three experiments are presented in the figure.

Northern blot
Northern blotting protocol was adapted from Summer et al. (2009) and http://archive.bio.ed.ac.uk/

ribosys/protocols/website_Northern_blotting.pdf. 5 mg of Trizol extracted RNAs or 1 mg of immuno-

precipitated RNAs was separated on 4% urea PAGE against 0.5�— TBE buffer at 25 W for 90 min.

RNAs were transferred to Amersham Hybond-NX membrane (#RPN203T; GE Healthcare) for 2 hr at

65 V, UV-cross-linked, blocked for 1 hr in SES buffer (0.5 M Na3PO4 pH7.2, 7% [wt/vol] SDS, 1 mM

EDTA), and hybridized O/N at 37˚C with radiolabelled a-satellite probes (end-labeling method using

primer extension-system AMV reverse transcriptase kit, #E3030; Promega, Madison, WI) diluted in

SES buffer. Membrane was washed in 6�— SSPE (1.08 M NaCl, 0.06 M NaH2PO4, 20 mM EDTA, pH

adjusted to 7.4) two times for 15 min at 37˚C and two times for 30 min at 42˚C. Blot was exposed to

P32-sensitive film (Hyblot CL film, #E3012; Denville, Saint Laurent, Canada) at �80˚C to reveal the

potential interaction for a short (<24 hr) or long (>24 hr) period of time. The sequences of the radio-

labeled probes are indicated in Supplementary file 10.

Computational analysis
Computational prediction of RNA binding residues was performed with BindN+ program (http://bio-

info.ggc.org/bindn+/) with a specificity equal to 85% (Wang et al., 2010). We used human CENP-A

(P49450), H3.1 (P68431) and HJURP (Q8NCD3), and Scm3 (Q12334) protein sequences from uniprot

database.
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Transfection with shRNA
pGFP-V-RS plasmids expressing shRNA sequence were purchased from Origine (Rockville, MD). Two

controls were used for each experiment: the empty vector (#TR30007) and the vector expressing

scrambled sequence cassette (#TR30013; shRNAscram 50-GCACTACCAGAGCTAACTCAGATAGTAC

T-30). Two shRNA sequence cassettes were designed from the centromeric a-satellite consensus

sequence (Waye and Willard, 1987): shRNAsat1 50-TGTGTGCATTCAACTCACAGAGTTG-30 and

shRNAsat2 50-CAACTCACAGAGTTGAACCTTCCTT-30 (Figure 6—figure supplement 1); and from

the cenRNA#1 sequence (Figure 5—figure supplement 1): shRNAcenRNA#1 50-TGCTAGACAGCCAA

TGCAATTCCTCATTA-30.

Cells were transfected with Escort II Transfection Reagent (#L6037; Sigma-Aldrich) following man-

ufacturer instruction. 48 hr after transfection, the medium was replaced every 2 days with fresh

medium complemented with 0.5 mg/ml puromycin (#A1113802; Gibco) to select transfected cells. At

day 6, cells were either treated for IF or RNA extraction.

Quantitative PCR (qtPCR)
To detect a-satellite expression level in shRNA-transfected cells, RNAs were extracted, quantified by

UV-spectroscopy, and equal quantities were retro-transcribed using Superscript III First-Strand Syn-

thesis kit as described above (i.e., RNA extraction, retro-transcription, and Polymerase Chain Reac-

tion). To perform qtPCR, complementary DNAs (cDNAs) samples were prepared using the iQ SYBR

Green supermix (#170–8880; Biorad) following manufacturer’s protocol. Control reactions without

the cDNA were performed to rule out non-specific amplification. The qtPCR was run on Step one

plus Real time PCR system (Applied Biosystem, Grand Island, NY). Primer sequences are available

on Supplementary file 3.

The comparative cycle threshold (CT) method was used to analyze the expression level of a-satel-

lite transcripts. CT values were normalized against the average CT value of the housekeeping gene

b-actin. The DDCT values were determined from the scrambled shRNA samples. Relative fold differ-

ences (2� DDCT) are indicated on figure.

b-galactosidase assay
Senescent cells were detected using the protocol developed by Itahana et al. (2007). Briefly, 6 days

post transfection with shRNA, HeLa cells grown in a six-well plate were washed two times in 1� PBS,

fixed 5 min at RT with 3.7% formaldehyde in 1X PBS, and washed twice with 1X PBS. Cells were

stained with the X-gal staining solution (1 mg/ml of X-gal [#B9146; Sigma-Aldrich], 40 mM citric

acid/sodium phosphate buffer pH 6.0, 5 mM potassium ferricyanide [#702587; Sigma-Aldrich], 5 mM

potassium ferrocyanide [#P3289; Sigma-Aldrich], 150 mM NaCl, 2 mM MgCl2) O/N at 37˚C. After
rinsing, cells were observed under a light microscope for blue color, indicator of senescence.

Statistical analysis
Standard deviation was determined for all quantification measures. To test the significance of these

measures, a two-tailed, paired Student’s t test was performed. For all tests a was assumed to be

0.05. The p-value is indicated on the figures or tables each time it was evaluated.
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