Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins

  1. Sylvain Zorman
  2. Aleksander A Rebane
  3. Lu Ma
  4. Guangcan Yang
  5. Matthew A Molski
  6. Jeff Coleman
  7. Frederic Pincet
  8. James E Rothman
  9. Yongli Zhang  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. Yale University, United States
  3. UMR CNRS 8550 Associée aux Universités Paris 6 et Paris 7, Ecole Normale Supérieure, France

Abstract

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are evolutionarily conserved machines that couple their folding/assembly to membrane fusion. However, it is unclear how these processes are regulated and function. To determine these mechanisms, we characterized the folding energy and kinetics of four representative SNARE complexes at a single-molecule level using high-resolution optical tweezers. We found that all SNARE complexes assemble by the same step-wise zippering mechanism: slow N-terminal domain (NTD) association, a pause in a force-dependent half-zippered intermediate and fast C-terminal domain (CTD) zippering. The energy release from CTD zippering differs for yeast (13 kBT) and neuronal SNARE complexes (27 kBT), and is concentrated at the C-terminal part of CTD zippering. Thus, SNARE complexes share a conserved zippering pathway and polarized energy release to efficiently drive membrane fusion, but generate different amounts of zippering energy to regulate fusion kinetics.

Article and author information

Author details

  1. Sylvain Zorman

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Aleksander A Rebane

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lu Ma

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Guangcan Yang

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew A Molski

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jeff Coleman

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Frederic Pincet

    UMR CNRS 8550 Associée aux Universités Paris 6 et Paris 7, Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. James E Rothman

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yongli Zhang

    Yale University School of Medicine, New Haven, United States
    For correspondence
    yongli.zhang@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Zorman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,690
    views
  • 361
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sylvain Zorman
  2. Aleksander A Rebane
  3. Lu Ma
  4. Guangcan Yang
  5. Matthew A Molski
  6. Jeff Coleman
  7. Frederic Pincet
  8. James E Rothman
  9. Yongli Zhang
(2014)
Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins
eLife 3:e03348.
https://doi.org/10.7554/eLife.03348

Share this article

https://doi.org/10.7554/eLife.03348

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.