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Abstract Utilizing molecular data to derive functional physiological models tailored for specific 
cancer cells can facilitate the use of individually tailored therapies. To this end we present an 
approach termed PRIME for generating cell-specific genome-scale metabolic models (GSMMs) 
based on molecular and phenotypic data. We build >280 models of normal and cancer cell-lines that 
successfully predict metabolic phenotypes in an individual manner. We utilize this set of cell-specific 
models to predict drug targets that selectively inhibit cancerous but not normal cell proliferation. 
The top predicted target, MLYCD, is experimentally validated and the metabolic effects of MLYCD 
depletion investigated. Furthermore, we tested cell-specific predicted responses to the inhibition  
of metabolic enzymes, and successfully inferred the prognosis of cancer patients based on their 
PRIME-derived individual GSMMs. These results lay a computational basis and a counterpart 
experimental proof of concept for future personalized metabolic modeling applications, enhancing 
the search for novel selective anticancer therapies.
DOI: 10.7554/eLife.03641.001

Introduction
Personalized medicine is moving us closer to a more precise, predictable and powerful method of 
treatment, customized for the individual patient. One field of research in which personalized medicine 
holds great promise is cancer therapy. The use of molecular data to personalize cancer treatment and 
differentiate one type of cancer from another can facilitate the use of highly tailored therapies and 
offers tremendous potential for improved prognoses (Simon and Roychowdhury, 2013). A funda-
mental stepping-stone towards this goal is the ability to derive large-scale functional physiological 
models of specific cells that capture their unique cellular behavior. These models can then be utilized 
to identify drug targets that differentiate one cancer type from the other, and most importantly, distin-
guish them from their normal counterparts thus achieving treatment response selectivity.

This study addresses these challenges within the growing paradigm of Genome-Scale Metabolic 
Modeling, a computational framework for studying metabolism on a genome-scale that has been 
successfully used for a variety of applications (Burgard et al., 2003; Oberhardt et al., 2009; 
Chandrasekaran and Price, 2010; Jensen and Papin, 2010; Lewis et al., 2010; Szappanos et al., 
2011; Wessely et al., 2011; Agren et al., 2012; Lee et al., 2012; Lerman et al., 2012; Pey et al., 
2012; Schuetz et al., 2012; Oberhardt et al., 2013). In recent years, two Genome-Scale Metabolic 
Models (GSMMs) of human metabolism were published (Duarte et al., 2007; Ma et al., 2007), and 
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their utility in predicting human metabolic phenotypes has been demonstrated in a wide range of 
studies (Shlomi et al., 2008; Lewis et al., 2010; Folger et al., 2011; Frezza et al., 2011; Agren 
et al., 2012; Yizhak et al., 2013). Recently, more comprehensive versions of the generic human model 
were published (Thiele et al., 2013; Mardinoglu et al., 2014). While these generic models are not 
specific to any cell- or tissue-type, they have successfully served both as a basis for generating context-
specific models of tissues (Shlomi et al., 2008; Jerby et al., 2010; Agren et al., 2012) and for study-
ing cancer metabolism (Folger et al., 2011; Frezza et al., 2011; Shlomi et al., 2011; Agren et al., 
2012; Facchetti et al., 2012; Wang et al., 2012; Dolfi et al., 2013; Agren et al., 2014; Yizhak et al., 
2014). Importantly, methods for building context-specific models do not take into account subtle dif-
ferences in levels of expression of a particular enzyme, but rather its presence or absence. This coarse 
discretization makes these methods less applicable for the task of building cell-specific models, in 
cases where a high similarity in transcriptomics levels of different samples is observed. Namely, when 
the inter-individual variations in the molecular signatures of different cells are too small, this type of 
methods would lead to nearly identical models with little specific predictive value. Alternatively, 
absolute expression levels can be used to constraint the model's solution space, as previously done 
by E-Flux for studying bacterial metabolism (Colijn et al., 2009). Nonetheless, the applicability of 
E-Flux for studying human metabolism has not been established.

In this study we aim to derive cell-specific metabolic models for human cell lines that are capable of 
predicting metabolic phenotypes in an individual manner. We aimed to construct such models for the 

eLife digest Cancer is not just one disease, but a collection of disorders; as such there is no 
single general treatment that is effective against all cancers. Different tissues and organs—including 
the lungs, skin, and kidneys—can get cancer, and each need different treatments. Even two patients 
with the same type of cancer might respond differently to the same treatment.

Being able to distinguish between different cancer types would help doctors personalize a 
patient's cancer therapy—which would hopefully improve the outcome of the treatment. An 
important step in developing such personalized treatments is to find out how each type of cancer 
cell behaves and to see how this behavior differs both from normal, healthy cells and other types  
of cancer.

Countless chemical reactions take place inside living cells, and these reactions essentially dictate 
how a cell will grow and behave. The chemical reactions occurring inside a cancerous cell can be 
described as its ‘metabolic phenotype’ and will likely be different to the chemical reactions 
occurring in a healthy cell. Now Yizhak, Gaude et al. have used a range of data, including gene 
expression data, to create computer models of the metabolic phenotypes of 60 different types  
of human cancer cell. The same approach was also used to create metabolic models of over 200 
healthy human cells that were dividing normally. Yizhak, Gaude et al. used these metabolic models 
to predict how quickly the different types of cancer cell would divide and how the cells would 
respond to drug treatments.

It may be possible to reduce the spread of all types of cancer—without also affecting healthy 
cells—by targeting proteins that help cancerous cells to proliferate. Yizhak, Gaude et al. used all of 
the models to search for genes that encode such proteins. One gene that was predicted to provide 
such a drug target encodes an enzyme that is needed to make and break down fatty acid 
molecules. Experiments confirmed that inhibiting this gene slowed the proliferation of both 
leukemia and kidney cancer cells, but had less of an effect on the growth of healthy bone marrow or 
kidney cells. Finally, Yizhak, Gaude et al. generated detailed metabolic profiles of cancer cells taken 
from over 700 breast and lung cancer patients and were able to use the models to successfully 
predict the outcome of the diseases in these patients.

Yizhak, Gaude et al.'s findings might help future efforts aimed at developing and delivering 
personalized cancer therapies. The next challenge is to use additional data—such as gene 
sequencing data—to generate more detailed and more accurate metabolic models for many cancer 
patients, to both predict their individual responses to available drugs and identify new patient-
specific treatments.
DOI: 10.7554/eLife.03641.002
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human NCI-60 and HapMap cell line collections, where the similarity in expression levels of different 
cell lines is quite high. We began our investigation by testing the suitability of two existing model-
building approaches towards this end. The moderate performance achieved by existing methods 
(see next section) have led us to develop a new cell-specific model building method termed PRIME 
(Personalized ReconstructIon of Metabolic models), which utilizes both molecular and phenotypic data 
for tailoring cell-specific GSMMs. We applied PRIME to reconstruct >280 GSMMs of cancer and normal 
proliferating cells, which are tested by their ability to predict metabolic phenotypes such as prolifera-
tion rate, drug response and biomarkers on an individual level. We then utilized the models of normal 
and cancer cell lines to predict cancer selective drug targets. We validate experimentally that the top 
predicted gene target, Malonyl-CoA decayboxylase (MLYCD), induces a clear selective effect on cell 
growth when tested in both leukemia and renal cancer cell lines, vs normal lymphoblast and renal cell 
lines. Furthermore, we used PRIME to reconstruct personalized metabolic models of breast and lung 
cancer patients successfully inferring their prognosis. We therefore suggest that PRIME can be applied 
in the future to a variety of personalized medicine applications where molecular and phenotypic data 
can be coupled together to find metabolic drug targets.

Results
Generation of a phenotype-based cell specific (PBCS) GSMMs via the 
PRIME approach
In this study we aim to derive individualized metabolic models for both normally proliferating lympho-
blast cell lines (HapMap dataset), and a panel of cancer cell lines (the NCI-60 collection) (Lee et al., 
2007; Choy et al., 2008). As these datasets contain both gene expression information and growth 
rate for each cell line, our goal has been to use the gene expression to build cell-specific models that 
can predict an array of metabolic phenotypes using the measured proliferation rates for initial testing 
and validation. The difference in the gene expression of HapMap and NCI-60 datasets is very subtle 
(mean Spearman R > 0.92, Figure 1A, upper panel), which may in turn imply that discretization-based 
methods would result here with nearly identical models that will fail to differentiate between their 
phenotypes. We therefore hypothesized that the integration of absolute expression levels would pos-
sibly be more suitable for our goal. To this end, we examined the performance of the two representa-
tive previously published methods on these datasets, one accepting discretized expression as inputs 
(iMAT [Shlomi et al., 2008]) and one analyzing the raw, non discretized expression data (E-Flux [Colijn 
et al., 2009]).

As shown in Figures 1A and 2A, The performance of these methods leaves much to be desired: 
iMAT, an omics-integration method that defines a subset of active and inactive reactions based on 
expression data (Shlomi et al., 2008), resulted in insignificant or even negative correlations between the 
actual and predicted proliferation rates for both datasets (HapMap: Spearman R = 0.03, p-value = 0.66; 
NCI-60: Spearman R = −0.07, p-value = 0.59, Figure 1A middle panel, Figure 2A), probably due 
to the high correlation in metabolic gene expression between samples (mean pair-wise Spearman 
R = 0.97 and R = 0.92 for the HapMap and NCI-60 datasets, respectively; Figure 1A). E-flux (Colijn 
et al., 2009) similarly failed to obtain significant results in predicting the HapMap cell lines' prolifera-
tion rates (Spearman R in the range of 0.1–0.11, p-value > 0.07, Figure 1A lower panel, Figure 2A, 
Supplementary file 1A), but obtained significant results in predicting the NCI-60 cell lines' prolifera-
tion rate (Spearman R in the range of 0.43–0.44, p-value > 3.6e-4, Figure 1A lower panel, Figure 2A, 
Supplementary file 1A).

We hence turned to develop a new approach termed PRIME that is designed for our specific task 
(Figure 1B and Figure 1—figure supplement 1). PRIME aims to reconstruct distinct, phenotype-
based cell-specific metabolic models (PBCS) based on sample-specific molecular data. This is achieved 
by setting maximal flux capacity constraints on a selected subset of reactions in the generic species 
model, according to their associated gene expression levels and phenotypic data. PRIME's starting 
point is similar to E-Flux. While both methods utilize the rather straightforward notion of adjusting 
reactions' bounds according to expression levels, few key differences between them help PRIME gen-
erate more accurate models: (1) since modifying the reactions' bounds is considered to be a hard 
constraint, one should aim to avoid over-constraining the network based on irrelevant or noisy 
information. Clearly, only a subset of the metabolic genes affects a specific central cellular pheno-
type. Accordingly, PRIME identifies this set in the wild type unperturbed case and modifies the bounds 
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of only the relevant set of reactions; (2) while a common assumption is that expression levels and flux 
rates are proportional, this is known to hold only partially (Bordel et al., 2010). PRIME therefore uti-
lizes the additional phenotypic data to determine the direction (sign) of this relation and modifies the 
bounds accordingly (‘Materials and methods’); (3) PRIME modifies reactions' bounds within a pre-
defined range where the modification is known to have the greatest effect on a given phenotype 
(‘Materials and methods’). Importantly, E-Flux has only been utilized to build models of two different 
bacterial conditions, by aggregating the expression levels of all samples associated with each condi-
tion. In this study we employ the principles described above to build individual cell models from the 
human metabolic model based on a single sample gene expression signature of each cell.

PRIME takes three key inputs: (a) gene expression levels of a set of samples; (b) a key phenotypic 
measurement (proliferation rate, in our case) that can be evaluated by a metabolic model; and (c) a 
generic GSMM (the human model, in our case). It then proceeds as follows: (1) A set of genes that 
are significantly correlated with the key phenotype of interest is determined (Supplementary file 2A); 
(2) The maximal flux capacity of reactions associated with the genes identified in (1) is modified 
according to the directionality and level of their corresponding gene expression level. Importantly, to 
assure that bound modifications would have an effect on the models' solution space, reactions' flux 
bounds are modified within an effective flux range. Accordingly, PRIME outputs a GSMM tailored 
uniquely for each input cell (see Figure 1B, Figure 1—figure supplement 1 and the ‘Materials and 
methods’ for a formal description).

Figure 1. The PRIME pipeline and growth rate predictions obtained by different methods. (A) Upper panel: Spearman rank correlation between the 
metabolic gene expression of two representative cell lines in the HapMap (left) and NCI-60 (right) datatset (the two cell lines represent the average 
correlation across the entire datasets); Middle panel: Spearman rank correlation between predicted and measured growth rates in the HapMap (left) and 
NCI-60 (right) datatset as predicted by iMAT, a method that utilizes discrete gene expression signature as input; Lower Panel: Spearman rank correlation 
between predicted and measured growth rates in the HapMap (left) and NCI-60 (right) datatset as predicted by E-Flux, a method that utilizes absolute 
gene expression levels as input. (B) A schematic overview of PRIME. As input, PRIME gets a GSMM and gene expression measurements for p cells 
together with their associated phenotypic measurement (e.g., proliferation rate). (Step 1): A set of genes whose expression is significantly associated 
with the phenotype is identified. (Step 2): A linear transformation from the expression of the phenotype-associated genes, to reactions' upper bound 
(maximal flux capacity) is applied (‘Materials and methods’). PRIME outputs a GSMM for each of the p input cells, such that each cell model generates a 
different feasible flux solution space. See also Figure 1—figure supplement 1.
DOI: 10.7554/eLife.03641.003
The following figure supplement is available for figure 1:

Figure supplement 1. Biomass production as a function of flux upper bound. 
DOI: 10.7554/eLife.03641.004
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PBCS metabolic models of normal lymphoblasts and cancer cell lines
We first applied PRIME to a dataset composed of 224 lymphoblast cell lines from the HapMap project 
(International HapMap Consortium, 2005). This dataset is composed of cell lines taken from healthy 
human individuals, from four different populations, including Caucasian (CEU), African (YRI), Chinese 
(CHB) and Japanese (JPT) ethnicities (Supplementary file 1B). Applying PRIME to the generic human 
model (Duarte et al., 2007), we constructed the corresponding 224 metabolic models, one for 
each cell line. The correlation between the proliferation rates predicted by these models and those 
measured experimentally is highly significant (Spearman R = 0.44, p-value = 5.87e-12, Figure 2A–B, 
Supplementary file 1C and Supplementary file 2B). In addition to capturing the differences between 
each of the cell lines the models also correctly predict the experimentally observed significant differ-
ences between populations' proliferation rates (CEU < YRI < JPT < CHB) in the correct order (Figure 2C 
and [Stark et al., 2010]). The correlation observed remains significant also after employing a five-fold 

Figure 2. Growth rate predictions obtained by PRIME. (A) The Spearman correlation achieved by the different methods in predicting the individualized 
growth rates measurements across the HapMap and NCI-60 cell lines. (CV; Cross-Validation). (B) Individual predicted vs measured growth rates in the 
HapMap (left) and NCI-60 (right) datasets. (C) A comparison between mean predicted and measured growth rates across the four HapMap populations. 
Measured growth rates are represented as bars and the predicted growth rate is represented as a line. PRIME correctly predicts the population-based 
order of proliferation rates: CEU < YRI < JPT < CHB. (D) A comparison between mean predicted and measured growth rates across the nine tumor  
types composing the NCI-60 collection. Measured growth rates are represented as bars and the predicted growth rate is represented as a line 
(Spearman R = 0.71, p-value = 0.03); Leukemia (LE); Breast (BR); Central Nervous System (CNS); Colon (CO); Renal (RE); Lung (LU); Ovarian (OV);  
Prostate (PR); Melanoma (ME).
DOI: 10.7554/eLife.03641.005
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cross validation process 1000 times, controlling for the (indirect) use of proliferation rate in deter-
mining the modified reactions' set (mean Spearman R = 0.26, empiric p-value = 0.007, Figure 2A, 
‘Materials and methods’). Specifically, this analysis is performed by utilizing the set of growth-associated 
genes derived from the train-set to build the models of the test-set, where the correlation between 
measured and predicted proliferation rates is then evaluated.

We further applied PRIME to build individual models and predict the proliferation rates of  
60 cancer cell lines, obtaining a highly significant correlation between the measured and predicted 
proliferation rates (Spearman R = 0.69, p-value = 1.22e-9, Figure 2A–B, Supplementary file 1C and 
Supplementary file 2B). A four-fold cross-validation analysis resulted with a mean Spearman corre-
lation of 0.56 (empiric p-value = 0.006, Figure 2A, ‘Materials and methods’). Grouping the samples 
into the nine tumor types found in this dataset and evaluating the mean proliferation rate of each 
group, a significant correlation is obtained between the measured and actual growth rates of the 
different tumors (Spearman R = 0.71, p-value = 0.03, Figure 2D). The higher correlation achieved 
for the cancer cell-lines in respect to that achieved for the normal cell-lines, is a result of the higher 
correlation found between metabolic gene expression and growth rate in the former datatset (see 
Supplementary file 2A).

To further examine the process employed by PRIME we tested three additional alternatives:  
(1) modifying the bounds of all enzyme-associated reactions and not only of those that are growth-
related. This process decreased the correlation to Spearman R = 0.24, p-value = 2.4e-9 and Spearman  
R = 0.56, p-value = 2.8e-6 for the NCI-60 and HapMap datasets, respectively; (2) selecting random 
sets of reactions at the size of the original set and modifying their bounds according to their gene 
expression. Repeating this process 1000 times resulted with significantly inferior predictive perfor-
mance in both datasets compared to PRIME (empiric p-value < 9.9e-4, ‘Materials and methods’); 
(3) permuting the measured proliferation rates in each of the cell lines datasets for a 1000 times 
and correlating them with those computed by the PRIME models. In this case as well the original 
growth prediction results were found to be highly superior (empiric p-value < 9.9e-4, ‘Materials and 
methods’).

Prediction of cell-specific metabolic liabilities using the NCI-60 
collection
PRIME's major goal is to generate cell-specific metabolic models. Therefore, PRIME has the potential 
to guide pharmacological interventions based on the individual's phenotype, which underlies the 
basis of personalized medicine. We therefore tested the ability of PRIME to predict the response of 
each individual cell line to various metabolic drugs, and compared it with the response measured in 
vitro (Scherf et al., 2000; Choy et al., 2008; Holbeck et al., 2010; Garnett et al., 2012; Lock et al., 
2012). In silico drug response is computed according to the biological phenotype measured experi-
mentally, which in this case includes ATP levels, or AC50/IC50 values (the concentration at which a 
given compound exhibits half-maximal efficacy or half-maximal inhibition of cell growth, respectively). 
ATP flux production levels can be estimated directly in a metabolic model. The latter measurements 
(AC50/IC50) were computed by evaluating the flux through the drug's target reaction under 50% 
of drug maximal efficacy or 50% inhibition of cell maximal growth (‘Materials and methods’ and 
Supplementary file 1D–F). As shown in Figure 3A, this analysis yields a significant Spearman correla-
tion (p-value < 0.05) between measured and predicted drug response for 12 out of 16 drugs tested in 
the HapMap and the NCI-60 datasets. Moreover, performing a permutation test in each of the data-
sets separately by permuting the measured drug response data, a highly significant result is obtained 
(empiric p-value < 9.9e-4, ‘Materials and methods’). Applying a partial correlation analysis between 
in silico predicted and measured drug response while controlling for the experimentally measured 
proliferation rate (as growth rate itself has been implicated as a predictor of drug response, e.g., for 
cytotoxic drugs), we still find a significant association between predicted and measured drug response 
for the HapMap and CEU datasets, and in some cases even higher than before (Supplementary 
file 1D–E). These results demonstrate that utilizing a specifically-tailored metabolic model for predict-
ing metabolic drugs response has a clear advantage over utilizing the raw data alone.

To further validate the NCI-60 PRIME models we have used measured uptake and secretion rates 
(Jain et al., 2012; Dolfi et al., 2013) and compared them to those predicted by our models (‘Materials 
and methods’). We obtained significant Spearman correlations (Benjamini-Hochberg adjusted p-value 
with False Discovery Rate (FDR) and α = 0.05) for 14 out of 33 metabolites with a corresponding 
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Figure 3. Drug response, biomarkers and selectivity analysis. (A) A comparison between measured and predicted drug response for the HapMap, CEU 
(Western European ancestry) and NCI-60 datasets. Overall, significant correlations (Spearman p-value < 0.05) were obtained for 12 out of the 16 drugs 
examined (those marked with an asterisk). The HapMap drugs are 5-fluorouracil (5FU) and 6-mercaptopurin (6MP); the CEU drugs are Ethacrynic acid, 
Hexachlorophene, Digoxin, Azathioprine, Reserpine and Pyrimethamine; The NCI-60 drugs for dataset 1 include Gemcitabine, Methotrexate and 
Pyrimethamine; For dataset 2, Trimetrexate and Gemcitabine; For dataset 3, Methotrexate, Quinacrine HCl and Allopurinol. (B) 14 metabolites for which 
a significant correlation between measured and predicted uptake and secretion rates is achieved. Both the Spearman correlation coefficient (gray) and 
the–log(p-value) (blue) are shown. The dashed line represents the FDR corrected significance level for α = 0.05. (C) Metabolic reaction targets that are 
predicted to be non-selective (green) or selective (blue). The x-axis represents the selectivity score (‘Materials and methods’) and the y-axis represents 
the growth inhibition predicted for the normal cell lines. Non-selective targets are predicted to reduce both normal and cancer cell growth by more than 
50%. The selective targets are predicted to reduce normal cell growth by less than 20% and cancer cell growth by more than 30%. MLYCD is the third 
ranked target with a predicted reduction of >90% in cancer cell growth and <10% in normal cell growth. See also Figure 3—figure supplement 1.  
(D) Growth survival (in %) for the HapMap (normal) and NCI-60 (cancer) cell lines upon MLYCD knock down, as predicted by E-Flux and PRIME. While 
E-Flux predicts less than 10% reduction in cellular growth for both normal and cancer cell lines in a largely indiscriminate manner, PRIME predicts a 
cancer selective effect.
DOI: 10.7554/eLife.03641.006
The following figure supplement is available for figure 3:

Figure supplement 1. Core metabolic pathways and their association with selective and non-selective predicted targets. 
DOI: 10.7554/eLife.03641.007
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transporter reaction in the human model (Figure 3B). By performing a permutation test on the meas-
ured data a highly significant result is obtained (empiric p-value < 9.9e-4, ‘Materials and methods’). 
Importantly, utilizing the models reconstructed by E-Flux for the same task, insignificant results are 
obtained for all metabolites.

The array of models built for both normal and cancer cells provides us with a unique opportunity 
not only to predict cell-specific drug target effects, but more importantly, to find drug targets that 
inhibit proliferation across all cancer cells but have no effect on the non-transformed counterpart. To 
this aim we simulated all knock downs of individual reactions in the 224 normal lymphoblasts and 
60 cancer cell models, and quantified their selective effect on cell proliferation (‘Materials and meth-
ods’). The set of predicted non-selective targets was highly enriched with current cytostatic drugs 
(Wishart et al., 2008; Folger et al., 2011) (mean hypergeometric p-value = 7.28e-4, Figure 3—figure 
supplement 1 and Supplementary file 1G). Second, the predicted selective targets were enriched 
with targets of newly developed drugs (Figure 3—figure supplement 1): Out of the five metabolic 
enzyme drug targets reported in (Cheong et al., 2012), our analysis identified three as being selective 
(Hypergeometric p-value = 3.98e-4; Supplementary file 2C). To further validate these findings, we 
examined the clinical relevance of our predicted selective targets on a cohort of 1586 breast cancer 
patients (Curtis et al., 2012). A Cox multivariate regression analysis shows that this set is enriched 
(Hypergeometric p-value = 2.1e-5) with genes whose lower expression is significantly associated 
with improved survival (Benjamini-Hochberg adjusted p-values with FDR and α = 0.1, ‘Materials and 
methods’), when examined together with known prognostic variables such as patients' clinical 
stage, histological grade, tumor size, lymph node status and estrogen receptor status. A similar anal-
ysis for the set of predicted non-selective targets yielded either borderline or insignificant results 
(Supplementary file 1G). A top predicted selective target is Malonyl-CoA Decarboxylase (MLYCD) 
(Figure 3C). While the highest ranked predicted reaction is catalyzed by isoenzymes and therefore 
more difficult to target experimentally, and the second ranked reaction occurs spontaneously, 
MLYCD is the first prediction that could be tested from a practical, experimental point of view 
(Supplementary file 2C). Of note, the knock down of MLYCD is predicted by E-Flux to reduce both 
normal and cancer cell proliferation by less than 10%, suggesting that without including phenotype-
based constraints, this candidate gene would have not been revealed (Figure 3D). Interestingly, this 
enzyme has been recently proposed as potential anticancer target for breast cancer (Zhou et al., 
2009), however its selective effects on other tumor types have not been assessed. Therefore, we 
decided to further investigate the role of MLYCD as selective target for cancer therapy.

MLYCD selectively suppresses cancer cell proliferation
The prediction of selective targets made by PRIME capitalizes on the non-transformed lymphoblast 
cell lines HapMap as normal counterpart. Therefore, to experimentally validate the cancer versus 
normal selectivity, we initially used leukemia cells, the only hematological tumor type in the NCI-60 
database. In line with PRIME's predictions, the small interfering RNA (siRNA)-mediated silencing of 
MLYCD significantly inhibited the proliferation of the leukemia cell lines RPMI-8226 and K562 cells, but 
had no effect on HapMap cells (Figure 4A–B). To further corroborate the cancer versus normal selec-
tivity, we tested the effects of MLYCD depletion on two renal cancer cell lines, TK-10 and CAKI-1, using 
the non-transformed renal cell line HK-2 as normal control (Figure 4C). Of note, the silencing of 
MLYCD suppressed proliferation of renal cancer cell lines without affecting the non-transformed 
counterpart (Figure 4D). Importantly, the anti-proliferative effects of MLYCD suppression could not 
be explained by the different expression of the enzyme among the different cell lines (Figure 4—
figure supplement 1). These results substantiated PRIME's prediction that MLYCD is a cancer selec-
tive drug target.

Silencing of MLYCD deregulates fatty oxidation and TCA cycle
We wanted to functionally validate the effect of silencing of MLYCD in cancer cells. To this aim, we 
generated a leukemia cell line that stably expresses a doxycycline-inducible short hairpin RNA (shRNA) 
targeting MLYCD. The incubation with doxycycline resulted in efficient silencing of MLYCD and led to 
a significant growth inhibition (Figure 5—figure supplement 1–2), in line with the siRNA experiments. 
Previous reports have shown that MLYCD depletion leads to the accumulation of malonyl-CoA, which 
blocks fatty acid oxidation by allosteric inhibition of the mitochondrial enzyme Carnitine-Palmitoyl-
Transferase (CPT1) (Zhou et al., 2009). These observations prompted us to investigate the effects of 

http://dx.doi.org/10.7554/eLife.03641
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Figure 4. MLYCD depletion on normal and cancer cell lines. (A) MLYCD mRNA expression upon nucleofection with 
Non Targeting Control (NTC) and three independent siRNA constructs in HapMap, RPMI-8226 and K562 cells.  
(B) Cell counts after 72 hr of culture of the indicated cell lines. (C) MLYCD mRNA expression upon nucleofection 
Figure 4. Continued on next page

http://dx.doi.org/10.7554/eLife.03641
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the loss of MLYCD on fatty acid oxidation. To this aim, cells were incubated with 13C16-palmitate and 
the abundance of 13C-labelled palmitoyl-carnitine and of TCA cycle metabolites was measured by 
liquid chromatography coupled to mass spectrometry (LCMS) (see Figure 5A for a schematic of the 
experiment). We observed a significant decrease in the 13C-labelling of palmitoyl-carnitine (Figure 5B) 
and of the m+2 isotopologues of TCA cycle intermediates (Figure 5C, and Figure 5—figure supple-
ment 3 for the full isotopologue analyses of these metabolites), indicating that fatty acid oxidation is 
reduced in MLYCD-depleted cells. Of note, this marked decrease in fatty acid oxidation only partially 
affected the overall abundance of TCA cycle intermediates (Figure 5—figure supplement 4). We also 
noticed a striking accumulation of succinate and a decrease in fumarate and malate in MLYCD-depleted 
cells (Figure 5—figure supplement 4). These results are consistent with the inhibition of the TCA 
cycle enzyme succinate dehydrogenase (SDH), which may be caused by malonyl-CoA-derived malo-
nate. Taken together, these results show that the silencing of MLYCD is sufficient to inhibit fatty acid 
oxidation and alter TCA cycle.

Silencing of MLYCD accelerates fatty acid synthesis and increases the 
demands of reducing power
We then used the PRIME-derived models to systematically assess the metabolic changes that occur 
upon MLYCD inactivation. Of note, the model predicted that upon MLYCD suppression, part of the 
accumulated malonyl-CoA is diverted to fatty acid biosynthesis. Since this process requires NADPH 
as source of reducing power, the aberrant activation of fatty acid synthesis caused by the loss of 
MLYCD would impair redox homeostasis of the cell (Berg, 2002) (Figure 5—figure supplement 5 
and Supplementary file 1H). We validated this hypothesis by first assessing fatty acid synthesis. To 
this aim, cells were incubated with 13C6-glucose and the abundance of 13C-labelled TCA cycle inter-
mediates and palmitate were analyzed by LCMS (Figure 5D). While the labeling of citrate, the main 
lipogenic precursor, was, if any, slightly decreased (Figure 5E), the m+4 and m+6 isotopologues of 
palmitate were significantly increased in MLYCD-depleted cells (Figure 5F), suggesting that fatty 
acid synthesis is accelerated in these cells. Of note, the reduction of the m+2 and m+4 isotopo-
logues of TCA cycle intermediates suggested that the oxidative capacity of the TCA cycle is intact, 
albeit reduced, in MLYCD-depleted cells (Figure 5—figure supplement 6). To validate the predic-
tion that MLYCD-depleted cells increase the demand of NAPDH to fuel fatty acid synthesis, we meas-
ured the activity of the pentose phosphate pathway (PPP), the major source of cytosolic NADPH 
(Fan et al., 2014). To this end, cells were incubated with 1,2-13C2-glucose and the amount of singly 
(m+1) or doubly (m+2) labeled lactate was used as measure of PPP or glycolysis activity, respectively 
(see Figure 5G for a representation of the experiment). As predicted by PRIME, PPP flux was increased 
in MLYCD-depleted cells (Figure 5H–I). Together, these results corroborate the prediction made by 
PRIME that the loss of MLYCD increases fatty acid synthesis and impinges on the PPP for genera-
tion of reducing power. Finally, we tested whether the observed activation of fatty acid synthesis, 
by draining NADPH, impairs the capacity of cells to maintain redox homeostasis. In line with this 
hypothesis, MLYCD-depleted cells exhibited a lower GSH/GSSG ratio compared to control cells 
(Figure 5I). Furthermore, the incubation of cells with the antioxidant N-acetyl-cysteine (NAC) fully 
restored the proliferation defects observed in MLYCD-depleted cells (Figure 5J). Taken together, 
these results suggest that the suppression of cancer cell proliferation caused by the loss of MLYCD 
depends, at least in part, on the aberrant activation of fatty acid synthesis, which leads to a reduced 
ability of cells to maintain redox homeostasis. Overall, this investigation showed the benefits of 
PRIME to predict and investigate metabolic liabilities of cancer cells, based on cell-specific meta-
bolic models.

with Non Targeting Control (NTC) and three independent siRNA constructs in HK2, TK10 and CAKI1 cells. (D) Cell 
counts after 72 hr of culture of the indicated cell lines. Data are shown as mean ± s.e.m of three independent 
cultures. *p-value<0.05. **p-value<0.01. ***p-value < 0.001.
DOI: 10.7554/eLife.03641.008
The following figure supplement is available for figure 4:

Figure supplement 1. Expression levels of MLYCD across multiple cancer and normal cell lines. 
DOI: 10.7554/eLife.03641.009

Figure 4. Continued
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Figure 5. Metabolic characterization of MLYCD depletion. (A) Schematic representation of isotope tracing 
experiment with 13C16-Palmitate. Black-filled circles indicate 13C-carbon, whereas the white filled circles represent 
the unlabeled carbon. The schematic shows the expected composition of labeled carbons of the indicated 
metabolites. (B) Labeling incorporation from 13C-Palmitate into Palmitoyl-carnitine in non-targeting control (NTC) 
and MLYCD-depleted (shMLYCD) cells. Data are shown as percentage of 13C16-palmitoylcarnitine to the total pool 
of Palmitoyl-carnitine. (C) Labeling incorporation from 13C16-palmitate into TCA cycle intermediates of the indicated 
cell lines. Data are shown as percentage of the m+2 isotopologue to the total pool size of each metabolite.  
(D) Schematic representation of isotope tracing experiment with 13C6-Glucose. The distribution of light and heavy 
carbons is depicted as in A. (E) Labeling of Citrate and of (F) Palmitate after incubation with 13C6-glucose. Data are 
shown as percentage of the indicated isotopologue to the total pool size of each metabolite. Isotopologue 
distribution of citrate is indicated in Figure 5—figure supplement 6. Palmitate isotopologues above m+10 were 
not detected (G) Schematic representation of isotope tracing experiment with 1,2-13C2-Glucose. Ru5p: ribulose-
5-phosphate. The distribution of light and heavy carbons is depicted as in A. (H) Ratio between m+1 and m+2 
isotopologues of Lactate in the indicated cell lines. (I) Ratio between reduced (GSH) and oxidized (GSSG) glutathi-
one in RPMI-8226 cells infected with the indicated constructs. (J) Cell counts after 72 hr of culture of the indicated 
cell lines in the presence or absence of 2 mM N-Acetyl Cysteine. Data are shown as mean ± s.e.m of three 
independent cultures. *p-value<0.05. **p-value<0.01. ***p-value < 0.001.
DOI: 10.7554/eLife.03641.010
Figure 5. Continued on next page
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Predicting gene knock downs that differentially modulate breast cancer 
cells growth
We next aimed to go beyond predicting targets that are selective with respect to cancer versus 
normal cell populations as a whole, to study if we can use PRIME to predict the differential response 
amongst cancer cell lines to specific treatments. To this end we used PRIME models of individual 
breast cancer cell lines of the NCI-60 panel, and simulated via Minimization of Metabolic Adjustment 
(MOMA) (Segre et al., 2002) the knock down of all metabolic reactions catalyzed by a single gene, 
examining their effect on cell growth (‘Materials and methods’). We focused on reactions whose knock 
down yielded highly variable predicted growth rates across the different cell lines studied. 13 genes 
associated with these top ranked reactions and spanning different metabolic pathways were selected 
for further experimental investigation (‘Materials and methods’ and Supplementary file 2D). The 
effect of each of these genes on cell growth was examined via small interference RNA (siRNA) 
knock down in the two cell lines predicted to have the most differential effect on cell growth. 11 out 
of the 13 genes studied were found to have an effect on cell growth as predicted by the models 
(Figure 6A and Supplementary file 2D, empiric p-value < 0.01, ‘Materials and methods’). A significant 
correlation is obtained between predicted and measured % inhibition values across all 11 targets 
(Spearman R = 0.64, p-value = 1e-3). These data underscore the ability of PRIME to successfully pre-
dict individual cell-specific responses of cancer cells to the knock down of metabolic enzymes, at least 
at a qualitative level.

Reconstructing personalized metabolic models of breast and lung 
cancer patients
Finally, we examined PRIME's ability to build personalized models of cancer patients and predict their 
prognosis based on gene expression levels collected from biopsy samples. Importantly, growth rate 
measurements are not available for these datasets. Nonetheless, a possible way to overcome this 
hurdle and to build personalized metabolic models for cancer patients is to use phenotypic data meas-
ured for one set of cells to reconstruct models of a different set of cells or clinical samples. To examine 
this approach we utilized the set of growth-associated genes derived from the NCI-60 collection to 
build personalized GSMMs of more than 700 breast and lung cancer clinical samples (Miller et al., 
2005; Chang et al., 2010; Okayama et al., 2012). A Kaplan–Meier survival analysis (Kaplan and 
Meier, 1958) showed that patients with predicted low growth rate had significantly improved survival 
compared to those with a predicted high growth rate (logrank p-values are: 0.01, 1e-3 and 0.02 for 
Miller et al., Chang et al. and Okayama et al. respectively, Figure 6B, Supplementary file 1I, ‘Materials 
and methods’). This result was further supported by a Cox univariate survival analysis (Grambsch, 
2000) (p-values are: 1e-3, 1e-4 and 2e-3 for Miller et al., Chang et al. and Okayama et al. respectively, 
Supplementary file 1I) and by performing a permutation test (p-values are: 0.015, 2e-3 and 0.018 
for Miller et al., Chang et al. and Okayama et al. respectively, ‘Materials and methods’). Of note, esti-
mating the samples growth rates directly from the gene expression data by using multiple linear 
regression, resulted in inferior performance (Supplementary file 1J), testifying to the added value 
of personalized GSMMs. Importantly, while iMAT and E-Flux require only ‘omics’ data and can hence 

The following figure supplements are available for figure 5:

Figure supplement 1. Silencing of MLYCD in RPMI-8226 cells using shRNA. 
DOI: 10.7554/eLife.03641.011

Figure supplement 2. Effects of Silencing of MLYCD in RPMI-8226 cells. 
DOI: 10.7554/eLife.03641.012

Figure supplement 3. Isotopologue distribution of TCA cycle intermediates after incubation with 13C16-palmitate. 
DOI: 10.7554/eLife.03641.013

Figure supplement 4. LCMS analyses of TCA cycle intermediates in MLYCD-depleted cells. 
DOI: 10.7554/eLife.03641.014

Figure supplement 5. A schematic description of the metabolic changes following MLYCD knock down. 
DOI: 10.7554/eLife.03641.015

Figure supplement 6. TCA cycle activity in MLYCD-depleted cells. 
DOI: 10.7554/eLife.03641.016
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be applied directly, they fail to obtain meaningful and significant results in this setting as well 
(Supplementary file 1K).

Discussion
In this study we present a novel method termed PRIME for building cell-specific GSMMs based on the 
integration of gene expression and phenotypic data. We apply this method for the reconstruction of 
metabolic models of both cancer and normal cells. To the best of our knowledge, PRIME is the first 
method able to generate human cell-specific GSMMs that can predict metabolic phenotypes in an 
individual manner, including growth rates and drug response. The set of normal and cancer PRIME-
derived models is utilized to identify a set of drug targets that can inhibit the proliferation of specific 
cell lines, as well as metabolic targets that can selectively block cancer but not normal cells growth. 
The experimental validation that we provide testifies that coupling molecular and phenotypic data for 
building cell-specific models can enhance the predictive power of GSMMs.

As many other computational approaches, PRIME is not devoid of limitations. First, PRIME assumes 
that cells try to maximize their proliferation, while different objective function(s) should be considered 
for non-proliferating cells. Second, we assume that all models share the same set of enzymes and differ 
only in their cellular abundance, but different cells may express different coding variants that should 

Figure 6. Differential growth affects in breast cancer cell-lines and clinical data analysis. (A) Four gene/reaction 
targets showing a differential effect on cancer cell growth (represented as % of growth inhibition) according to both 
PRIME's predictions and experimental validations via siRNA knock downs (when compared to a negative control, a 
siRNA that targets luciferase). Each gene was tested experimentally in two cell lines in triplicate, where the gene 
knock down is predicted to have the lowest and highest effect on cell growth. 11 out of the 13 top predictions 
tested were confirmed experimentally. Data are shown as mean ± s.e.m. For the full list see Supplementary file 2D. 
The genes GSR and PROSC are predicted to completely suppress the Hs578 t cell line growth (Supplementary  
file 2) but for presentation appear with a 0.05% height bar; (B) Kaplan-Meier plots for the two breast cancer 
datasets and for a lung cancer dataset. In all cases low growth rate (GR) is associated with improved survival.
DOI: 10.7554/eLife.03641.017
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be incorporated in future studies. Third, PRIME relies on the measurement of a specific phenotype that 
is not always available for a given set of cells or samples. Here we introduced a possible way to over-
come this hurdle, as demonstrated by PRIME's ability to utilize clinical data and build cell-specific 
GSMMs tailored for each individual patient. However, while this analysis provided significant results, 
the obtained signal is mild and the question whether and how best one can identify a universal set of 
growth-associated genes still requires further study. Given the results obtained, one can confidently 
expect that follow-up work analyzing richer datasets, and most importantly, incorporating additional 
kinds of omics data (such as enzyme sequence data) will significantly improve the predictive power of 
PRIME further.

In this work we have also experimentally validated the prediction made by PRIME that MLYCD inhi-
bition selectively affects cancer proliferation. MLYCD is an important enzyme of fatty acid metabolism, 
which role in cancer therapy has been recently suggested (Zhou et al., 2009). However, the selec-
tivity across cancer types, and the mechanism of action of its inhibition have not been fully investi-
gated. Our results show that the silencing of MLYCD has an anti-proliferative effect across multiple 
cancer cell lines but spares the non-transformed counterparts, confirming PRIME's predictions. We 
have also shed some light on the functional effects of inactivation of MLYCD in cancer cells. The toxic 
effects of MLYCD inhibition have been previously attributed to the accumulation of malonyl-coA and 
to the inhibition of fatty acid oxidation (Zhou et al., 2009). Our results suggest that, besides turning 
off fatty acid oxidation and partially deregulating TCA cycle, the loss of MLYCD stimulates fatty acid 
synthesis, which drains reducing equivalents and sensitize cells to oxidative stress. Therefore, our 
results not only confirmed the cancer versus normal selectivity of MLYCD inhibition but also elucidated 
a novel liability of cancer cells based on the pharmacological inhibition of fatty acid metabolism. 
Of note, both these features were accurately predicted by PRIME. Importantly, in humans, the loss of 
MLYCD leads to methylmalonic aciduria, an extremely rare autosomal recessive disorder. Nevertheless, 
in vivo experiments in rodents and pigs (Dyck et al., 2004; Wu et al., 2014), ex vivo experiments in 
human skeletal muscle (Bouzakri et al., 2008), and in MRC-5 non-transformed fibroblasts (Zhou et al., 
2009) suggest that the inhibition of MLYCD is well tolerated, as our results indicate. It is therefore 
possible that the inhibition of the enzyme has no detrimental effects on normal cells and tissues, and 
that other factors contribute to the severity of MLYCD deficiency in humans, including a toxic effect of 
the mutated protein (Polinati et al., 2014).

In summary, we here show that incorporating gene expression measurements and phenotypic data 
within a genome-scale model of human metabolism via PRIME results in functional cell-specific models 
with considerable predictive power. We believe that the demonstrated ability of PRIME to predict the 
effects of known metabolically-targeted drugs on individual cell proliferation rates will help to pave the 
way for tailoring specific therapies based on metabolic modeling of cancer biopsies from individual 
patients.

Materials and methods
A constraint-based model (CBM) of metabolism
A metabolic network consisting of m metabolites and n reactions can be represented by a stoichiometric 
matrix S, where the entry Sij represents the stoichiometric coefficient of metabolite i in reaction j (Price 
et al., 2004). CBM imposes mass balance, directionality and flux capacity constraints on the space of 
possible fluxes in the metabolic network's reactions through the set of linear equations:

· = 0S v  (1)

min max
v v v≤ ≤  (2)

where v is the flux vector for all of the reactions in the model (i.e., the flux distribution). The exchange of 
metabolites with the environment is represented as a set of exchange (transport) reactions, enabling a 
pre-defined set of metabolites to be either taken up or secreted from the growth media. The steady-state 
assumption represented in Equation (1) constrains the production rate of each metabolite to be equal 
to its consumption rate. Enzymatic directionality and flux capacity constraints define lower and upper 
bounds on the fluxes and are embedded in Equation (2). The biomass function utilized here is taken 
from (Folger et al., 2011). The media simulated in all the analyses throughout the paper is the RPMI-
1640 media that was used to grow the cell lines experimentally (Lee et al., 2007; Choy et al., 2008).
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Gene knock outs are simulated by constraining the flux through the corresponding metabolic reac-
tion to zero. Following, two different approaches can be taken to estimate the effect of a perturbation 
on the network: (1) via Flux Balance Analysis (FBA) (Varma and Palsson, 1994) where maximization 
of growth rate is defined as the cellular objective function (max Vbio); (2) Minimization of Metabolic 
Adjustment (MOMA) (Segre et al., 2002) where the minimization of the Euclidean distance between 
a wild-type flux distribution (Vwt) and the post-perturbation flux distribution (VKO) is set as the cellular 

objective function ( )2

, ,
–

n

wt i KO i

i

min V V∑ . Different wild-type flux distributions are obtained via sam-

pling where each sample is determined based on a FBA analysis maximizing for cellular growth.

The PRIME algorithm
PRIME is given the following three inputs: (1) a set of p samples with gene expression levels; (2) the 
p samples' corresponding growth rate measurements; and (3) a generic model (the human model, in 
our case). Next, the model reconstruction process is as follows:
 
1. Each reversible reaction is decomposed into its forward and backward direction and the maximal 

biomass production is evaluated. Next, the upper bound of all the reactions in the network is 
decreased simultaneously in steps of 0.1. In each step, the maximal biomass production is re-
evaluated and the process proceeds as long as the reduction in bound doesn't decrease the max-
imal production found above by more than an ε (here we used ε = 1e-4). Finally, the upper bound 
of all reactions is set to the minimal upper bound allowed by this process. The goal of this step is 
only to narrow down the solution space and reduce the effect of futile cycles in the simulation of 
gene perturbation.

2. Next, the correlation between the expression of each reaction in the network and the measured 
growth rates is evaluated. The expression of a given reaction is defined as the mean expression 
of its catalyzing enzymes. The significance threshold is corrected by FDR with α = 0.05.

3. The upper bound of each reaction demonstrating a significant correlation to the growth rate 
(e.g., t reactions) is modified in a manner that is linearly related to its expression value. Specifically, 
we generate the Exp-matrix (E), a (t × p) matrix that embeds the information on the direction and 
magnitude of change of the upper bound based on the expression data. For each reaction a in 
sample b we define the Exp-matrix such that:

 

, a,b=  GE  
| |

a

a b

a

E ⋅
ρ
ρ  

(3)

In Equation (3), GEa,b represents the expression value of reaction a in sample b. Likewise, ρ(a) rep-
resents the correlation coefficient of reaction a as found in step (2). Overall, for reactions whose 
expression is positively correlated with growth rate, the corresponding values in the matrix increase 
(become more positive) as the expression increases. Alternatively, for negatively correlated reactions, 
the corresponding values in the matrix decrease (become more negative) as the expression increases 
(due to the multiplication by 

| |
a

a

ρ
ρ

 which equals to −1 in this scenario). We then apply Equation (4) to 

normalize the values of the Exp-matrix and adapt them to the actual upper bounds. In this normaliza-
tion procedure each reaction a is normalized across its p samples such that the bound associated with 
the sample having the lowest (highest) expression value is assigned the minimal (maximal) value of the 
normalization range, respectively.

( ),

,

– min( )
= · – +

( ) – min( )

a b a

a b

a a

E E
UB maxNormVal minNormVal minNormVal

max E E

       
(4)

min(Ea) and max(Ea) refer to the minimal and maximal value of reaction a across all p samples in the 
Exp-matrix, respectively. The minimal and maximal values of the normalization range (minNormVal and 
maxNormVal, respectively) are determined according to the procedure described in the next section.

Defining the PRIME normalization range
 
1. minNormVal is set to be the minimal flux necessary for biomass production. This value is computed in 

the following manner: First, the set of essential reactions in the model is identified via Flux Balance 
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Analysis. This set is composed of those reactions that their knock out reduces growth by more 
than 90% of its maximal rate. Next, the minimal flux through each essential reaction is found via 
Flux Variability Analysis (Varma and Palsson, 1994). As each of these reactions is necessary for 
biomass production, reducing the upper bound below their minimal flux value would result with 
a lethal phenotype. We therefore set minNormVal to be the maximal value among these values 
(Figure 1—figure supplement 1).

2. To define the maximal value of the normalization range (maxNormVal) we examine the change in 
biomass production as a function of the model's upper bounds according to the following steps:

 
A. First, we define the set of reactions in the model that are significantly correlated to the prolifer-

ation rate (as described in step (2) of PRIME above).
B. Next, we examine how the biomass production is changed as a function of the model's upper 

bound. This is done by changing the upper bounds of the growth-associated reactions in steps 
of 0.1, and in each step re-evaluating the biomass production.

C. Lastly, maxNormVal is defined as the maximal value beyond which the change in biomass pro-
duction decreases (Figure 1—figure supplement 1). 

 
Importantly, applying alternative ranges resulted with less optimal results in all datasets ana-

lyzed here.
The PRIME code and the generated models are provided as Supplementary file 3 and 4, 

respectively.

Cross validation and permutation test
K-fold cross validation analysis is done by splitting the samples of the examined dataset to train- and 
test-sets. The set of growth-associated reactions found in the train-set is then used to build the models 
of the test-set. The correlation reported is the mean Spearman correlation achieved by comparing the 
measured and predicted growth rates of the test-set alone, while repeating this process 1000 times. 
The empiric p-value is computed by permuting the gene expression 1000 times, in each case building 
the resulting models and performing the cross-validation analysis as described here. Finally we com-
pared the resulting mean Spearman correlation of each of these models to that obtained with the 
original data. Generally, all permutation tests are repeated 1000 times. Empiric p-value is then com-
puted as (n+1)/1001 where n equals the number of times a random set of values yields a result which 
is more significant than the original result obtained when the data is not permuted.

Drug response simulations
Each drug is mapped to its corresponding metabolic reaction through its known enzymatic targets 
according to DrugBank database (Wishart et al., 2008). In this study we focused on drugs that: 
(1) have an inhibitory effect; (2) the majority of their targets are metabolic; (3) are not associated with 
dead-end reactions. The drug response data used in this analysis was measured in various ways: 
(a) ATP concentrations (HapMap dataset): In this case the in silico drug response is computed via 
MOMA in two steps; (1) obtaining a wild-type flux distribution via Flux Balance Analysis in which the 
corresponding drug target reaction is initially forced to be active (the pre-drug condition). Enforcing 
the target reaction to be active is necessary in order to get an effect on the resulting flux distribution 
following the inhibition simulated in the next step. Here we enforced a positive flux through the target 
reactions that is 50% of the maximal flux rate it is able to carry (our results are robust to various activa-
tion thresholds; Supplementary file 1D). (2) Next, the knock out flux distribution is computed via 
MOMA (Segre et al., 2002) while constraining the flux through the corresponding reactions to zero. 
This process is repeated for each personalized model separately and the predicted ATP production 
is used to estimate the cell response to the simulated drug. A robustness analysis is carried out by 
using 1000 different wild-type flux distributions (Supplementary file 1D); (b) AC50 values (CEU data-
set): AC50 values represent the concentration in which the drug exhibits 50% of its maximum efficacy. 
In this case, in silico AC50 values are calculated by estimating the maximal flux rate carried by the 
target reaction when the growth rate is set to 50% of the drug's maximal response (a value that is 
available in the dataset used [Lock et al., 2012]); (c) IC50 values (NCI-60 dataset): IC50 values repre-
sent the concentration of drug needed in order to reduce the growth rate to 50% of its maximal 
value. In this case, in silico IC50 values are calculated by estimating the maximal flux rate carried by 
the target reaction when growth rate is set to 50% of its maximal value. In all cases of drug response 
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simulations the permutation test is carried out by permuting the measured data 1000 times and 
re-estimating the resulting correlation for each permuted vector.

Predicting uptake and secretion rates
We have utilized the CORE data published by Jain et al. (2012) and normalized to cell size by Dolfi 
et al. (2013), and compared it to uptake and secretion rates as predicted by the NCI-60 models. We 
have focused on 33 metabolites for which a corresponding exchange reaction exist in the human 
model and for which a non-zero flux was measured in at least three of the cell-lines. For each of these 
metabolites we estimated the maximal flux rate through its exchange reaction under at least 90% 
maximal growth rate, and compared it to that measured experimentally across the 59 cell-lines for 
which data exist. A similar approach was taken for both the PRIME and the E-Flux models. The permu-
tation test is performed by permuting normalized CORE data 1000 times and repeating the process 
described above.

Predicting differential effects on cancer cell growth
The effect of a reaction's deletion on cell growth in four breast cancer cell line models (MDA-MB-231, 
Hs578 t, BT549 and MDA-MB-435) was simulated via MOMA while enforcing the tested reaction to 
carry 50% of its maximal flux in the WT state (as described in the section ‘Drug response simulations’ 
above). The knock down of each tested reaction was simulated by inhibiting the target reaction by 
at least 75% of its maximal flux, then maximizing cellular growth under this perturbation. To increase 
specificity, we focused on reactions that are: (1) catalyzed by a single gene, and (2), their catalyzing 
gene does not catalyze more than three different reactions. Reactions were then ranked based on 
the variance in their knock down predicted growth rate across the four cell line models. 13 top pre-
dicted genes were selected for further experimental validation based on their high ranking in the 
list (i.e., high variance) and their association with diverse metabolic pathways (excluding transport 
reactions which their catalyzing enzymes are less specific). Each gene was examined experimentally 
in the two cell lines predicted to have the lowest and highest affect on cell growth. The permutation 
test is performed by permuting the models' predicted growth rates (after reaction knock down) 
1000 times.

Drug selectivity analysis
The effect of reaction's deletion on cell proliferation for the identification of selective treatment was 
simulated via MOMA with its robustness analysis as described in the section ‘Predicting differential 
effects on cancer cell growth’ above. The overlap between the set of cytostatic drug targets and the 
predicted non-selective targets was found to be robust to different thresholds that determine the 
value (in percentage) under which the deletion is considered to effect the cell's proliferation rate 
(Supplementary file 1G). The set of selective reaction targets is composed of those that reduce the 
growth of all normal cells by less than 20% and the growth of all cancer cells by more than 30%. 
Additionally, this set includes only those reactions that exhibit more than 20% difference in growth 
reduction between the normal and cancer proliferating cells (Supplementary file 2). Denoting growth 
inhibition as Gi and growth survival as Gs, where Gs is defined as (1−Gi), the selectivity score com-
puted for representation in Figure 3B is defined as (GiNCI60−GiHapMap)∗GsHapMap. The association between 
selective and non-selective targets and clinical survival data is performed by a Cox multivariate regres-
sion analysis. Specifically, a p-value for a Cox regression analysis of the expression of each gene and 
additional prognostic variables including patients' clinical stage, histological grade, tumor size, lymph 
node status and estrogen receptor status is computed. Each metabolic reaction is then assigned the 
minimal p-value achieved by its catalyzing enzymes. p-values are adjusted by Benjamini-Hochberg 
with FDR and α = 0.1.

Flux analysis for MLYCD knock down
Utilizing the RPMI-8226 model we first sampled the solution space and obtained 1000 wild-type flux 
distributions under maximal growth rate, in which the MLYCD reaction is forced to be active in a rate 
that is at least 50% of the maximal flux rate it can carry. Next, the knock down flux distribution is com-
puted via MOMA while constraining the flux through the MLYCD reaction as described in ‘Drug selec-
tivity analysis’ above. Utilizing the 1000 pre- and post-knockout flux distributions we applied a 
one-sided Wilcoxon ranksum test to determine reactions whose flux has been significantly increased/
decreased. Supplementary file 1H summarizes these results.

http://dx.doi.org/10.7554/eLife.03641
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Reconstructing personalized models for clinical samples
The set of growth-associated reactions identified in the NCI-60 dataset was utilized as input to PRIME 
in the reconstruction process of the breast and lung cancer patients' models. PRIME then proceeds by 
adjusting the bounds of this set of reactions according to the specific cell expression levels.

Experimental procedures
Cell culture
HapMap cells (GM06997, CEPH/UTAH pedigree 13291) were obtained from Coriell Institute and 
RPMI-8226, K562, TK-10 and CAKI-1 cells were obtained from NCI-Frederick Cancer DCTD Tumor/
Cell line Repository. HK2, MDA-MB-435, BT549, MDA-MB-231 and Hs578t cells were obtained from 
ATCC Repository. Cells were grown in RPMI 1640 plus 10% FBS in the presence of 5% carbon dioxide. 
Cell count was performed using CASY Cell Counter (Roche Applied Science). When indicated cells 
were incubated with 2 mM N-acetyl-cysteine. The breast cancer cell lines were cultured in RPMI 
(GIBCO, Life Technologies, Carlsbad, CA, USA) supplemented with 10% FBS (PAA, Pashing Austria) 
and 100 International Units/ml penicillin and 100 μg/ml streptomycin (Invitrogen, Carlsbad, CA, USA).

Proliferation assay upon transient gene silencing
Cells were transfected and plated onto micro-clear 96-well plates (Greiner Bio-one, Monroe, NC, 
USA). Human mix of four singles siRNAs (SmartPool) for the 13 predicted genes were purchased in 
siGENOME format from Dharmacon (Lafayette, CO, USA). A custom-made siRNA targeting lucif-
erase (siLUC) was used as negative control and also purchased from Dharmacon (Lafayette, CO, USA). 
Plates were diluted to 1 μM working concentration in complementary 1× siRNA buffer in a 96-well 
plate format. A 50 nM reverse transfection was performed according to manufacturer's guidelines 
using INTERFERin as transfection reagent. Complex time was 20 min and 10,000, 6000, 7000 and 
6000 of respectively MDA-MB-435, BT549, MDA-MB-231 and Hs578t cells were added. The plate 
was placed in the incubator overnight and the medium was refreshed the following morning. After 
a total of 5 days of incubation, the cells were stained live with Hoechst (nr. 33342) and fixed with 
TCA (Trichloroacetic acid). Whole wells were imaged using epi-fluorescence and the number of nuclei 
was determined using a custom-made ImagePro macro. The results were expressed as percentage of 
growth inhibition when compared to the negative control siLUC. This proliferation assay was per-
formed in triplicate (one well per gene knock down, per cell line and per replicate).

Silencing of MLYCD
siRNA
2 × 106 cells were nucleofected using Nucleofector I (Amaxa) and Amaxa Cell Line Nucleofector 
Solution Kit C (Lonza), program A-030 and 1 µM siRNA. The MLYCD-targeting siRNA constructs were 
purchased from Sigma Aldrich and are as follows: siRNA1: GUACCUACAUCUUCAGGAA; siRNA2: 
CAAAGUUGACUGUGUUCUU; siRNA3: GAAGGAACAUCCUCCAUCA. The non-targeting siRNA is 
the MISSION siRNA Universal Negative Control #1 (Sigma Aldrich).

shRNA
The viral supernatant for infection was obtained from the filtered growth media of the packaging 
cells HEK293T transfected with with 3 µg psPAX, 1 µg pVSVG, 4 µg of shRNA contructs and 24 µl 
Lipofectamine 2000 (Life Technology) and the relevant shRNAs. 5 × 105 cells were then plated on 
6-well plates and infected with the viral supernatant in the presence of 4 µg/ml polybrene. After  
2 days, the medium was replaced with selection medium containing 2 µg/ml puromycin.

The expression of the shRNA constructs was induced by incubating cells with 2 µg/ml Doxycyclin.
The shRNA sequence were purchased from Thermoscientific and are as follows: shRNA1: TTCTG 

AAGCACTTCACACG; shRNA2: GATTTTGTTCTTCTCTTCT; shRNA NTC #RHS4743.

Glutathione measurements
Glutathione levels were measured using GSH-Glo Glutathione Assay (Promega) after 72 hr of Doxyclyclin 
induction, using 20 µl/well of 2 × 105 cells/ml, following to the manufacturer's instructions.

qPCR experiments
mRNA was extracted with RNeasy Kit (Qiagen) and 1 µg of mRNA was retrotranscribed into cDNA 
using High Capacity RNA-to-cDNA Kit (Applied Biosystems, Life Technologies, Paisley, UK).

http://dx.doi.org/10.7554/eLife.03641
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For the qPCR reactions 0.5 µM primers were used. 1 µl of Fast Sybr green gene expression master 
mix; 1 µl of each primers and 4 µl of 1:10 dilution of cDNA in a final volume of 20 µl were used. Real-
time PCR was performed in the Step One Real-Time PCR System (Life Technologies Corporation 
Carlsbad, California) using the fast Sybr green program and expression levels of the indicated genes 
were calculated using the ΔΔCt method by the appropriate function of the software using actin as 
calibrator.

Primer sequences are as follows:
MLYCD: Fwd: ttgcacgtggcactgact; RV: ggatgttccttcacgattgc; Actin: QuantiTect primer QT00095431 

(Qiagen), sequence not disclosed.

Isotope tracing experiments
2 × 105 cells/ml cells were seeded in six well plates. After 48 hr cells were rapidly pelleted and media 
was replaced with labeled nutrients-containing media. For 1,2-13C-Glucose and 13C6-Glucose experi-
ments labeled compounds were dissolved in glucose-free RPMI 1640 medium supplemented with 10% 
Fetal Bovine Serum media to a final concentration of labeled glucose of 11 mM. 13C-Palmitate was 
dissolved in EtOH to a final concentration of 20 mM, mixed with a 10% Bovine Serum Albumin solution 
at a 1:5 ratio and incubated 1 hr at 37°C. After incubation the 13C-Palmitate solution was diluted in 
serum-containing RPMI 1640 medium to a final concentration of 50 μM. The cells were incubated with 
labeled nutrients-containing media for 24 hr after which metabolites were extracted and analyzed 
with LC-MS as described below. All labelled metabolites were purchased at CKGas Products Ltd (UK).

Metabolomic extraction of cell lines
5 × 105 cells/ml were plated onto six-well plates and cultured in standard medium for 24 hr. For the 
intracellular metabolomic analysis, cells were quickly washed for three times with phosphate buffer 
saline solution (PBS) to remove contaminations from the media. The PBS was thoroughly aspirated and 
cells were lysed by adding a pre-cooled Extraction Solution (Methanol:Acetonitrile:Water 50:30:20). 
The cell number was counted and cells were lysed in 1 ml of ES per 2 × 106 cells. The cell lysates were 
vortexed for 5 min at 4°C and immediately centrifuged at 16,000×g for 15 min at 0°C.

LC-MS metabolomic analysis
For the LC separation, column A was the Sequant Zic-Hilic (150 mm × 4.6 mm, internal diameter (i.d.) 
5 µm) with a guard column (20 mm × 2.1 mm i.d. 5 µm) from HiChrom, Reading, UK. Mobile phase A: 
0.1% formic acid vol/vol in water. Mobile B: 0.1% formic acid vol/vol in acetonitrile. The flow rate was 
kept at 300 μl/min and gradient was as follows: 0 min 80% of B, 12 min 50% of B, 26 min 50% of B, 
28 min 20% of B, 36 min 20% of B, 37–45 min 80% of B. Column B was the sequant Zic-pHilic  
(150 mm × 2.1 mm i.d. 5 µm) with the guard column (20 mm × 2.1 mm i.d. 5 µm) from HiChrom, 
Reading, UK. Mobile phase C: 20 mM ammonium carbonate plus 0.1% ammonia hydroxide in water. 
Mobile phase D: acetonitrile. The flow rate was kept at 100 µl/min and gradient as follow: 0 min 80% 
of D, 30 min 20% of D, 31 min 80% of D, 45 min 80% of D. The mass spectrometer (Thermo Q-Exactive 
Orbitrap) was operated in a polarity switching mode.

Datasets
Expression data and growth rate measurements for the HapMap dataset were taken from (Choy et al., 
2008). The data includes Utah residents with Northern and Western European ancestry (CEU; 56 
samples), Han Chinese in Beijing, China (CHB; 43 samples), Japanese in Tokyo, Japan (JPT; 43 samples) 
and Yoruba from Ibadan, Nigeria (YRI; 82 samples). Expression data for the NCI-60 dataset was 
taken from (Lee et al., 2007). Doubling times for the NCI-60 cell lines were downloaded from the 
website of the Developmental Therapeutics Program (DTP) at NCI/NIH (http://dtp.nci.nih.gov/docs/
misc/common_files/cell_list.html).
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