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Abstract Most amino acids can be encoded by several synonymous codons, which are used at 
unequal frequencies. The significance of unequal codon usage remains unclear. One hypothesis is 
that frequent codons are translated relatively rapidly. However, there is little direct, in vivo, evidence 
regarding codon-specific translation rates. In this study, we generate high-coverage data using 
ribosome profiling in yeast, analyze using a novel algorithm, and deduce events at the A- and 
P-sites of the ribosome. Different codons are decoded at different rates in the A-site. In general, 
frequent codons are decoded more quickly than rare codons, and AT-rich codons are decoded more 
quickly than GC-rich codons. At the P-site, proline is slow in forming peptide bonds. We also apply 
our algorithm to short footprints from a different conformation of the ribosome and find strong 
amino acid-specific (not codon-specific) effects that may reflect interactions with the exit tunnel of 
the ribosome.
DOI: 10.7554/eLife.03735.001

Introduction
Different synonymous codons are used in genes at very different frequencies, and the reasons for this 
biased codon usage have been debated for three decades (Fitch, 1976; Hasegawa et al., 1979; 
Miyata et al., 1979; Bennetzen and Hall, 1982; Lipman and Wilbur, 1983; Sharp and Li, 1986; 
Bulmer, 1987; Drummond and Wilke, 2008) (reviewed by Plotkin and Kudla (2011); Forster (2012); 
Novoa and Ribas de Pouplana (2012)). In particular, it has been suggested that the frequently-used 
codons are translated more rapidly than rarely-used codons, perhaps because tRNAs for the frequent 
codons are relatively highly expressed (Plotkin and Kudla, 2011). However, there have also been 
competing hypotheses, including the idea that frequently-used codons are translated more accurately 
(Plotkin and Kudla, 2011). Genes are often recoded to use frequent codons to increase protein 
expression (Burgess-Brown et al., 2008; Maertens et al., 2010), but without any solid understanding 
of why this manipulation is effective. There is little or no direct in vivo evidence as to whether the more 
common codons are indeed translated more rapidly than the rarer codons. Even if they are, the fact 
that translation is typically limited by initiation, not elongation, leaves the effectiveness of codon 
optimization a puzzle (Plotkin and Kudla, 2011).

Ribosome profiling (Ingolia et al., 2009) allows the observation of positions of ribosomes on translating 
cellular mRNAs. The basis of the method is that a translating ribosome protects a region of mRNA from 
nuclease digestion, generating a 30 base ‘footprint’. The footprint is roughly centered on the A-site of 
the ribosome. If some particular codon in the A-site were translated slowly, then the ribosome would dwell 
at this position, and so footprints generated from ribosomes at this position would be relatively common. 
Thus, if one looked at the number of ribosome footprints generated along an mRNA, there should be more 
footprints centered at every codon that is translated slowly and fewer centered at every codon translated 
rapidly; in principle, this is a method for measuring rates of translation of individual codons.
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Experimentally, there is dramatic variation in the number of footprints generated at different posi-
tions along any particular mRNA (Ingolia et al., 2011) (Figure 1). However, these large peaks and 
valleys do not correlate with particular codons (Ingolia et al., 2011; Charneski and Hurst, 2013). It is 
still unclear what features of the mRNA cause the peaks and valleys, though there is evidence that 
prolines, or a poly-basic amino acid stretch, contribute to a slowing of the ribosome and a peak of 
ribosome footprints (Ingolia et al., 2011; Brandman et al., 2012; Charneski and Hurst, 2013).

Still, the fact that prolines and poly-basic amino acid stretches affect translation speed does not tell 
us whether different synonymous codons may also cause smaller effects. This question was investi-
gated by Qian et al. (2012) and Charneski and Hurst (2013) using the yeast ribosome profiling data 
of Ingolia et al. (2009). Neither group found any effect of different synonymous codons on translation 
rate—that is, perhaps surprisingly, each codon, rare or common, appeared to be translated at the 
same rate (Qian et al., 2012; Charneski and Hurst, 2013).

We have re-investigated this issue with two differences from these previous investigations. First, 
we have generated four yeast ribosome profiling datasets by optimized methods, including the flash-
freezing of growing cells before the addition of cycloheximide (‘Materials and methods’); Ingolia et al. 
added cycloheximide before harvesting cells. Second, we have developed a novel method of analysis, 
designed with the knowledge that, at best, codon decoding rates could account for only a small por-
tion of the variation in ribosome footprints across an mRNA (‘Materials and methods’). The combina-
tion of optimized data and novel analysis reveals that different codons are decoded at different rates.

Results
In principle, using the ribosome footprint data to establish occupancy as a function of position might 
seem easy: align the reads to the reference genome to identify the 10 or so codons under each read, 
and tabulate the frequency of each codon observed in each position. Analysis of this general kind has 

eLife digest Genes contain the instructions for making proteins from molecules called amino 
acids. These instructions are encoded in the order of the four building blocks that make up DNA, 
which are symbolized by the letters A, T, C, and G. The DNA of a gene is first copied to make a 
molecule of RNA, and then the letters in the RNA are read in groups of three (called ‘codons’) by a 
cellular machine called a ribosome. ‘Sense codons’ each specify one amino acid, and the ribosome 
decodes hundreds or thousands of these codons into a chain of amino acids to form a protein. ‘Stop 
codons’ do not encode amino acids but instead instruct the ribosome to stop building a protein 
when the chain is completed.

Most proteins are built from 20 different kinds of amino acid, but there are 61 sense codons. 
As such, up to six codons can code for the same amino acid. The multiple codons for a single  
amino acid, however, are not used equally in gene sequences—some are used much more often 
than others.

Now, Gardin, Yeasmin et al. have instantly halted the on-going processes of decoding genes and 
building proteins in yeast cells. Codons being translated into amino acids are trapped inside the 
ribosome; and codons that take the longest to decode are trapped most often. By using a computer 
algorithm, Gardin, Yeasmin et al. were able to measure just how often each kind of sense codon was 
trapped inside the ribosome and use this as a measure of how quickly each codon is decoded. 
The more often a given codon is used in a gene sequence, the less likely it was found to be trapped 
inside the ribosome—which suggests that these codons are decoded quicker than other codons 
and pass through the ribosome more quickly. Put another way, it appears that genes tend to use 
the codons that can be read the fastest.

Certain properties of a codon also affected its decoding speed. Codons with more As and Ts, 
for example, are decoded faster than codons with more Cs and Gs. Furthermore, whenever a 
chemically unusual amino acid called proline has to be added to a new protein chain, it slowed down 
the speed at which the protein was built. The method described by Gardin, Yeasmin et al. for peering 
into a decoding ribosome may now help future studies that aim to answer other questions about 
how proteins are built.
DOI: 10.7554/eLife.03735.002
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been carried out previously, but without detecting codon-specific differences in decoding rates (Qian 
et al., 2012; Charneski and Hurst, 2013). However, this analysis in its simplest form would overweight 
the highly expressed genes, which account for a large fraction of total reads—that is, a relatively small 
number of highly expressed genes would dominate the analysis. But because there are extreme peaks 
and valleys in ribosome footprint profiles (Figure 1), and because these are not primarily due to codon 
usage, this simple analysis would likely fail, because the results would depend mainly on a relatively 
small number of chromosome positions, and because of the peak-to-valley variability affecting these 
positions. Defining the right normalizations to compensate for differences in gene expression, gene 
length, sequence composition, etc, is complicated and problematic.

Instead, we have opted for a simpler approach. We independently analyze many selected regions 
(windows) where the effects of codon usage are particularly easy to assay. For each codon, we identify 
all translated regions in the genome where a particular codon (say CTC) occurs uniquely within a 
window of 10 codons upstream and 10 codons downstream—that is, a window 19-codons wide, with 
the codon of interest occurring exactly once at position 10 of the 19-position window. For foot-
prints 10-codons long, there are exactly 10 classes of footprints that contain this particular CTC 
and fit entirely in the window. That is, the CTC of interest can occur at position 1 of the footprint, or 
position 2, …., or position 10. Analysis was restricted to windows with at least 20 total reads and at 
least 3 non-empty classes. For our four datasets discussed below, there was an average of 408, 1586, 
1749, or 2868 qualifying windows per codon, respectively (more windows for the abundant codons, 
fewer for the rare codons).

In the absence of any codon preference of the ribosome, there should be a uniform distribution of 
footprints across the ten positions. That is, in a window centered on CTC and containing 100 foot-
prints, one expects 10 footprints at each of the 10 positions, a relative frequency of 0.1 (10/100) at 
each position. On the other hand, if the ribosome was to dwell for an extended time over the CTC 
whenever that codon was at, say, position 6 of the footprint, then there might be 30 footprints with 
CTC in position 6, and about 8 footprints at each of the other 9 positions, thus giving a frequency 
distribution with a peak at position 6. Many such relative frequency distributions can be fairly averaged 
over all windows over all genes centered on a specific codon. Regions on highly expressed genes can 
be fairly compared with similar regions on genes with lower expression, because we are dealing with 
relative frequency distributions. Each window thus represents an independent trial of the ribosome's 
dwell time over each given codon. Averaging over the hundreds or thousands of windows in the 
genome generates a statistically rigorous analysis. Note that we do not attempt any normalization 

Figure 1. Two ribosome profiles of the TDH1 gene. Top profile is from the data of Ingolia et al., 2009; bottom 
profile is from the SC-lys dataset (‘Materials and methods’). The first (leftmost) peak in the profiles is at the ATG 
start codon; it may differ in relative height because the SC-lys dataset was generated using flash-freezing.
DOI: 10.7554/eLife.03735.003
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based on gene expression—instead, we take each qualifying window as an independent experiment, 
regardless of level of expression, then average all frequency distributions from all windows for each 
codon. A related idea was also used by Lareau et al. (2014), although on significantly different data, 
and with normalization by gene.

The relative frequency averaged over all windows is a number between 0 and 1, and we compare 
this to the baseline frequency (0.1) (total footprints over 10 positions) to compute a final statistic, 
which we call the Ribosome Residence Time, or RRT. For instance, if the average relative frequency for 
a codon at a particular position is 0.1, then the RRT is 1, and we interpret this to mean that the ribo-
some spends the average amount of time at the given codon at the given position. An RRT of two 
suggests that the ribosome spends twice as long as average at the given codon.

Validation of ribosome residence time analysis
We tested this method of analysis using simulated and real positive and negative control data. For a simu-
lated negative control, we assigned real footprint data from our SC-lys dataset to random codons and did 
RRT analysis. As expected, all codons at all positions show an RRT of about 1, that is, no signal (Figure 2A). 
For a simulated positive control, we generated a simulated data set of 2 million 10-codon reads over 
coding genes, but we biased these simulated reads to give more reads for the codon AAA at position 6 
of the footprint. As expected, RRT analysis shows a peak for AAA at position 6 (Figure 2B).

For a real-data negative control, we pooled the control mRNA-seq data for 30 bp fragments from 
our four experiments (‘Materials and methods’) and analyzed these mRNA fragments. Since this RNA 
came from a total naked RNA preparation, there were no ribosomes and no ribosome footprints, 
so there should not be any signal from translation, even though we are analyzing real 30 bp RNA frag-
ments. Indeed, RRT analysis shows no peaks in positions 2 through 9 of these fragments (Figure 2C). 
However, there are modest deviations from 1 at the termini, positions 1 and 10. We attribute these to some 
base-specificity for the enzymatic reactions used to generate the fragment library (Lamm et al., 2011; 

Figure 2. Validation for ribosome residence time analysis. (A) Simulated data, negative control. Real footprint data 
from the SC-lys dataset were randomly assigned to codons, and RRT analysis was carried out. A flat line with an 
RRT value of 1 indicates no signal. (B) Simulated data, positive control. A dataset of 2 million simulated reads was 
generated but biased to give more reads over the codon AAA at position 6. (C) Real data, negative control. 
RNA-seq data from naked fragments of RNA 30 nucleotides long, processed as if for ribosome profiling, were 
analyzed. (D) Real data, positive control. Real ribosome footprinting data from Li et al. were analyzed (Li et al., 
2012). In this experiment, E. coli were starved for serine. Note that the highest Ser peak is for TCA, which is the 
rarest Ser codon in E. coli, and the lowest Ser peak is for AGC, which is the most common Ser codon in E. coli. 
High values at position 9 as well as 8 may indicate that the A-site may be at position 8 in some fragments and 
position 9 in others.
DOI: 10.7554/eLife.03735.004
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Jackson et al., 2014; Raabe et al., 2014). Supporting this interpretation, the same peaks and 
valleys at positions 1 and 10 (i.e., the same base-specificity) were seen in real ribosome-footprint data 
(see below).

For a real data positive control experiment, we used the Escherichia coli data generated by Li et al., 
who starved E. coli for serine, and did ribosome profiling (Li et al., 2012). Because of the starvation 
for serine, there is an expectation that all six serine codons should be decoded slowly and so should 
have high RRT values. This proved to be the case (Figure 2D). The six serine codons had 6 of the 
7 highest RRT values at position 8 (Figure 2D, Table 1), which presumably represents the A-site in this 
experiment. Note that because these are E. coli ribosomes, the phase of the footprint (i.e., the position 
of the A-site in the footprint) is different from its phase with regard to yeast ribosomes (see below). 
The RRT analysis of E. coli footprints also showed interesting variation at positions 2, 3, and 4 
(Figure 2D), which we will consider elsewhere.

Lareau et al. (2014) starved Saccharomyces cerevisiae for histidine using the His3 inhibitor 
3-aminotriazole. This was another potential positive control, where the two His codons should be 
decoded slowly. We analyzed these ribosome profiling data. However, of the 11 million reads obtained 
in that experiment, about 10.6 million mapped to ribosomal RNA. The remaining ∼0.4 million reads 
mapped to mRNA, but gave only 10 (ten) total windows passing our quality filters for RRT analysis, and 
this is too few. However, when we relaxed the filters to obtain more (albeit lower quality) windows, 
we observed obvious peaks (high RRT values) for both histidine codons at position 6 specifically in the 
3-aminotriazole experiment (data not shown).

Ribosome residence time analysis of codons
Having found that RRT analysis gives the expected results in control experiments, we applied it to the 
analysis of four of our ribosome profiling experiments. Our experiments differ from those of Ingolia 
et al. and Lareau et al., in that in those studies, cycloheximide was added to the growing yeast culture 
before harvesting (Ingolia et al., 2009; Lareau et al., 2014), whereas we harvest by flash-freezing and 
later add cycloheximide to the frozen cells (‘Materials and methods’). The nature of our results is 
shown in Figure 3 using the rare Leu codon CTC as an example. In this example, 10 codon (30 nucleotide) 
footprints that have CTC as the first codon have about the average relative frequency—that is, they 
have about the same relative frequency as footprints with any other codon at the first position. Similarly 
when CTC is in the 2nd, 3rd, 4th, 7th, 8th, 9th, and 10th positions. However, there is a relative over 
abundance of footprints that have CTC at the 6th position. In fact, for CTC at the 6th position, averaged 
over 451 windows (in the case of this rare codon), there are 1.89-fold more footprints than at the base-
line. This suggests that ribosomes move relatively slowly when CTC is at the 6th position, and, there-
fore, these ribosomes are more frequently captured as footprints. We say that CTC has a Ribosome 
Residence Time (RRT) of 1.89 at position 6.

Figure 4 shows data for all 61 sense codons from one of four experiments, the ‘SC-lys’ experiment. 
In a large majority of cases, a codon has its highest or lowest footprint abundance when the codon is 
in position 6. We interpret this to mean that the codon affects the rate of ribosome movement when 

Table 1. Top ten RRTs at position 8 in E. coli starved for serine

Codon AA Usage RRT

TCA Ser 8.1 1.98

TCC Ser 9.0 1.90

TCG Ser 8.8 1.73

TCT Ser 8.7 1.71

AGT Ser 9.4 1.57

ATA Ile 5.5 1.42

AGC Ser 16.0 1.25

ATT Ile 29.7 1.18

CCT Pro 7.2 1.15

CCA Pro 8.4 1.13

DOI: 10.7554/eLife.03735.005
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the codon is in position 6, which we believe to be 
the A-site of the ribosome (see below for further 
support for this assignment). The behavior of the 
six Leu codons and the four Thr codons is high-
lighted in Figure 4B,C. Footprint frequencies also 
differ from the average in a specific way at posi-
tions 5 (Figure 4D) (see below) and 1 and 10, the 
two ends of the footprint. We attribute variation 
at positions 1 and 10 to some base-specificity for 
the enzymatic reactions involved in generating 
and analyzing ribosome footprints (Lamm et al., 
2011; Jackson et al., 2014; Raabe et al., 2014); 
the same variations are seen in reactions with 
naked RNA fragments.

Figure 5A shows the deduced rate of ribo-
some movement for each codon, plotted against 
the frequency of codon usage. There is a good 
correlation (r = –0.52); that is, the ribosome moves 
faster over the more common codons.

There is also a correlation, albeit weaker, with 
the AT-richness of the codon. AT-rich codons are 
decoded somewhat faster than average, while 
GC-rich codons are decoded more slowly 
(Figure 5B). The mean RRT of codons with 3 or 
2 GC residues was 1.23, while the mean RRT of 
codons with 1 or 0 GC residues was 1.01, a sta-
tistically significant difference (p < 0.003 by a 
two-tailed t test).

Table 2 shows the Ribosome Residence Time 
at position 6 for each of the 61 sense codons. 

The slowest codon is the rare Leu codon CTC. Relatively, the ribosome spends about 1.9 times as 
long with a CTC codon in the A site as it does at the average codon. If the yeast ribosome spends 
50 milliseconds (Futcher et al., 1999) on an average codon in the A-site, then the RRT suggests 
it spends about 95 milliseconds on CTC codons. The fastest codon is the relatively abundant  
Thr codon ACC (Figure 4C, Table 2), where it spends 0.70 times as long as average (i.e., about  
35 milliseconds).

There are also peaks at position 5 (Figure 4A,D), which we interpret as the ribosome's P-site, where 
the peptide bond is formed. All four Pro codons are high at position 5: CCT, CCA, and CCC are the 
three slowest codons at position 5, while CCG is 6th (Figure 4D, Table 2). Proline is a unique amino 
acid in having a secondary rather than a primary amino group, and so it is less reactive in peptide bond 
formation. Proline forms peptide bonds slowly (Muto and Ito, 2008; Wohlgemuth et al., 2008; 
Pavlov et al., 2009; Johansson et al., 2011), and proline has been associated with slow translation in 
footprinting experiments (Ingolia et al., 2011). Our result that the ribosome slows with proline at 
position 5 is consistent with this and tends to confirm our assignment of position 5 to the P-site and, 
therefore, position 6 to the A-site. A few other residues also seem slightly slow at position 5 (e.g., Asn, 
Gly, see Table 2 and Supplementary file 1), possibly due to low reactivity in peptide bond formation 
(Johansson et al., 2011).

All four proline codons also have high RRTs at position 6, the A-site (Figure 4D, Table 2). The 
dipeptide ProPro is translated very slowly (Doerfel et al., 2013; Gutierrez et al., 2013; Peil et al., 
2013; Ude et al., 2013). We wondered whether the apparent slowness of proline at both posi-
tions 5 and 6 was an informatic artefact due to extreme slowness for ProPro dipeptides. We redid 
the original analysis after excluding all footprints encoding ProPro dipeptides. Results did not 
change significantly; Pro still appeared to be slow at both positions 5 and 6 (Figure 6A). On the 
other hand, when we looked specifically at footprints containing a ProPro dipeptide, there was a 
very large peak at position 5 (Figure 6B), consistent with the very slow peptide bond formation 
seen in studies cited above.

Figure 3. Principle of ribosome residence time analysis. 
The ribosome protects a 30 nt ‘footprint’ of RNA 
centered around the A, P, and E sites (positions 6, 5, 
and 4). The rare Leu codon CTC has a high RRT at 
position 6, which is likely the A-site.
DOI: 10.7554/eLife.03735.006

http://dx.doi.org/10.7554/eLife.03735
http://dx.doi.org/10.7554/eLife.03735.006


Biochemistry | Genomics and evolutionary biology

Gardin et al. eLife 2014;3:e03735. DOI: 10.7554/eLife.03735 7 of 20

Research article

To establish repeatability, we generated and 
analyzed three other ribosome profiling datasets 
and also re-analyzed previously published data 
(Ingolia et al., 2009). All five data sets gave qual-
itatively similar results; pairwise correlations for 
RRTs at position 6 ranged from 0.22 to 0.96 
between the datasets (Table 3). The poorest cor-
relation (0.22) was a correlation with the previ-
ously published dataset, which was generated 
using significantly different methods than our 
datasets. In particular, that dataset was gener-
ated by adding cycloheximide to the growing 
culture, then harvesting (Ingolia et al., 2009), 
whereas our data were generated by flash-freezing 
first, then adding cycloheximide to the frozen 
cells. Complete results for all five experiments are 
given in Supplementary file 1. More recently, we 
also subjected the long footprint data of Lareau 
et al. (2014) to RRT analysis and obtained corre-
lations at position 6 of 0.21, 0.47, 0.23, and 0.27, 
respectively, for their ‘untreated 1’, ‘untreated 2’, 
‘untreated merge’, and ‘cycloheximide 1’ experi-
ments to our SC-lys experiment. Again, these 
experiments were carried out in a significantly dif-
ferent way from ours and it is not surprising that 
the correlations are modest. It is reassuring that a 
positive correlation can be seen even for experi-
ments where no cycloheximide was used.

There are strong correlations between codon 
usage, the number of tRNA genes for the relevant 
tRNA, and tRNA abundance (Ikemura, 1981, 1982; 
Dong et al., 1996; Tuller et al., 2010; Novoa 
and Ribas de Pouplana, 2012). Although one 
cannot determine causation from this correlation 
(Plotkin and Kudla, 2011), nevertheless it is con-
sistent with the idea that the rate of decoding in 
translation is at least partly limited by tRNA con-
centration. Most of our results are consistent with 
this. However, there are some interesting excep-
tions. In yeast, the 61 sense codons are decoded 
by only 42 tRNAs. There are 12 pairs of codons 
that share a single tRNA (e.g., Phe TTC and TTT; 
Tyr TAT and TAC; etc) (Roth, 2012). In many but 
not all cases, the RRT of the two codons is similar 
(Table 2), consistent with the ‘concentration’ 
hypothesis. However, there are also cases where 
the RRT appears to be significantly different for 
two codons sharing the same tRNA. For instance, 

the Cys codon TGC has an RRT of 1.23, while TGT has an RRT of 0.81 (Table 2). Both codons are 
recognized by the same tRNA, which in this case is complementary for TGC, and wobble for TGT. 
Similarly, the Gly codon GGC has an RRT of 1.22 (tRNA is complementary), while GGT has an RRT of 
0.93 (tRNA is wobble). Both these relationships (RRT for TGC > TGT, and RRT for GGC > GGT) were 
true in all five datasets (Supplementary file 1). In both the cases, the perfect match is decoded more 
slowly than the wobble match and in both cases, the slower, complementary pairing has a G:C match 
at the third (i.e., wobble) position. These and other similar examples (not shown) suggest that the RRT 
depends on more than just the concentration of the relevant tRNA. Perhaps the long RRTs for these 

Figure 4. Results of Ribosome Residence Time analysis. 
(A) The pattern of RRTs for all codons at all positions. 
Most peaks are at position 6, with some at position 5. 
(B) The RRTs for the six leucine codons. CTC has the 
highest RRT of any codon at position 6. (C) The RRTs for 
the four threonine codons. ACC has the lowest RRT of 
any codon at position 6. (D) The RRTs for the four proline 
codons. Proline has peaks at position 5, the P-site, as 
well as at position 6.
DOI: 10.7554/eLife.03735.007
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GC-rich codons are related to the time needed to 
eject incorrectly paired anti-codons of incorrect 
tRNAs, although this explanation is somewhat at 
odds with the literature (Daviter et al., 2006; 
Gromadski et al., 2006). Alternatively, it has 
been suggested that translocation can occur more 
quickly when the codon:anticodon interaction 
is weaker (Semenkov et al., 2000; Khade and 
Joseph, 2011).

RRT analysis of short footprints
Recently, Lareau et al. made the exciting discovery 
that ribosome profiling on cells that have not 
been treated with any drug yields two classes of 
footprints, long (28–30 nucleotides) and short 
(20–22 nucleotides) (Lareau et al., 2014). It is the 
long class that is seen in cycloheximide experi-
ments, and which we have characterized above. 
The short (20–22 nuc.) footprints seem to repre-
sent a different conformation of the ribosome, 
perhaps one that occurs when the ribosome trans-
locates along the mRNA. Furthermore, Lareau 
et al. found that treatment of cells with the elon-
gation inhibitor anisomycin efficiently generates 
short footprints. Lareau et al. suggest that the 
long and short footprints are reporting on two 
different states of translation (Lareau et al., 2014).

We applied RRT analysis to the short footprints 
generated by Lareau et al., with special focus 
on the footprints after anisomycin treatment. All 
three of their anisomycin datasets were studied, 

and the pairwise correlations between the RRT results for these three datasets were very high, ranging 
from 0.89 to 0.998. Partial results are shown in Figure 7 and Table 4, and complete results are 
shown in Supplementary file 2. RRT analysis showed a series of peaks at different positions along the 
7-codon footprint. The RRT values for the short footprints did not significantly correlate with RRT 
values for the long footprints, even when the phases of the footprints were shifted. This suggests, 
in agreement with Lareau et al., that the short and long footprints are indeed reporting on different 
translational processes. Furthermore, for the short footprints the RRT values are amino acid-specific, 
while for the long footprints at position 6, the RRT values are codon-specific (Table 2; Table 4; Figure 4, 
Figure 7, Figure 8). This again indicates that the two kinds of footprints are reporting on different 
translational processes. The amino acids in the peaks at positions 3, 5, and 6 are shown in Table 4: the 
peak at position 3 contains glycine; the peak at position 5 contains smallish hydrophobic amino acids 
(Leu, Val, Ile, and to some extent Phe), and the peak at position 6 is dominated by the two basic amino 
acids, Arg and Lys. It has previously been shown that basic amino acids can cause a pause in elongation 
by interacting with the ribosome exit tunnel (Lu et al., 2007; Lu and Deutsch, 2008; Brandman et al., 
2012; Wu et al., 2012; Charneski and Hurst, 2013). The basis of the anisomycin arrest is partly but 
not fully understood (Hansen et al., 2003; Blaha et al., 2008), and so it is difficult to clearly interpret 
these results (but see ‘Discussion’). Nevertheless, the application of RRT analysis to the anisomycin-
generated footprints gives strong specific signals that are unlikely to be explained by a random pro-
cess. We note, however, that results from the short footprints from untreated (no anisomycin) cells 
are only modestly correlated (0.23) with results from short footprints from the anisomycin-treated cells 
(data not shown).

It appeared that the RRT values at position 6 for the long footprints were codon-specific (Figure 4, 
Table 2), while the RRT values for the short footprints were amino acid-specific (Figure 7, Table 4). 
To confirm this, we developed a statistical test for the coherence of the results for a particular amino 
acid (‘Materials and methods’). Briefly, this method tests whether every codon for a particular amino 

Figure 5. Correlation of ribosome residence times with 
codon properties. (A) Correlation of RRT with codon 
usage. RRT is plotted against the frequency of each 
codon per 1000 codons. (B) Correlation of RRT with the 
GC content of each codon. The codons were divided 
into quartiles by RRT (Fastest–Slowest), and the GC 
content of those ∼15 codons is shown in a violin plot.
DOI: 10.7554/eLife.03735.008
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Table 2. Ribosome residence time at position 6 (A) and 5 (B)

A

Codon AA Usage RRT p value

CTC Leu 5.4 1.89 *0.0001

CCC Pro 6.8 1.71 *0.0001

GGG Gly 6 1.61 *0.0001

AGG Arg 9.2 1.59 *0.0001

ATA Ile 17.8 1.57 *0.0001

GGA Gly 10.9 1.56 *0.0001

TGG Trp 10.4 1.53 *0.0001

GTG Val 10.8 1.52 *0.0001

CGC Arg 2.6 1.45 *0.0001

CGA Arg 3 1.45 *0.0008

CGG Arg 1.7 1.44 *0.0010

TCG Ser 8.6 1.43 *0.0001

CCA Pro 18.3 1.38 *0.0001

ACA Thr 17.8 1.35 *0.0001

CCG Pro 5.3 1.31 *0.0001

GTA Val 11.8 1.31 *0.0001

GCA Ala 16.2 1.28 *0.0001

CCT Pro 13.5 1.27 *0.0001

TCA Ser 18.7 1.26 *0.0001

TAC Tyr 14.8 1.25 *0.0001

TAT Tyr 18.8 1.25 *0.0001

GAG Glu 19.2 1.25 *0.0001

CTA Leu 13.4 1.25 *0.0001

CTT Leu 12.3 1.24 *0.0001

TGC Cys 4.8 1.23 *0.0001

GGC Gly 9.8 1.22 *0.0001

CAG Gln 12.1 1.15 *0.0002

ACG Thr 8 1.12 0.0069

AGT Ser 14.2 1.10 0.0060

AGC Ser 9.8 1.09 0.0213

CAC His 7.8 1.08 0.0098

TTT Phe 26.1 1.05 0.0529

GAA Glu 45.6 1.04 0.0538

AGA Arg 21.3 1.01 0.3014

TTC Phe 18.4 1.00 0.4955

GCG Ala 6.2 0.99 0.4650

TCC Ser 14.2 0.99 0.3341

TTA Leu 26.2 0.99 0.3166

TCC Ser 23.5 0.98 0.2249

CAT His 13.6 0.93 0.0188

GGT Gly 23.9 0.93 *0.0003

ATG Met 20.9 0.92 0.0027

ATT Ile 30.1 0.92 *0.0005

Table 2. Continued on next page
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acid behaves similarly, and it yields a small p-value if it does. Indeed, this analysis confirms that the 
short footprints give results specific to the amino acid, while the long footprints generally do not 
(i.e., the long footprints are codon-specific) (Figure 8). This suggests that the long footprints are 
reporting on the process of decoding (which depends on specific codons), while the short footprints 
are reporting on events after decoding.

Discussion
To our knowledge, this is the first measurement of the differential rate of translation of all 61 codons 
in vivo. There is a correlation between a high codon usage and a high rate of decoding. Although this 
is a correlation that has been widely expected, there has been little evidence for it; indeed, the most 
recent experiments suggested that all codons were decoded at the same rate (Qian et al., 2012; 
Charneski and Hurst, 2013). Some workers have had other expectations for decoding rates. For 
instance, an important theory was that the more common codons were common because their trans-
lation might be more accurate (Plotkin and Kudla, 2011) (and this still might be correct).

Translation is optimized for both speed and accuracy (Bieling et al., 2006). During translation, 
the ribosome must sample many incorrect tRNAs at the A-site before finding a correct tRNA. It must 

A

Codon AA Usage RRT p value

TTG Leu 27.2 0.92 *0.0001

CTG Leu 10.5 0.92 0.0139

AAT Asn 35.7 0.88 *0.0001

AAA Lys 41.9 0.88 *0.0003

CGT Arg 6.4 0.87 *0.0002

CAA Gln 27.3 0.87 *0.0001

GCC Ala 12.6 0.86 *0.0001

GAC Asp 20.2 0.85 *0.0001

TGT Cys 8.1 0.81 *0.0001

GCT Ala 21.2 0.81 *0.0001

ATC Ile 17.2 0.80 *0.0001

ACT Thr 20.3 0.78 *0.0001

GAT Asp 37.6 0.76 *0.0001

AAC Asn 24.8 0.76 *0.0001

GTT Val 22.1 0.75 *0.0001

GTC Val 11.8 0.75 *0.0001

AAG Lys 30.8 0.74 *0.0001

ACC Thr 12.7 0.70 *0.0001

B

Codon AA Usage RRT p value
CCT Pro 13.5 1.80 *0.0001

CCC Pro 6.8 1.48 *0.0001

CCA Pro 18.3 1.48 *0.0001

AAT Asn 35.7 1.39 *0.0001

CGC Arg 1.7 1.34 0.0070

CCG Pro 5.3 1.30 *0.0001

A. Usage of each codon per 1000 codons and the Ribosome Residence Time (RRT) at position 6 (the A-site of the 
ribosome). The p-value for a difference between the calculated RRT value and an RRT value of 1 is shown. p-values less 
than or equal to 0.001 are marked with an asterisk. B. As for A, but for the six highest values at position 5 (the P-site).
DOI: 10.7554/eLife.03735.009
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match the anti-codon of that correct tRNA with 
the codon; after such matching, there is a confor-
mational change around the codon–anticodon 
interaction at the decoding center (Demeshkina 
et al., 2012; Zeng et al., 2014). The ribosome 
must form the peptide bond (Rodnina, 2013; 
Polikanov et al., 2014), translocate (Semenkov 
et al., 2000; Khade and Joseph, 2011; Zhou 
et al., 2014), and eject the empty tRNA. The nas-
cent peptide must make its way through the ribo-
some exit tunnel (Lu and Deutsch, 2008; Petrone 
et al., 2008; Lu et al., 2011; Wilson and Beckmann, 
2011). Depending on the rate of each of these 
events, the concentration of the various tRNAs 
might or might not have a detectable effect on 
the overall rate of translation. Our findings that 
(i) the more frequent codons (i.e., the ones with 
the highest tRNA concentrations) are decoded 
rapidly; and (ii) GC-rich codons are decoded 
slowly; and (iii) proline is slow in the P-site, sug-
gest that there are at least three processes that 
happen somewhat slowly and on a similar time-
scale. The high rate of decoding for high concen-
tration tRNAs may reflect the relatively short time 

it takes for the ribosome to find a high-concentration correct tRNA among many incorrect tRNAs. 
The fact that we detect proline-specific delays of a similar magnitude to the rare-codon specific delays 
suggest that peptide bond formation and identification of the correct tRNA are happening on similar 
time scales. In general, this is what one might expect from the evolution of such an important process 
as protein synthesis—if one process was entirely rate-limiting, there would be very strong selection for 
greater speed in that process, until a point is reached where it ‘catches up’ with other processes, and 
several processes together are then rate-limiting.

Even though these data establish that common codons are translated relatively rapidly, this does 
not on its own explain the success of codon optimization for increasing protein expression, since the 
rate of translation is primarily limited by the rate of initiation, not elongation (Andersson and Kurland, 
1990; Plotkin and Kudla, 2011) (although one recent study identifies a mechanism whereby rapid 
elongation causes rapid initiation [Chu et al., 2014]). Nevertheless, on a genome-wide (and not gene-
specific) scale, the use of faster codons would mean that a given genomic set of mRNAs would require 
(or titrate out) fewer ribosomes to make a given amount of protein than the same set of mRNAs using 
slower codons (Andersson and Kurland, 1990; Plotkin and Kudla, 2011). Based on our RRT 

Figure 6. Analysis of ProPro dipeptides. (A) RRT analysis 
of windows containing no ProPro dipeptides. (B) RRT 
analysis of windows containing ProPro dipeptides.
DOI: 10.7554/eLife.03735.010

Table 3. Correlations between experiments

YPD1 -His YPD2 Ingo.

-Lys 0.80 0.35 0.76 0.22

YPD1 0.53 0.96 0.55

-His 0.58 0.37

YPD2 0.53

The pairwise Spearman correlations between the RRT values at position 6 are shown for five independent experiments, 
where the experiments are named YPD1, YPD2, SC-Lys, SC-His, and Ingolia. The SC-Lys and SC-His experiments 
were carried out by JG, and used flash-freezing as the initial method for stopping ribosome movement. The YPD1 
and YPD2 experiments were carried out by YC (Cai and Futcher, 2013), and used addition of ice and cycloheximide 
to the culture as the initial method for stopping ribosome movement. The ‘Ingo’ experiment was that carried out 
by Ingolia et al. (2009). Further details are given in ‘Materials and methods’. Complete RRT values for each position 
in each experiment are provided in Supplementary file 1.
DOI: 10.7554/eLife.03735.011
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measurements, and taking into account the dif-
ferent copy numbers of different mRNAs (Lipson 
et al., 2009), we roughly estimate that yeast 
requires about 5% fewer ribosomes than if they 
were to make protein at the same overall rate but 
using each synonymous codon at an equal fre-
quency (‘Materials and methods’). This provides 
at least a sufficient reason for the bias towards 
faster synonymous codons.

We applied RRT analysis to the short footprints 
identified by Lareau et al. (Figure 7). These short 
footprints seem to report on a different transla-
tional process than the long footprints seen in 
cycloheximide experiments. We see that the 
basic amino acids Arg and Lys are slow at position 
6; small hydrophobic amino acids are slow at pos-
ition 5; and glycine is slow at position 3. While we 
know too little about the nature of the short foot-
prints to reliably interpret these results, one spec-
ulative possibility is that the results report on the 
interaction of amino acids in the nascent peptide 

chain with the exit tunnel of the ribosome (Raue et al., 2007; Petrone et al., 2008; Berndt et al., 
2009; Bhushan et al., 2010; Lu et al., 2011; Wilson and Beckmann, 2011; Gumbart et al., 2012). 
We find Arg and Lys slow at position 6, and this correlates with the fact that these basic amino acids 
cause a pause by interacting with the exit tunnel (Lu et al., 2007; Lu and Deutsch, 2008; Brandman 
et al., 2012; Wu et al., 2012; Charneski and Hurst, 2013). This would then suggest that small hydro-
phobic amino acids, and then glycine, might similarly cause pauses by interacting with positions one 
or three amino acids further out in the exit tunnel.

In summary, we believe that RRT analysis is a sensitive high-resolution method that can characterize 
the interaction of codons and amino acids with the ribosome. It can be applied to ribosome profiling 
data of many types, from many organisms. In this study, we show that frequent codons are decoded 
more quickly than rare codons; that codons high in AT are decoded somewhat quickly; that proline 
forms peptide bonds slowly; and that short footprints from anisomycin treated cells have an inter-
esting RRT profile that may reflect interaction of amino acids with the ribosome exit tunnel.

Materials and methods
Experiments were done with yeast strain background BY4741. Ribosome profiling was based on the 
method of Ingolia (Ingolia et al., 2009), but with modifications (see below). Programs for analysis of 

Figure 7. RRT analysis of short footprints from anisomy-
cin treatment. The short, seven-codon footprints from 
anisomycin treatment (dataset 1b) from Lareau et al. 
(2014) were analyzed for RRT. All 61 sense codons are 
shown; codons for selected amino acids are color-coded 
by amino acid. Position along the footprint is shown on 
the x-axis.
DOI: 10.7554/eLife.03735.012

Table 4. Top 10 RRTs at positions 3 through 6 of the anisomycin-generated short footprints

Pos 3 Pos 4 Pos 5 Pos 6

Gly GGG 2.64 Pro CCC 2.36 Leu TTA 2.75 Arg CGA 3.72

Gly GGC 2.52 Pro CCA 2.34 Leu CTC 2.73 Arg CGG 3.50

Gly GGT 2.36 Met ATG 2.25 Val GTA 2.43 Pro CCG 2.74

Gly GGA 2.32 Pro CCT 2.17 Leu CTA 2.36 Lys AAA 2.59

Asp GAC 1.80 Ala GCC 2.13 Leu TTG 2.29 Lys AAG 2.49

Ala GCC 1.79 Phe TTC 2.03 Val GTG 2.21 Arg CGC 2.46

Ala GCA 1.70 Ala GCA 2.01 Leu CTT 2.16 Arg CGT 2.34

Ala GCT 1.65 Ala GCT 1.98 Val GTC 2.12 Arg AGG 2.32

Ala GCG 1.59 Tyr TAC 1.98 Val GTT 2.11 Arg AGA 2.21

Blu GAG 1.58 Ser TCC 1.97 Ile ATA 2.03 Asp GAT 2.12

DOI: 10.7554/eLife.03735.013
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ribosome residence time were written by the authors, primarily RY and AY. The Perl code for ribosome 
residence time analysis is given in Source code 1 and 2.

Ribosome profiling
Informatic analysis was conducted on four ribosome profiling experiments (YPD1, YPD2, SC-lys, and 
SC-his) done for other reasons in the Futcher lab. The strains and methods used varied slightly from 
experiment to experiment; nevertheless similar results were obtained for the RRT analysis (Table 2). 
The ribosome profiling experiments YPD1 and YPD2 have been reported previously (Cai and Futcher, 
2013) as the ‘WT’ and ‘whi3’ experiments, respectively.

All experiments used S. cerevisiae strain background BY4741. Two biologically independent 
ribosome-profiling libraries and mRNA-seq libraries were obtained from YPD rich media (the YPD1 
and YPD2 experiments), and two biologically independent ribosome-profiling libraries and mRNA-
seq libraries were prepared in synthetic media (the SC-lys and SC-his experiments). Two methods 
for harvesting cells were used. After harvesting and footprint size selection, footprints from all 
four experiments were processed identically into sequencing libraries using the ARTseq Yeast 
Ribosome Profiling kit, following the manufacture's instructions beginning with step B3 in the 
protocol.

Harvesting method 1 (YPD1 and YPD2 experiments)
1 liter of cells in YPD were grown to a density of 2.0 × 107 cells/ml. Medium was cooled to 0°C by add-
ing ice (stored at −20°C) and simultaneously cycloheximide was added to a concentration of 100 µg/ml 
to quickly halt translation and freeze translating ribosomes in place. Cells were centrifuged using a 
Sorvall Evolution RC centrifuge at 3000 rpm for 2 min at 4°C. The resulting cell pellet was washed with 
ice-cold RNase-free water containing 100 µg/ml cycloheximide by gentle vortexing and repelleted. 
Supernatant was aspirated, and cells were resuspended in polysome lysis buffer prepared according 
to the ARTseq ribosome profiling kit instructions. Cell lysis buffer slurry was slowly dripped into an 
RNase-free 50 ml conical tube containing liquid nitrogen. Resulting frozen pellets of cell slurry were 
lysed using a TissueLyser II and 50 ml grinding jars at liquid nitrogen temperature for six 3 min cycles 

Figure 8. Short footprints are amino acid-specific; long footprints are codon-specific. For the set of codons 
corresponding to each amino acid (x-axis), a test was done to see if all the codons behaved similarly or not. 
For the short footprints (left, panel A), p-values (y-axis) are generally small, showing that each codon for a 
particular amino acid behaves similarly (‘Materials and methods’). For the long footprints (right, panel B), 
p-values are generally large, showing that the codons for each particular amino acid behave differently 
(‘Materials and methods’).
DOI: 10.7554/eLife.03735.014
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at 15 hertz. Frozen cell lysate was scraped from the grinding jar into a new RNase-free 50 ml conical 
tube followed by reheating the slurry in a 30°C water bath with constant swirling. Immediately after 
complete thawing (∼3–5 min), cell lysate was centrifuged for 5 min at 3000×g. Supernatant was moved 
to a 1.5 ml RNase-free centrifuge tube and centrifuged for 10 min at 20,000×g. Clarified lysate total 
RNA content was estimated using a Nanodrop at A260 nm, and polysome complexes were digested 
using ARTseq ribonuclease mix according to the manufacture's instructions. Ribosome-protected 
mRNA footprints were purified using an Illustra Microspin S-400HR column prepared according to 
ARTseq manufacture's instructions. All following library generation steps were performed according to 
the ARTseq protocol starting at step 4 (PAGE purification). Following the end repair step in the proto-
col, a biotinylated oligonucleotide antisense to a specific rRNA fragment was used to reduce rRNA 
contamination using a protocol from the Jonathan Weissman lab (personal communication from Gloria 
Brar).

Harvesting method 2 (SC-lys and SC-his experiments)
Synthetic media lacking lysine or lacking histidine was used to prepare 1 liter of cells at 2.0 × 107 cells/ml. 
The strains were prototropic for Lys or His (HIS3 gap1 frame1), respectively. Cells were harvested by 
vacuum filtration using Whatman 7184–009 membrane filters at 30°C. A liquid nitrogen cooled spatula 
was used to scrap cells from the membrane followed by immediate flash freezing in an RNase-free 
50 ml conical tube containing liquid nitrogen. Special care was taken to ensure cells were exposed to 
air for as little time as possible, between vacuum filtration and flash freezing (2–3 s), to prevent the 
loss of ribosome footprints at the 5′ ends of mRNAs (personal communication, Gloria Brar). ARTseq 
polysome lysis buffer containing cycloheximide at 50 µg/ml was slowly dripped into the liquid nitrogen 
filled cell pellet conical tube. Cells were lysed using a TissueLyser II and 50 ml grinding jars at liquid 
nitrogen temperature for six 3 min cycles at 15 hertz. Frozen cell lysate was scraped from the grinding 
jar into a new RNase-free 50 ml conical tube followed by reheating the slurry in a 30°C water bath with 
constant swirling. Immediately after complete thawing (∼3–5 min), cell lysate was centrifuged for 5 min 
at 3000×g. Supernatant was moved to a 1.5 ml RNase-free centrifuge tube and centrifuged for 10 min 
at 20,000×g. Clarified lysate total RNA content was estimated using a Nanodrop at A260 nm, and 
polysome complexes were digested using ARTseq ribonuclease mix according to the manufacture's 
instructions.

SC-lys Dataset
Digested monosomes were purified using sucrose cushion ultracentrifugation for 3 hr at 35,000 
rpm using a SW-41 rotor. The sucrose cushion contained 9 ml of 10% sucrose polysome lysis buffer 
lacking triton detergent layered over 3 ml of 60% sucrose polysome lysis buffer lacking triton 
detergent. Gradient fractionation was carried out using a BioRad EM-1 UV absorbance monitor 
and a peristaltic pump. Efficiency of RNase digestion was monitored in tandem using an undi-
gested control lysate on an identically prepared 10–60% sucrose cushion and a digested control 
centrifuged on a 10–60% sucrose gradient. Following fractionation, the monosome containing 
fraction was mixed 1:1 with 4 M guanidine thiocyanate and was precipitated overnight using a 1:1 
vol of 100% isopropanol chilled to −20°C. The RNA pellet was aspirated and resuspended in 400 μl 
RNase-free water, and protein was removed by two acid phenol–chloroform purifications followed 
by one chloroform purification. Recovered supernatant was brought to 0.3 M ammonium acetate 
and precipitated with 3 vol of 100% ethanol. All following library generation steps were performed 
according to the ARTseq protocol starting at step 4 (PAGE purification). Following the end repair 
step in the protocol, a biotinylated oligonucleotide antisense to a specific rRNA fragment was 
used to reduce rRNA contamination using a protocol from the Jonathan Weissman lab (personal 
communication Gloria Brar).

SC-his Dataset
Digested monosomes were purified using an Illustra Microspin S-400HR column according to 
ARTseq manufacture's instruction. All following library generation steps were performed according 
to the ARTseq protocol starting at step 4 (PAGE purification). Following the end repair step in the 
protocol, a biotinylated oligonucleotide antisense to a specific rRNA fragment was used to reduce 
rRNA contamination using a protocol from the Jonathan Weissman lab (personal communication 
Gloria Brar).

http://dx.doi.org/10.7554/eLife.03735
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Data analysis
Unless indicated, data processing and analysis were performed using a collection of custom programs 
written in Perl.

Sequence processing and alignment
Primary data were generated using Illumina HiSeq2000. Data were processed using Fastq clipper 
from the FASTX Toolkit 0.0.13 to remove the adaptor sequence and all reads shorter than 25 
nucleotides were discarded. Alignment to the reference was done using bowtie2 2.1.0 in local 
alignment mode.

Before performing our analysis on the Ingolia et al. (2009) data, in order to adhere to the  
processing guidelines of that paper, we used bowtie 0.12.8, reporting all alignments with at  
most three mismatches, and a seed length of 21. We then processed the multiple alignments, 
removing the poly-A tails and picking the one with the greatest number of bases matching to the 
reference.

Ribosome residence time analysis
This analysis uses the general idea that many different mRNA sequences should get an inde-
pendent and equal vote on decoding speed. We opted to analyze select regions where the effects 
of codon usage become particularly easy to assay. First, we discounted all reads with more than 
two mismatches or quality less than 10. We identified the first in-frame codon of each read and 
discarded those less than 30 nucleotides long to exclude fragments that may have been over 
digested by RNAase I. We then examined the coding regions of the genome, ignoring those over-
lapping with other genes, rRNAs, and tRNAs, in order to maximize our confidence in unique map-
ping. Each of the footprint reads that fully fit into a coding region that it aligned to was considered 
for further analysis.

For each particular codon, we identified all instances in our coding regions where this codon 
(say CTC) occurs uniquely within a window of 10 codons upstream and 10 codons downstream 
(i.e., a window of 19 codons with the target CTC in the center of the window). For footprints that 
are 10 codons long, there will be 10 classes of footprints where this particular CTC can appear—
position 1, position 2, ..., position 10. Thus, all footprints where the first codon of the footprint 
aligns to this particular CTC will belong to the position 1 class, all footprints where the second 
codon of the footprint aligns to this particular CTC will belong to position 2 class, etc.

In the absence of any codon preference of the ribosome, we would expect to see a uniform 
distribution of reads across these 10 classes. In general, the codon-positional preference is described 
by the relative frequency of reads in each of these classes. These relative frequency distributions 
can be fairly averaged over all target regions over all genes centered on a specific codon. This 
average we call the ‘Ribosome Residence Time’ (RRT); it is intended as a statistical estimate of the 
relative time spent by the ribosome at a particular codon at a particular position. Typically we 
discuss the RRT at position 6 (the A-site), but we also discuss the RRT at position 5 (the P-site). 
Regions on highly expressed genes can be fairly compared with similar regions on genes with 
lower expression, because we are dealing with relative frequency distributions (i.e., percentage 
instead of read counts). Each region represents an independent trial of any positional preference 
of the given central codon. Averaging over the 100s or 1000s of occurrences on the genome pro-
vides for a statistically rigorous analysis.

Relative frequency distributions will only be representative if the observed number of reads  
in the window is high enough that no single position dominates the distribution. For this reason, 
we restricted our analysis to windows with at least 20 total reads with at least 3 non-empty classes.

The frequency distributions are not normally distributed; this is in part because the number of reads 
is limited, so many windows have zero footprints at many positions, so the mode of the distribution is 
often 0. Nevertheless we believe that the mean is a good summary statistic. Maximum values are less 
than 1, so the mean cannot be skewed by extremely high values. We have also calculated the RRTs 
using the median of the windows instead of the mean, but the results are almost indistinguishable. The 
Spearman rank correlation between the RRTs as calculated by the mean, and by the median, is 0.97, 
while the Kendall Tau correlation is 0.89.

For each codon, we obtain the two-tailed p-value by comparing the experimentally determined 
relative frequency to the distribution of 10,000 relative frequencies based on permuted results. For 
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each of the 10,000 instances, for each considered window, we permute the footprint counts of the 
10 position classes.

We performed our RRT analysis on the Ingolia et al. (2009) data, with small modifications. We did 
not perform the checks of read quality and the number of mismatches, as this was taken care of in 
pre-processing steps (See Sequence Processing and Alignment). We also considered all reads with 
at least 24 nucleotides and performed our relative frequency calculations on the eight codons, 
because the majority of the reads were shorter than the reported size selection of RNA fragments 
∼27–31 nucleotides in length.

The statistical significances shown in Table 1 were obtained by constructing 10,000 simulated fre-
quency distributions by randomly and independently permuting each region's frequency distribution 
prior to averaging. The rank of each observed positional peak among these simulated distributions 
established the p-value.

Codon coherence analysis
We developed a p-value computation to assess whether the codons for a given amino acid behave 
similar to one another (i.e., are coherent) or not. Each codon's RRT values along the positions of a 
footprint may be considered as a k-dimensional vector, where k is the number of positions in the foot-
print (10 for long reads vs 7 for short reads). We consider the position in k-dimensional space of the 
end-point of this vector. For the set of synonymous codons for a particular amino acid, we consider the 
set of endpoints. For any given set of c such endpoints, we can compute the average pairwise distance 
d between them over all c(c-1)/2 pairs of points. If all codons for an amino acid behave similarly, then 
the endpoints are close together, and the distance d is relatively small, indicating codon coherence 
(amino-acid specific behavior), whereas if the various codons for a given amino acid behave differently 
(non-coherence, codon-specific behavior), then the distance d is relatively large.

To judge the sizes of these distances for a particular set of points, S, containing c codons (c ranges 
from 2 to 6) for a particular amino acid, we use a p-value. We construct 10,000 random samples of c 
codons drawn from the 61 possible sense codons. For each sample, we compute the average pairwise 
distance and compare this to the average pair distance of S. The rank of S in this distribution provides 
a p-value, which is significant if the vast bulk of random samples have greater pairwise distance than 
S. Results are shown in Figure 8.

Estimates of ribosomes needed for differently-encoded transcriptomes
An mRNA encoding a given protein could use only the fastest codon for each amino acid or only the 
slowest or it could use a mixture. In each case, the mRNA would occupy, or titrate out, a different 
number of ribosomes. A transcriptome of mRNAs using only the slowest codons would require more 
ribosomes to make a given amount of total protein in a given time than a transcriptome of mRNAs 
using only the fastest codons. We roughly estimated the size of this effect for the range of codon 
decoding speeds we observed. We generated in silico a yeast transcriptome using only the fastest 
codon for each amino acid at position 6 (from Table 1) or only the slowest codon or a random mixture 
of codons. Furthermore, we weighted the abundance of each mRNA according to its actual abun-
dance as measured by Lipson et al. (2009). We then compared the relative time required to translate 
each of these in silico transcriptomes by a set number of ribosomes based on the RRT values for each 
codon at position 5 and 6, and also assuming that the relevant delay is the delay at position 5 plus the 
delay at position 6 (since these two reactions must occur sequentially and not simultaneously before the 
ribosome can shift along the mRNA). In doing this, we noted that the RRT values for position 5 are neg-
atively correlated with those at position 6. Results are as follows: the random encoding requires 1.050 as 
long as WT; the slowest encoding requires 1.168 as long as WT; and the fastest encoding requires 0.930 
as long as WT. Note that this estimate uses the simplification that each species of mRNA will initiate 
translation at the same rate. A more accurate calculation in which the more abundant mRNAs initiate 
more rapidly than average would increase the difference between the WT and the random encodings.

Note added in proof
When the accepted manuscript was published, RRT values from an earlier version of the algorithm 
were erroneously used for Figure 5 (but not for other figures), giving a correlation of –0.7 between 
RRT and codon usage. The current algorithm, used here, gives a corrected version of Figure 5, shown 
here, with a correlation of –0.52.

http://dx.doi.org/10.7554/eLife.03735
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