Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin

  1. Sohum Mehta
  2. Nwe-Nwe Aye-Han
  3. Ambhi Ganesan
  4. Laurel Oldach
  5. Kirill Gorshkov
  6. Jin Zhang  Is a corresponding author
  1. The Johns Hopkins University School of Medicine, United States
  2. The Johns Hopkins University, United States

Abstract

Calcineurin is responsible for mediating a wide variety of cellular processes in response to dynamic calcium (Ca2+) signals, yet the precise mechanisms involved in the spatiotemporal control of calcineurin signaling are poorly understood. Here, we use genetically encoded fluorescent biosensors to directly probe the role of cytosolic Ca2+ oscillations in modulating calcineurin activity dynamics in insulin-secreting MIN6 β-cells. We show that Ca2+ oscillations induce distinct temporal patterns of calcineurin activity in the cytosol and plasma membrane versus at the ER and mitochondria in these cells. Furthermore, we found that these differential calcineurin activity patterns are determined by variations in the subcellular distribution of calmodulin (CaM), indicating that CaM plays an active role in shaping both the spatial and temporal aspects of calcineurin signaling. Together, our findings provide new insights into the mechanisms by which oscillatory signals are decoded to generate specific functional outputs within different cellular compartments.

Article and author information

Author details

  1. Sohum Mehta

    The Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nwe-Nwe Aye-Han

    The Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ambhi Ganesan

    The Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Laurel Oldach

    The Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kirill Gorshkov

    The Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jin Zhang

    The Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    jzhang32@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Mehta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,822
    views
  • 623
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sohum Mehta
  2. Nwe-Nwe Aye-Han
  3. Ambhi Ganesan
  4. Laurel Oldach
  5. Kirill Gorshkov
  6. Jin Zhang
(2014)
Calmodulin-controlled spatial decoding of oscillatory Ca2+ signals by calcineurin
eLife 3:e03765.
https://doi.org/10.7554/eLife.03765

Share this article

https://doi.org/10.7554/eLife.03765

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.