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Abstract The majority of mammalian promoters are CpG islands; regions of high CG density  
that require protection from DNA methylation to be functional. Importantly, how sequence 
architecture mediates this unmethylated state remains unclear. To address this question in  
a comprehensive manner, we developed a method to interrogate methylation states of hundreds  
of sequence variants inserted at the same genomic site in mouse embryonic stem cells. Using 
this assay, we were able to quantify the contribution of various sequence motifs towards the 
resulting DNA methylation state. Modeling of this comprehensive dataset revealed that CG 
density alone is a minor determinant of their unmethylated state. Instead, these data argue for  
a principal role for transcription factor binding sites, a prediction confirmed by testing synthetic mutant 
libraries. Taken together, these findings establish the hierarchy between the two cis-encoded 
mechanisms that define the DNA methylation state and thus the transcriptional competence of  
CpG islands.
DOI: 10.7554/eLife.04094.001

Introduction
Multiple levels of regulation control correct expression level of a gene. In addition to transcription fac-
tors (TF), epigenetic signals enable temporal integration of regulatory events through dynamic pro-
cesses including cell division and organism development. Considerable progress has been made in 
mapping the occurrence of various epigenetic marks during the course of mammalian development. 
This has refined our picture of the spatio-temporal occurrence of epigenetic marks, yet our mecha-
nistic understanding on how their deposition is regulated remains limited.

In mammals, methylation of DNA occurs mainly at cytosines lying in a CG context and its presence 
correlates with transcriptionally repressed states (Deaton and Bird, 2011; Jones, 2012). Unmethylated 
CGs are concentrated in regions that are unusually rich in CG dinucleotides as compared to the rest of 
the genome (Bird, 1980). The extrapolation of this observation led to the concept of CG islands (CGI), 
as an operational definition of regions that are likely unmethylated based on their sequence composi-
tion. Recently generated methylation maps at basepair resolution from several tissues and organisms 
have experimentally identified unmethylated regions at unprecedented detail (Hodges et al., 2011; 
Molaro et al., 2011; Stadler et al., 2011; Xie et al., 2013; Ziller et al., 2013). These datasets 
revealed that many unmethylated regions (UMRs) extend far beyond the CGI definition and that CGI 
can show variable levels of methylation (Meissner et al., 2008; Mohn et al., 2008; Doi et al., 2009; 
Hodges et al., 2011; Molaro et al., 2011; Stadler et al., 2011). Moreover, these studies identified 
CG poor regions outside of CGIs having low methylation levels (Low Methylated Regions–LMRs) 
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(Hodges et al., 2011; Stadler et al., 2011; Hon et al., 2013; Xie et al., 2013; Ziller et al., 2013). 
These findings challenged the notion that a simple sequence definition provides the most accurate 
prediction for the methylation state of a DNA sequence (Hodges et al., 2011; Molaro et al., 2011; 
Long et al., 2013b) and motivated to derive improved models to predict CGIs that integrate multiple 
genomic features (Bock et al., 2007; Wrzodek et al., 2012; Zheng et al., 2013).

Several molecular mechanisms have been proposed that contribute to an unmethylated state on 
the basis of their correlative occurrence with unmethylated regions of the genome (Deaton and 
Bird, 2011). From sequence perspective, these include binding of unmethylated CGs by CXXC 
domain containing proteins, which have been proposed to inhibit or counteract methyltransferase 
activity directly or through the establishment of a specific chromatin state (Ooi et al., 2007; Cedar 
and Bergman, 2009). This model would predict that local CG content is the sole determinant of the 
unmethylated state. Recent experiments suggested that classical transcription factors that bind 
motifs more complex than CG generally promote a hypomethylated states within CG poor region 
(Hodges et al., 2011; Stadler et al., 2011). Notably transcription factors have been previously impli-
cated to impact activity but also methylation state of CGI (Brandeis et al., 1994; Macleod et al., 
1994; Dickson et al., 2010; Lienert et al., 2011). Yet, it is inherently difficult to dissociate the 
effects of CGs and TF binding sites since both coincide at UMRs. Transgenic studies have argued 
that both local CG concentration and binding of transcription factors (TF) have a role in promoting 
low methylation levels (Brandeis et al., 1994; Macleod et al., 1994; Dickson et al., 2010; Lienert 
et al., 2011). The cumbersome nature of targeted genetics in mammals limited the scale of these 
experiments preventing generalization of the observed effects as well their translation into predic-
tive models. Nevertheless, these results demonstrate that genetic information is necessary and 
sufficient to instruct methylation states, opening the possibility to study the regulation of methylation 
states through genetic perturbation.

eLife digest Regions of DNA called genes produce the proteins and other molecules that are 
essential for life. The act of making these molecules is known as gene expression, and being able to 
switch this process on and off allows cells to adapt to changing conditions. For example, some 
genes may be turned on in response to injury or may only turn on during waking hours.

There are several ways gene expression can be switched on and off. Proteins called transcription 
factors can bind to DNA and act like a switch that affects nearby genes. Alternatively, special tags 
called methyl groups can attach to the ‘letters’ that make up the DNA code and turn off gene 
expression. However, it is not understood how these tags work with transcription factors and other 
forms of gene regulation.

Regions of DNA that boost the expression of a neighboring gene are called promoters. Many 
promoters in mammals contain repeating patterns of the DNA letters ‘C’ (which is a chemical called 
cytosine) and ‘G’ (guanine), and these regions are tagged less often than other regions of DNA. This 
led scientists to wonder whether the DNA sequence itself controls where the tags are placed, but 
existing experimental techniques made it difficult to establish if DNA sequence alone can prevent 
tagging.

Krebs et al. created a technique that allows thousands of different DNA sequences to be inserted 
into the same part of the genome of mouse stem cells. Comparing the tagging across these different 
sequences revealed that the CG pattern is not as closely associated with tagging as was thought. 
If the CG pattern is repeated many times it does seem to prevent tagging, but sequences with 
fewer repeats also sometimes escape tagging.

Krebs et al. found that a sequence was much less likely to be tagged if the nearby DNA also 
contains a site that transcription factors can bind to. However, regions with a very high number of 
CG repeats are able to avoid tagging without help from transcription factors.

Krebs et al. found that this behavior is not seen in cancer cells. DNA in cancer cells is heavily 
tagged, even in CG-rich regions, and transcription factors do not appear to play a major role in 
directing tagging. The new approach developed by Krebs et al. should benefit researchers working 
to understand the multiple mechanisms that control gene activity.
DOI: 10.7554/eLife.04094.002
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However this requires a large number of sequence variations in order to be comprehensive, which 
is a general prerequisite and experimental bottleneck in the analysis of DNA sequence contribution to 
regulation of biological processes. In order to be informative, such experiments have to be performed 
in a controlled environment to minimize context related interference. Recently such approaches have 
been successfully developed to dissect the organization of cis-regulatory elements by generating large 
pools of sequence variants and measuring their effect on transcription using transient reporter gene 
assays (Melnikov et al., 2012; Patwardhan et al., 2012; Sharon et al., 2012; Arnold et al., 2013). 
Such transient assays however are not suitable to study chromatin regulation, which requires stable 
genomic integration of the sequences of interest at the same chromosomal locus to account for influ-
ences of copy number and local chromatin environment.

To move beyond these limits, we developed an assay that allows parallel insertion of thousands of 
DNA fragments in a defined locus in murine embryonic stem cells (ESC). We isolated and synthesized 
various collections of DNA sequences in order to separately test the quantitative effect of sequence 
features proposed to influence methylation states. Parallel profiling of the methylation status of this 
catalogue of sequences allowed us to derive a comprehensive dataset that permits the systematic 
association between sequence motifs and methylation states. Using this information, we derive quan-
titative models describing the sequence determinants that govern the establishment of DNA methyl-
ation states. This surprisingly reveals that transcription factor binding sites are essential to explain the 
unmethylated state of the majority of CpG islands. We further demonstrate the utility of such datasets 
by explaining methylation changes observed in the course of normal differentiation. Moreover, we 
observe that deviation from the derived models is a characteristic hallmark of methylation changes 
associated with cancer states suggesting that this phenomenon is mechanistically distinct from differ-
entiation related methylation changes.

Results
Recombinase based targeting of DNA libraries in murine stem cells
In order to combine genomic targeting and high-throughput measurements, we developed a method 
that allows parallel insertion of hundreds of DNA fragments in a defined locus in murine ESCs (Figure 1A). 
This approach entails the generation of a plasmid library of sequences of interest, which can be gener-
ated by selection or synthesis. The inserted sequences are flanked by lox sites in inverted orientation 
to subsequently enable cre mediated targeting (Feng et al., 1999). The library is transfected as a pool 
into ES cells together with an expression plasmid for the cre recombinase. Clones that underwent 
targeted exchange are selected solely based on loss of a negative selection marker at the target site. 
The resulting targeted cells can be analyzed through the use of universal primers flanking the frag-
ments and subsequent sequencing. This approach yielded reproducibly up to several thousand inte-
grants using a standardized transfection protocol (Figure 1—figure supplement 1). To our knowledge 
this generated unprecedented sequence diversity at a single genomic site in a higher eukaryote.

DNA methylation analysis of targeted sequence libraries
CG rich unmethylated regions differ in their average CG content (Figure 1B). Moreover CG content 
varies within individual regions that contain short stretches of differential CG density (Figure 1C). In 
order to ask how this local heterogeneity translates into an unmethylated state and if different mecha-
nisms function in different parts of islands, we inserted fragments of CGIs to define their individual 
potency to regulate methylation and to potentially identify DNA sequence determinants of this regu-
lation (Figure 1D).

To create libraries allowing the exploration of CG rich regions, we took advantage of our previ-
ously described murine ESC methylome (Stadler et al., 2011). We performed an in silico digestion 
of the mouse genome using all available methylation sensitive restriction enzymes and chose a set of 
enzymes and defined size range of fragments to maximize the enrichment for fragments from CG 
rich unmethylated regions. The library was cloned and amplified in Escherichia coli and its composi-
tion determined by paired-end sequencing. Subsequently the libraries were targeted into a defined 
genomic site in murine stem cells as described above. DNA extracted from the pool of cells after 
selection served as a template for PCR after bisulfite conversion using universal primer binding sites 
that flank all inserts. The resulting PCR products were analyzed by next generation sequencing 
resulting in high coverage methylation measurements for ∼30% of the initially inserted fragments 
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(Figure 1—figure supplement 1). This translates into 100–600 fragments per transfection depending 
on initial library complexity.

Density of CGs correlates with the ability of DNA fragments to 
recapitulate their methylation states
We initially inserted three independent libraries enriched for sequences from unmethylated CGIs. 
This resulted in high-resolution methylation measurements for ∼400 fragments with variable length 
(100–400 bp). The acquisition of methylation of fragments between different insertions was reproduc-
ible for most fragments between independent library insertions (R > 0.6) (Figure 2—figure supple-
ment 1). Next we compared the methylation state of fragments after insertion with that of the matching 
endogenous sequence (Stadler et al., 2011) (Figure 2—figure supplement 1). This analysis reveals 
that the majority (63.5%) of tested sequences are methylated similarly to their endogenous counter-
parts despite the fact that they only represent short sub-fragments of CGIs. Interestingly, the length of 
individual fragments did not appear to be critical for this autonomy. For example, elements as small as 

Figure 1. High throughput genome engineering methodology. (A) A pool of diverse DNA fragments is ligated into a plasmid that contains a set  
of inverted lox-P sites (triangles) and universal priming sequences (pink boxes) flanking the cloning site. After transformation in E. coli the library composi-
tion is determined by paired-end sequencing of the fragment boundaries. The plasmid library is inserted at the β-globin locus by Recombination 
Mediated Cassette Exchange (RMCE). Methylation of the fragments is determined by high throughput sequencing of the bisulphite PCR product 
produced using the universal primer sites. (B) Comparative distribution of methylation and densities of CG dinucleotides in the mouse genome. CGs of 
the mouse genome were classified based on local CG density and the average of their methylation status in mESC was plotted (blue line). The propor-
tion of single CGs within UCSC CGIs having a certain CG density are plotted as filled red line, revealing the spread of densities observed in umethylated 
islands. The average CG density of islands is also plotted (dashed red line), revealing the heterogeneity between islands. (C) Single locus example of 
unmethylated CG rich regions with heterogeneous CG density. (D) Application of the genome engineering methodology to test the sequence contribu-
tion to methylation states. Sequences of CG rich regions are fragmented into smaller entities and the ability of theses sub-fragments to acquire 
methylation is assayed.
DOI: 10.7554/eLife.04094.003
The following figure supplement is available for figure 1:

Figure supplement 1. Evaluation of the efficiency of the developed method. 
DOI: 10.7554/eLife.04094.004
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100 bp were found to be sufficient to establish an unmethylated state. However 40% of the inserted 
fragments gained methylation relative to their endogenous site. Surprisingly, this gain of methylation 
does not result in a completely hypermethylated state but covers a broad range in frequency from 
20–100% despite the fact that these fragments originate from regions devoid of methylation. Thus, 
dividing unmethylated regions into shorter entities transforms a methylation frequency that is mostly 
binary in the genome to a continuous variable. Having derived this observation from a large pool of 
sequences opens the possibility to infer quantitative relationships between sequence composition and 
resulting methylation.

We initially assayed how much dinucleotide frequency could explain the observed differential meth-
ylation patterns (Figure 2—figure supplement 2). In fact the frequency of CG explains only 14% of 
the observed variation (R = −0.37), suggesting that differences in CG density between fragments 
contribute to a certain extend to their differential methylation. A comparison of the average ectopic 
methylation for all fragments relative to their CG density reveals that at the upper end of CG densities 
(≥12CGs/100 bp) the inserted sequences tend to behave as the cognate endogenous sequence since 
they show little to no methylation (Figure 2D). Importantly however, at CG densities that are more 
representative for islands (Figure 2D, upper panel), the methylation of endogenous and inserted frag-
ments starts to significantly deviate. While some stay unmethylated, others gain methylation as indi-
cated by the spread of methylation levels. This trend of increased methylation over a wide range 
becomes stronger with reduced CG density (Figure 2D). Thus at very high frequencies, CGs appear 
sufficient to explain an unmethylated state of small fragments after insertion, while at lower densities 
numerous fragments of similar CG density show highly variable methylation.

Quantitative contribution of CG densities to methylation states
CGIs represent functional regulatory regions that are under selection for the presence of transcrip-
tion factor binding sites (Deaton and Bird, 2011; Jones, 2012). In order to ask how the presence or 
absence of such motifs affects the methylation after insertion, we next introduced libraries of sequences 
with different CG densities derived from the E. coli genome. This prokaryotic DNA is not under selec-
tion for binding sites for mammalian transcription factors, allowing us to measure the effect of CG 
density in an isolated context. The combination of two library designs, allowed us to measure a total 
of 183 prokaryotic sequences covering a broad range of CG densities. We compared their acquired 
methylation once inserted in the mouse genome in relation to their CG density (Figure 3A). Similar to 
the inserted mouse fragments the unmethylated state can be observed at the highest CG densities 
(≥12CG/100 bp) consistent with previous observations that CG density can also protect prokaryotic 
sequences from de novo methylation (Lienert et al., 2011). At a lower CG density however prokary-
otic sequences get readily methylated, as revealed by higher average methylation and a significantly 
reduced spread compared to mouse fragments with similar CG content (Figure 3A). Moreover, we 
observe a much stronger negative correlation between CG density and methylation for these frag-
ments than the mouse fragments (Figure 3—figure supplement 1, R = 0.65). The reduced spread and 
the high number of fragments that cover a broad range of CG densities and methylation states enable 
us to model the relationship between CG frequency and methylation quantitatively in a sequence 
context where the influence of TF sequence motifs is limited (Figure 3—figure supplement 2). We 
fitted a standard sigmoidal model, which accounts for the finite asymptotes inherent to methylation 
data (Figure 3B, see methods for complete description). The resulting graph properly describes the 
data (R2 = 0.51).

We refer to this as the CG only model derived from prokaryotic sequences and use it to predict the 
methylation state of mouse fragments (Figure 3C) and subsequently contrast it with the actual meas-
urement. By doing so we hope to subtract the effect of CG density on mouse fragments and further-
more isolate those that contain additional sequence cues that influence methylation. This comparison 
reveals that the ‘CG only’ model indeed has predictive power (Figure 3C, R = 0.38), however numerous 
mouse fragments are significantly less methylated than predicted based on their CG content, arguing 
that additional sequence cues contribute to their unmethylated state.

Contribution of transcription factor binding
Next we wanted to ask if transcription factor binding could explain differential behavior of fragments 
with similar CG density. As an indirect indicator of transcription factor binding, we annotated the pres-
ence of DNaseI hypersensitive (DHS) sites in mouse ESCs at the endogenous loci from which the 
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Figure 2. Systematic determination of the autonomy of DNA sequences to acquire DNA methylation patterns. (A) Comparison of methylation levels of 
inserted fragments with their methylation at endogenous locus (n = 394; grey transparent dots). Histograms depict the proportion of fragments in each 
area of the plot illustrating the prevalence of unmethylated regions within the library. A majority of these fragments maintain their state when inserted. 
Orange arrows indicate fragments displayed as single locus examples. (B–C) Examples of regions that loose or maintain their unmethyated status when 
inserted at the ectopic site. Single CG methylation levels for the same sequence are compared between endogenous (blue dots) and ectopic (red dots) 
context. Vertical lines show the boundaries of each fragment. Black box indicates UCSC CpG island definition. Black vertical bars depict the positions of 
CGs. (D) Comparison of methylation levels of DNA fragments between endogenous and ectopic context plotted against CG content. Center panel: data 
were binned according to the CG density of fragments and the distribution of endogenous (blue) and ectopic (grey) methylation within each bin is 
depicted in boxplots. Upper panel: Comparative distribution of the CG density in a 300 bp surrounding all CGs within (red) and outside (black) CpG 
islands throughout the genome illustrating that the vast majority of tested fragments have a CG density within the range observed at CGIs. Lower panel: 
statistical significance of the differences between endogenous and ectopic methylation for each CG density bin. p-values derived from a t test are 
displayed using the indicated color code for each bin.
DOI: 10.7554/eLife.04094.005
Figure 2. Continued on next page
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inserted fragments were derived (Supplementary file 1). Despite being predicted to be methylated 
based on their CG content, those fragments that are unmethylated indeed show significantly higher 
DHS enrichment (Figure 3C,D, Figure 3—figure supplement 2). In turn, this is compatible with the 
notion that TF binding motifs other than CG can contribute to the observed deviation from the CG 
only model.

To test this hypothesis we synthesized mutated sequences of mouse fragments that were identical 
in CG position and density but where all non-CG nucleotides are replaced by E. coli sequence in order 
to alter putative TF motifs. This assay was performed for fragments that we expect to have strong 
(Figures 3C–1) as well as weak (Figures 3C–2) protection based on their CG concentration. This 
reveals that those fragments for which we predict a minor role for CG density indeed display a strong 
shift in their methylation states while the ones where we predict CG density to have a major role only 
shift slightly. Thus the amplitude of methylation gain upon removal of TF binding sites is related to the 
CG density of the fragment, resembling the prediction from the CG only model (Figure 3E, R = 0.64). 
We conclude that in the absence of complex sequence motifs, methylation tends to approach the 
prediction of the ‘CG only’ model.

Next we asked whether insertion of TF binding motifs leads to reduced methylation in a CG rich 
context. We inserted both the perfect and the lowest score motif (with identical CG composition, see 
‘Materials and methods’ for details) for the well-studied TF REST in an E. coli fragment that we previ-
ously observed to be fully methylated (from Figure 3B). Insertion of the high score motif leads to a loss 
of methylation while the low score motif has no effect (Figure 3F). Thus as previously shown for CG 
poor regions (Stadler et al., 2011), protein binding at regions with high CG densities contributes to a 
spatially constrained reduction of the methylation acquired by the inserted fragment.

Taken together, these results suggest that mouse fragments derived from CG rich regions are 
maintained unmethylated by the combined action of two different mechanisms. This argues that while 
CG rich regions appear homogeneously unmethylated in the genome, they are maintained at this 
state by cumulative effects of CG density and sequence specific protein binding.

Modeling the relative importance of individual determinants
After assaying separately the contribution of CG dinucleotide frequency and the effect of TF binding, 
we tested the relative ability of each parameter to explain methylation patterns genome-wide. First we 
applied the ‘CG only’ model to predict methylation for all CGs in the genome (Figure 4A). Consistent 
with the results obtained with the inserted mouse fragments (Figure 3C), we found that considering 
only CG densities in the prediction overestimates the methylation levels for a large fraction of the CGs 
in the genome (Figure 4A, R2 = 0.47, Figure 4—figure supplement 1). This overestimation occurs 
not only at CG poor low methylated regions, for which a function of transcription factors in reducing 
local methylation has been shown but also at CG rich UMRs. Indeed >50% of CGs within UMRs show 
lower methylation than predicted by their CG density (Figure 4D). This confirms our observations 
made with individual fragments and further argues for the contribution of sequences motifs other than 
the CG dinucleotide.

Based on our previous finding of a general link between TF binding and hypomethylation of distal 
regulatory regions (LMRs) (Stadler et al., 2011) and our experiments with mutated mouse fragments 
described above, we hypothesized that the remaining variance could be caused by the binding of 
TFs. In order to account for this effect, we attempted to define the quantitative relationship between 
protein binding and methylation by creating models that integrate the presence of DHS to predict hypo-
methylated regions. Such model indeed outperforms and complements a CG based model (Figure 4B,C 
and Figure 4—figure supplement 1). It improves predictions for CGs residing in LMRs as well as UMRs 
(Figure 4D), which reinforces the idea that DNA binding factors significantly contribute to the exist-
ence of unmethylated states at CG rich regions. Combining CG and DHS into one model readily 

The following figure supplements are available for figure 2:

Figure supplement 1. Evaluation of the reproducibility of the developed method. 
DOI: 10.7554/eLife.04094.006

Figure supplement 2. Systematic analysis of the relationship between all dinucleotide frequency and methylation of the mouse fragments. 
DOI: 10.7554/eLife.04094.007

Figure 2. Continued
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Figure 3. Quantification and modeling of the influence of CG content on methylation levels. (A) Comparison of methylation level of inserted DNA 
fragments derived from mouse (grey) or prokaryotic (E. coli-purple) genomes plotted against their CG content. Data were binned according to the CG 
density of the fragments and the distribution of methylation within each bin is depicted in boxplots. Lower panel: statistical significance of the 
Figure 3. Continued on next page

http://dx.doi.org/10.7554/eLife.04094
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explains over two thirds (68% genome wide and 60% at CG rich regions) of the methylation variations 
observed in mESCs suggesting that CG density and TF binding are the major determinants of genomic 
methylation.

Similar modeling in different human methylomes (Xie et al., 2013) revealed that these regulatory 
principles apply similarly in other somatic cell types and organism (Figure 4—figure supplement 1). 
Thus information derived from inserting a large number of short sequences enables to model the 
methylation variation observed throughout mammalian genomes. It suggests that CG density and 
binding of proteins to more complex transcription factor motifs explain most regions with reduced 
methylation in the genome.

CG density defines methylation dynamics during cellular differentiation
Having established a predictive model consisting of two determinants to explain methylation states in 
mESCs, we wondered how effects driven by CG density or TF recruitments relate to the dynamics of 
DNA methylation observed during cellular differentiation. To do so, we compared the methylation 
prediction from the CG only model with the measured differences in methylation between murine 
stem cells and neuronal progenitors (NP). To better illustrate the influence of CG density on methylation 
changes, we contrasted CG rich unmethyated regions (UMRs) (Figure 5A), with CG poor low methylated 
regions (LMRs) (Figure 5B). As a whole CG rich regions show little variation between both cell states 
in line with continuous hypomethylation of CGIs during cellular differentiation. This is in contrast to CG 
poor regions that experience extensive methylations changes across cell lines (Figure 5B) (Stadler et al., 
2011). However, detailed analysis within CG rich regions (Figure 5A) identifies a subgroup of cytosines 
that show dynamics (primarily hypermethylation) in their methylation status during differentiation. 
Interestingly, cytosines that change their methylation status reside within fragments where a CG only 
model predicts a methylated state, and little changes are observed within regions where an unmethyl-
ated state is predicted (Figure 5A). Notably the observed increased methylation during differentiation 
approaches the methylation state as predicted by the CG only model (Figure 5A). One likely explanation 
is that the unmethylated state of these sites depends on binding of TFs that are present in stem cells 
but not in the neuronal progenitors. Indeed, motifs for stem cell or neuron specific TFs are enriched 
around differentially methylated CGs (Figure 5A, Figure 5—figure supplement 2). For example we 
observe a methylation increase in neuronal progenitors within CG rich regions at binding sites of the 
stem cell specific pluripotency factor Oct4 (Pou5f1), while regions bound by factors expressed in both 
cell types such as REST do not change their status (Figure 5C,D). This effect is reminiscent of the effect 
of sequence mutations that abolish TF recruitment within individual fragments shown above, resulting 
in increased methylation that follows the CG-only model (Figure 3D). We conclude that variation in 
DNA methylation within subparts of islands is a function of TF binding and local CG density.

differences between E. coli and mouse methylation for each CG density bin. p-values derived from a t test are displayed using the indicated color code 
for each bin. (B) Average DNA methylation levels acquired by E. coli DNA fragments relative to their CG density (n = 183). The methylation state of  
E. coli derived fragments is anti-correlated to its CG density. The dashed red line represents the sigmoidal model fitted to the data (Coefficient of 
determination of the sigmoidal fit is displayed R2 = −0.51). (C) Comparison of the CG density based prediction and the observed methylation levels for 
the mouse fragments (Pearson correlation R = 0.38). The red color scale depicts the DHS signal within the fragments in their endogenous context. The 
two boxes show subsets used for selecting fragments to be mutated. (D) Boxplot comparing the endogenous DHS signal (log2 of the counts) for 
fragments predicted to be methylated by the CG based model and observed either unmethylated (left) or methylated (right) when inserted ectopically. 
The difference observed between the two groups is significant as indicated by the p-value derived from a t test. (E) Comparison of the methylation of 
mouse fragments to their mutated versions in which all non-CG positions were substituted by E. coli sequence. Boxplots for each predicted category 
were plotted separately for WT (grey) and mutated sequences (purple). Dots representing the methylation values for individual fragments were overlaid. 
Pearson correlation between the predicted value and the E. coli transformed is R = 0.64. p-value derived from a t test as a measure of statistical significance 
of the observed differences is displayed. (F) Evaluation of the effect of protein binding to methylation by insertion of a REST perfect motif (red dots), or 
the lowest score randomization motif (black dots) in the middle of one of the CG rich E. coli fragment previously found to be fully methylated.
DOI: 10.7554/eLife.04094.008
The following figure supplements are available for figure 3:

Figure supplement 1. Systematic analysis of the relationship between all dinucleotide frequency and methylation of the E.coli fragments. 
DOI: 10.7554/eLife.04094.009

Figure supplement 2. Estimation of the influence of transcription factor motifs within the tested sequences. 
DOI: 10.7554/eLife.04094.010

Figure 3. Continued
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To further explore the relationship between differential protein binding and methylation differences 
within islands, we compared dynamics in methylation and DHS formation using an existing dataset of 
human ES cells and differentiated neuronal progenitors (Xie et al., 2013). We observe that the meth-
ylation changes are tightly anti-correlated to DHS changes at CG poor regions (Figure 5E). However, 
when DHS changes of similar amplitude are detected at higher CG densities, methylation levels do 
not change. This suggests that methylation levels at these regions are independent from the binding 
of TFs, and that a CG dependent mechanism is sufficient to explain their methylation.

These data are consistent with the model that TF binding contributes to the unmethylated state 
at CG poorer regions within CGIs, while TF binding is non-essential within highly CG rich regions of 
islands. We observe that, unlike the TF driven effect, the CG dependent effect is remarkably stable 

Figure 4. Genome wide modeling of the methylation levels combining CG density prediction and DNase 
hypersensitivity data. (A) Comparison of CG density based prediction and observed methylation levels in mouse 
ESC throughout the genome. Methylation is predicted using the model derived from the E. coli fragments. CG 
density is calculated in a 300 bp window around each CG in the mouse genome. The predicted value is compared 
to measured methylation at the single CG level in mESC. The reference line is shown in black. (B) Similar compari-
son of measured methylation at the single CG level genome wide in mESC but using a prediction model combin-
ing CG density and DHS. (C) Barplot comparing the explained variance by the CG only based model (CG) and the 
model using DHS data either alone (DHS) or in combination with CG density prediction (CG + DHS). (D) Proportion 
of CGs predicted accurately for each model relative to their genomic context. The prediction of each model was 
compared to methylation as measured by bisulfite sequencing and prediction accuracy was quantified (with a 
precision of 20% methylation). The barplot illustrates the improvement gained by each variable used in the 
modeling. It shows that the combination of CG density and DHS is particularly important to accurately predict 
methylation at CG rich regions.
DOI: 10.7554/eLife.04094.011
The following figure supplement is available for figure 4:

Figure supplement 1. Performance evaluation of the derived models. 
DOI: 10.7554/eLife.04094.012
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Figure 5. CG concentration restricts the amplitude of methylation changes during cellular differentiation. (A–B) 
Methylation gain during differentiation reaches a maximum that can be predicted by the local CG density of the 
region. CG density based prediction is plotted against the methylation difference between stem cells (ES) and neuronal 
Figure 5. Continued on next page

http://dx.doi.org/10.7554/eLife.04094
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across cell types. One potential explanation is that the responsible trans-acting factors are widely 
expressed, as it is the case for some of the CXXC domain containing proteins, which are bona fide 
CG binders (Long et al., 2013a). A direct consequence of this observation is that within islands, a 
subset of CGs embedded in short CG dense patches are unmethylated regardless of the binding by 
TFs in their neighborhood (Figure 5—figure supplement 1). Importantly however, these patches are 
not essential to form unmethylated regions, as they are absent in 50% of all CGIs (Figure 5—figure 
supplement 1) and only contain 30% of all CGs within islands. They further do not show any partic-
ular positioning pattern within islands (Figure 5—figure supplement 1). This suggests that for the 
majority of CGs (67.5%) within islands TF binding could contribute to their unmethylated state.

Cancer related hypermethylation is not restricted by CG density
Our data suggest that methylation dynamics observed within islands during differentiation are mostly 
the result of changes in the binding profiles of transcription factors. Additionally, we observed that the 
local concentration of CGs restricts the amplitude of these TF driven changes. Aberrant methylation, 
including hyper-methylation of CGIs is an established hallmark of cancer (Baylin and Jones, 2011). 
Since the origin and the regulation of these changes during transformation are largely unknown, we 
wondered how these changes relate to our model.

To this end, we contrasted the methylation gain at UMRs between human stem cells (hES) and nor-
mal colon cells and between normal colon and related cancer cells (Berman et al., 2012). This reveals 
that normal colon cells show methylation changes that follow our model, while colon cancer cells dis-
play a distinct hyper-methylation phenotype (Figure 5F,G). We observe a significant gain in methyla-
tion even at CGs that are constitutively unmethylated in normal tissues due to their high CG density 
(Figure 5F,G). Interestingly, the same is observed when comparing a large set of healthy tissues and 
cancer types arguing that this is not unique to colon cancers (Figure 5—figure supplement 3). This 
argues that cancer hyper-methylation at islands is mechanistically distinct as it cannot be modeled with 
the same local determinant that describe methylation changes during normal development. Since 

progenitors (NP) for CGs located within stem cells (A) CG rich unmethylated regions (UMRs) or (B) low methylated 
regions (LMRs). Black dots represent the 99th percentile of the changes observed, as a proxy of the maximal amplitude 
of changes observed at a given CG density. TF motif enrichments were calculated around the most changing CGs and 
heatmaps depicting the expression changes for the top enriched motifs were plotted. This reveals enrichment for 
pluripotency factor motifs next to the hypermethylated CGs and of neuronal specific factors in the surroundings of 
hypomethyayed CGs. (C) A gain of methylation is observed at Oct4 binding sites within CG rich regions during 
differentiation. Composite plot depicting the average DNA methylation around Oct4 (upper panel) and REST 
(lower panel) binding sites at CG rich-UMRs. The red doted line represent methylation averages in embryonic stem cells 
(ES). The blue doted line represent methylation averages in neuronal progenitors (NP), where Oct4 is not expressed, 
while REST is expressed in both cell types. (D) Single locus example of a CG rich region that changes methylation status 
during differentiation, and which contains a binding site for Oct4. Lower density track represent Oct4 binding as 
measured by ChIP-seq (E) Methylation changes coincide with changes in DHS but the amplitude of change is limited by 
CG density. CGs present at UMRs were classified based on the CG density of their surroundings (x-axis) and the 
amplitude of DHS changes from ES to NP (box plot color correspond to log2(delta DHS)). The distribution of methyla-
tion changes (y-axes) is depicted by a box plot for each category (methylation difference %). The figure illustrates that 
DHS changes correlate with methylation changes, this correlation is lost at very CG rich stretches. (F–G) Cancer related 
hypermethylation is not restricted by CG density. CG density based prediction is plotted against methylation differences 
between (F) hES cells and normal colon, (G) normal colon and cancer colon for CGs located within hES CG rich 
unmethylated regions. Black dots represent the 99th percentile of the changes observed.
DOI: 10.7554/eLife.04094.013
The following figure supplements are available for figure 5:

Figure supplement 1. Characterization of the sub-regions within CpG islands that are independent from transcrip-
tion factors for being unmethylated. 
DOI: 10.7554/eLife.04094.014

Figure supplement 2. Motif enrichment analysis at differentially methylated regions within CpG islands. 
DOI: 10.7554/eLife.04094.015

Figure supplement 3. Hypermethylation at CGs with low predicted methylation is a widespread and specific mark of 
cancer. 
DOI: 10.7554/eLife.04094.016

Figure 5. Continued
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both CG driven and TF mediated effects are affected this can unlikely be explained by alterations in 
transcription factor binding patterns.

Discussion
In this study, we report a high-throughput genome engineering protocol and demonstrate its potential 
to determine the contribution of DNA sequence to the establishment of epigenetic states. We estab-
lish that DNA insertions at a given locus in mammalian genomes through RMCE can be performed 
with high complexity DNA libraries, opening the possibility to dissect regulatory mechanisms such 
as the ones that govern the establishment of DNA methylation patterns. In principle this approach can 
be adapted for any genomic readout (e.g. transcription or replication) in order to understand the inter-
play between multiple regulatory layers that function in cis. It further circumvents the limitations of 
previously used transient transfections (Melnikov et al., 2012; Patwardhan et al., 2012; Sharon et 
al., 2012; Arnold et al., 2013), which lack a proper chromosomal context and are not controlled for 
amount of sequence variants per cell and their copy number.

We measured the ability of several thousand DNA sequence variants to acquire DNA methylation 
in mouse embryonic stem cells. The specific design and scale of the tested libraries enabled us to gain 
insights into the sequence determinants that drive the establishment of unmethylated states at CG 
rich regions and to build predictive models based on these methylation measurements and the under-
lying DNA sequence characteristics.

One of our key findings is the quantification of the effect of CG density on methylation states. 
Surprisingly, while we confirm that CG density is sufficient to create an unmethylated state, only every 
second island harbors sequence stretches above that threshold (Figure 5—figure supplement 1). 
Combined, these CG rich stretches only cover 30% of the total number of CGs that reside in islands. 
Mechanistically, it remains to be determined how CG richness drives unmethylated states, yet several 
scenarios are compatible with our observations. Proteins that specifically recognize unmethylated CG 
via a CXXC domain could antagonize de novo DNA methylation as previously proposed (Long et al., 
2013a). Alternatively, presence of dinucleotide concentrations such as CG stretches could alter nucle-
osomal organization (Brogaard et al., 2012; Struhl and Segal, 2013) and thereby impact DNA meth-
ylation. Since, transcription factors and CG richness can both impact nucleosome positioning (Struhl 
and Segal, 2013), it is tempting to speculate that nucleosome depletion could be a unifying principle 
underlying the formation of unmethylated regions.

Our data suggest that a key driver of hypomethylated states is the local binding of transcription fac-
tors. Others and we have recently shown that TF binding creates reduced methylation at CG poor regu-
latory regions such as tissue specific enhancers (Hodges et al., 2011; Stadler et al., 2011), a finding that 
extends to CG rich regions. Their methylation however is less dynamic during cellular differentiation 
since most CGIs are constitutively active as promoters of housekeeping genes. Moreover the effect 
driven by CG density is stable across cell types restricting the amplitude of the changes. Our data argue 
that the higher the CG content, the lower the TF dependent changes in methylation and vice versa.

This scenario explains mechanistically why unmethylated regions frequently extend beyond CGI 
definitions (Hodges et al., 2011; Molaro et al., 2011; Long et al., 2013b) and predict that the meth-
ylation changes at borders of CG rich regions (also referred to as CGI shores (Doi et al., 2009)) are a 
function of TF binding. Importantly however the observed variability in methylation is not restricted to 
any particular location within CGIs but is only defined by local CG frequency. We believe it is important 
to account for this property when studying differential methylation patterns.

We identified a striking contrast in the type of CGs affected by methylation changes within CG rich 
regions during normal differentiation vs those that occur during transformation to a cancerous state. 
Notably it is not individual cytosines that are predictive for cancer, as these vary widely between types, 
but it is rather the class of CGs affected as defined by our CG density model. While the nature of this pre-
dictive difference remains unknown, we note that unlike methylation changes occurring during normal 
cellular changes, the loss of TF binding is unlikely to explain the observed differences. Hypermethylation 
in cancer particularly targets CGIs that control genes that are inactive (Gebhard et al., 2010; Berman 
et al., 2012; Sproul et al., 2012). Moreover, the study of cancer methylomes revealed that hyper-
methylated CGIs were embedded within larger domains of intermediate methylation (Partially 
Methylated Domains–PMDs) (Hansen et al., 2011; Berman et al., 2012). If CGI methylation changes 
within PMD's are a general phenomenon it might indicate that the observed changes at CGIs in cancer 
reflect the loss of the local sequence autonomy in determining correct DNA methylation.

http://dx.doi.org/10.7554/eLife.04094
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The observation that TF binding contributes substantially to hypomethylation at CGIs has potential 
implications for their evolutionary origin as it is compatible with the idea that the emergence of CG 
rich regions could have occurred indirectly through TF-driven demethylation and resulting reduced 
C to T transition. This is in line with reports of limited positive selection for the CG content of islands 
(Cohen et al., 2011; Molaro et al., 2011) and that nucleotide composition including CG frequencies 
vary substantially between unmethylated regions across vertebrates (Long et al., 2013b). Thus our 
findings support the notion that CGIs arose as an evolutionary footprint of ancient regulatory regions. 
Such scenario is still compatible with a subsequent specialization of proteins such as CFP1 or KDM2A 
to recognize unmethylated CGs by CXXC domains in order to target chromatin processes to regula-
tory regions (Blackledge et al., 2010; Thomson et al., 2010).

Materials and methods
Library cloning
For targeted insertion, DNA libraries were cloned into a plasmid containing a multiple cloning site 
flanked by priming regions for a pair of universal primers and two inverted L1 Lox sites (pL1-LPP1-1L).

For constructing the mouse primary libraries, a set of enzymes was selected on the basis of a screen 
of all available CG methyl-sensitive enzymes (NEB - Ipswich, MA). An in silico digest of the mouse 
genome was performed masking all methylated regions in ESCs (Stadler et al., 2011), and multiple 
size selection were tested to optimize the enrichment in CG rich unmethylated regions and the number 
of unique fragments isolated. Three enzymes (NarI, BstUI, BssHII) were selected on the prediction that 
they would produce a complex library (>1000 fragments) of which over 80% of the fragments would 
overlap with CGIs.

100 μg of mES cells gDNA (background: ES 129S6/SvEvTac) was digested and resulting frag-
mented DNA was size selected (100–600 bp) on a 1% agarose gel. The isolated DNA inserts were 
directly cloned in the receiving vector (L1-LPP1-L1). The plasmid pool was transformed and amplified 
in XL1-competent cells. Library complexity was estimated based on size diversity of colony PCR prod-
ucts prior composition determination by sequencing.

For prokaryotic libraries, a similar approach was employed, digesting E. coli DNA (NC_010473.1) 
with MspI and size selecting fragments (100–600 bp). Additionally, to be able to cover the lower 
and higher extremes of CG densities in a focused library, a PCR based library was cloned. 96 pairs of 
primers were in silico designed to target these regions. After PCR amplification, the products were 
pooled and cloned in the receiving vector.

For synthetic libraries, the sequence was designed in silico, custom synthesized, sequence verified 
(IDTechnologies, Coralville, IA or GeneArt, Life Technologies, Carlsbad, CA) and cloned in the receiving 
vector.

Library insertion
The Recombinase-mediated Cassette Exchange (RMCE) insertion protocol (Feng et al., 1999; Lienert 
et al., 2011) was refined in order to scale the needs of inserting large number of fragments in parallel. 
Briefly, TC-1 ES cells were selected under hygromycin (250 μg/ml, Roche, Switzerland) for 10 days. 
Next, 12 × 106 cells were electroporated (Amaxa nucleofection, Lonza, Switzerland) with 75 μg of 
L1-library-1L plasmid and 45 μg of pIC-Cre. Negative selection with 3 μM Ganciclovir (Roche, 
Switzerland) was started 2 days after transfection and continued for 10 days. Pools of selected cells 
were tested for successful insertion of DNA libraries by PCR using primers recognizing the universal 
priming region flanking the insertion site.

Determination of the composition of libraries
Direct sequencing of the fragments ends by paired end sequencing was used to determine the sequence 
composition of the DNA libraries derived by restriction digest of the mouse and prokaryotic genomes. 
To this end, the library containing plasmids were used as a template for 15 cycles of PCR using the uni-
versal set of primers flanking the fragment insertion site. The purified product was then used for standard 
Illumina library preparation and sequenced on a MiSeq instrument (Illumina, San Diego, CA).

Reads were aligned against the corresponding reference genome using Bowtie (Langmead et al., 
2009) and fragments identity was called using read pairing information. A reference set of regions was 
established where only fragments without overlaps within the library were retained (to avoid ambig-
uous read assignments during methylation call of sonicated material).

http://dx.doi.org/10.7554/eLife.04094
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Insertion rate determination
A similar procedure than above was used to call genomic insertion rates. PCR was performed with 
primers annealing to the non bisulfite-converted DNA (5′-CCAACCTGACTGTGGTGGACAA-3; 
5′-ACATGCACCTTCCCAGGGC-3′). The product was sonicated, gel purified and a sequencing library 
was prepared.

Synthetic fragments design
Generation of sequence mutants of the mouse fragments: Fragments were selected based on their 
high (>40%) or low (<20%) predicted methylation according to their CG density. For each fragment 
all non CG positions of the sequence were replaced using a non CG containing stretch of DNA from 
E. coli as a template.

Generation of TF motif insertions: The receiving cassette was derived from an E. coli fragment 
observed to be methylated in the E. coli library with a CG density typical for CGI. A BamHI-XbaI 
entry site was in silico inserted in the middle of the fragment and fragment was synthetized. REST 
position weight matrix was extracted from the JASPAR database (Portales-Casamar et al., 2010) 
and was used to derive the best score motif (most frequent base at each position of the PWM–
GACTTTCAGCACCATGGACAGCGCCACTG); and the lowest score motif (lowest score randomized 
motif with identical base composition and CG content–CCTCAGGTTGGCACACCTCTAAGAGCCGA). 
These sequences were used to synthetize pairs of oligonucleotides with flanking 5′and 3′sequences 
to form sticky ends for BamHI, XbaI respectively (CTAG-5′; 3′-GATC). Oligonucleotides were annealed 
and cloned into the receiving cassette.

Methylation profiling
Genomic DNA (2 μg) of ES cells carrying the libraries was bisulfite converted with the EpiTec 
Bisulfite Kit (QIAGEN, Germantown, MD). Libraries were amplified by PCR (AmpliTaq Gold Life 
Technologies, Carlsbad, CA) using bisulfite compatible primers (5′-AACCTAACTATAATAAACAACC-3′; 
5′-GGTATATGTATTTTTTTAGGGT-3′) annealing to the universal priming region flanking the fragments 
cloning site. The PCR product was gel purified and fragmented by sonication (Covaris S220, Woburn, 
MA). The sonicated material was used to construct sequencing libraries following Illumina's recom-
mendations. Samples were sequenced as barcoded pools on Illumina GAII or MiSeq instruments.

Data-processing
Bismark/Bowtie 0.12.7 (Langmead et al., 2009; Krueger and Andrews, 2011) were used to align 
bisulfite reads against an in silico converted reference genome (C > T and G > A) and call methylation 
state for each CG. Only CGs covered by at least 10 reads were used for analysis. Strain specific SNPs 
were masked. Methylation was called per CG and fragment averages were derived using the previ-
ously established reference set of regions for the library. Only fragments where >50% of the CG and a 
minimum of four CGs were covered were considered in the analysis.

Bowtie 0.12.7 was used for aligning the non-bisulfite reads from native PCR experiments used to 
call insertion rates. Fragments were called inserted when >50% of the fragment sequenced was cov-
ered by the reads.

Modeling
Data modeling was conducted stepwise by first integrating information from prokaryotic insertions, 
and then combining it with mouse genomic data.

For CG content analysis, only fragments ≥250 bp were considered in order to avoid scoring insta-
bility while size normalizing low CG counts. A sigmoidal model was fitted to the prokaryotic data 
describing the relationship of methylation to CG density at the level of fragments averages.

b x c
y

e– ( – )

100
=

1+  

Both higher and lower asymptotes were fixed prior model fitting (100% and 0% methylation) since 
these are known in the case of DNA methylation data. The best-fit model was then retained (b = −0.337, 
c = 6.917). Note that a linear model was also tested and performed equally well on the linear part of 
the data, however the sigmoidal model out performs it to describe both the lower and higher ends of 
CG densities.
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Coefficients derived from this model fitted on the prokaryotic data were then used to predict meth-
ylation of (1) the mouse fragments (2) all CGs genome wide (considering a 300 bp window around 
each CG for CG density calculation).

In the second step of modeling, a linear model was used to combine the prokaryotic based model 
and transcription factor binding information as measured by DNAse-seq. The model inputs were the 
single CG mESC methylation levels, prediction of methylation for each CG of the genome based on 
the prokaryotic model and DNAse-cuts collected in a 300 bp window surrounding the CG. Prior to 
regression, DNAse-seq data were pre-processed to remove outliers and categorize the data. Fitting of 
the models were conducted on two chromosomes and performance was assessed on the rest of the 
genome using R-squared values.

For the analysis of methylation dynamics, segments (UMR, LMR, FMR, PMDs) were called using 
MethylSeekR (Burger et al., 2013) in the different cell types. Then single CG average methylation was 
compared between the two cell types in each segment type.
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Major dataset

The following dataset was generated:

Author(s) Year Dataset title Dataset ID and/or URL

Database, license, 
and accessibility 
information

Schuebeler D, Krebs A 2013 Identification of building  
principles of methylation  
states at CG rich regions  
by high-throughput editing  
of a mammalian genome

GSE51170; http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi? 
acc=GSE51170

Publicly available 
at GEO (http://
www.ncbi.nlm.nih.
gov/geo/).
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