Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid

  1. Ke Peng
  2. Walter Muranyi
  3. Bärbel Glass
  4. Vibor Laketa
  5. Stephen R Yant
  6. Luong Tsai
  7. Tomas Cihlar
  8. Barbara Müller
  9. Hans-Georg Kräusslich  Is a corresponding author
  1. Heidelberg University, Germany
  2. German Center for Infection Research, Germany
  3. Gilead Sciences Inc., United States
  4. University Heidelberg, Germany

Abstract

The steps from HIV-1 cytoplasmic entry until integration of the reverse transcribed genome are currently enigmatic. They occur in ill-defined reverse-transcription- and pre-integration-complexes (RTC, PIC) with various host and viral proteins implicated. Here, we report quantitative detection of functional RTC/PIC by labeling nascent DNA combined with detection of viral integrase. We show that the viral capsid (CA) protein remains associated with cytoplasmic RTC/PIC, but is lost on nuclear PIC in a HeLa-derived cell line. In contrast, nuclear PIC were almost always CA-positive in primary human macrophages, indicating nuclear import of capsids or capsid-like structures. We further show that the CA-targeted inhibitor PF74 exhibits a bimodal mechanism, blocking RTC/PIC association with the host factor CPSF6 and nuclear entry at low, and abrogating reverse transcription at high concentrations. The newly developed system is ideally suited for studying retroviral post-entry events and the roles of host factors including DNA sensors and signaling molecules.

Article and author information

Author details

  1. Ke Peng

    Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Walter Muranyi

    Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Bärbel Glass

    Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Vibor Laketa

    Partner site Heidelberg, German Center for Infection Research, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen R Yant

    Gilead Sciences Inc., Foster City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luong Tsai

    Gilead Sciences Inc., Foster City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tomas Cihlar

    Gilead Sciences Inc., Foster City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Barbara Müller

    Department of Infectious Diseases, Virology, University Heidelberg, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Hans-Georg Kräusslich

    Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
    For correspondence
    hans-georg.kraeusslich@med.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Peng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,701
    views
  • 619
    downloads
  • 144
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ke Peng
  2. Walter Muranyi
  3. Bärbel Glass
  4. Vibor Laketa
  5. Stephen R Yant
  6. Luong Tsai
  7. Tomas Cihlar
  8. Barbara Müller
  9. Hans-Georg Kräusslich
(2014)
Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid
eLife 3:e04114.
https://doi.org/10.7554/eLife.04114

Share this article

https://doi.org/10.7554/eLife.04114

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.

    1. Microbiology and Infectious Disease
    Linkang Wang, Haiyan Wang ... Ping Qian
    Research Article

    Bacillus velezensis is a species of Bacillus that has been widely investigated because of its broad-spectrum antimicrobial activity. However, most studies on B. velezensis have focused on the biocontrol of plant diseases, with few reports on antagonizing Salmonella Typhimurium infections. In this investigation, it was discovered that B. velezensis HBXN2020, which was isolated from healthy black pigs, possessed strong anti-stress and broad-spectrum antibacterial activity. Importantly, B. velezensis HBXN2020 did not cause any adverse side effects in mice when administered at various doses (1×107, 1×108, and 1×109 CFU) for 14 days. Supplementing B. velezensis HBXN2020 spores, either as a curative or preventive measure, dramatically reduced the levels of S. Typhimurium ATCC14028 in the mice’s feces, ileum, cecum, and colon, as well as the disease activity index (DAI), in a model of infection caused by this pathogen in mice. Additionally, supplementing B. velezensis HBXN2020 spores significantly regulated cytokine levels (Tnfa, Il1b, Il6, and Il10) and maintained the expression of tight junction proteins and mucin protein. Most importantly, adding B. velezensis HBXN2020 spores to the colonic microbiota improved its stability and increased the amount of beneficial bacteria (Lactobacillus and Akkermansia). All together, B. velezensis HBXN2020 can improve intestinal microbiota stability and barrier integrity and reduce inflammation to help treat infection by S. Typhimurium.