Phage Predation: Killing the killers
Bacteriophages are viruses that prey on bacteria. Also known as phages, they can multiply very quickly—hundreds of new viruses can be produced in a single infected bacterium in less than 30 minutes. However, relatively little is known about the impact of phage predation on human-associated bacteria in general, and even less on bacterial pathogens. Now, in eLife, Andrew Camilli of Tufts University School of Medicine and co-workers in Canada, Haiti and the United States, provide molecular evidence that phages prey on a bacterial pathogen during the course of an infection in humans (Seed et al., 2014).
Vibrio cholerae is the bacterium responsible for cholera. After being ingested, typically by drinking contaminated water, it multiplies in the digestive tract where it releases a toxin. This toxin causes profuse and watery diarrhoea, dehydration and death in 50% of cases if rehydration therapy is not administered.
In the delta region of the river Ganges in Bangladesh and India, cholera epidemics occur every year, and follow regular seasonal cycles. It has been proposed that this seasonal variation might be partly related to phages preying on the V. cholera bacteria—as the so-called vibriophages are most common in environmental waters at the end of the cholera season (Faruque et al., 2005a, 2005b).
Camilli and co-workers—including Kimberley Seed as the first author—report molecular data that indicate that vibriophages may preferentially prey on bacteria in the digestive tract of patients with cholera, rather than in environmental waters (Seed et al., 2014). Seed et al. looked at stool samples from two cholera patients (one from Haiti, one from Bangladesh) who had high viral loads of a type of vibriophage called ICP2. In each sample, they discovered that some of the bacteria were resistant to the phage, while the rest were sensitive to it. Then, Seed et al. sequenced the whole genomes of bacterial clones and discovered that the only differences between the phage-resistant and phage-sensitive isolates in each patient were clustered into a single gene. However, a different bacterial gene was mutated in each patient. Several different mutants of each gene were found. This strongly suggests that these mutations occurred, and were then selected for, in bacteria in the patient during the infection.
In the Haitian patient, almost all (> 99%) of the bacteria isolated were resistant to the phage; and, of the phage-resistant bacteria tested, all had one of six different mutations in a single gene called ompU. The OmpU protein forms a pore in the bacteria’s outer membrane to enable nutrients to be imported into the cell. The bacteria need this protein for their survival both in human hosts and in environmental waters. Since the OmpU mutants are resistant to phage attack, Seed et al.’s findings indicate that the OmpU protein is also used by the vibriophage ICP2 to infect the bacterial cells (i.e. it is also the ‘receptor’ for the ICP2 phage).
Seed et al. show that the selection of OmpU mutants by ICP2 vibriophages is not restricted to this isolated case. Out of a collection of 54 clinical isolates of V. cholerae collected in Bangladesh between 2001 and 2011, 15% have similar phage-resistant mutations in the ompU gene. Seed et al. also found that the changes in the OmpU protein were all in parts of the protein that are exposed on the outside of the bacterial cell; and importantly, that they had very little effect on the fitness of V. cholerae in a range of tests. This is reminiscent of the relationship between the bacterium E. coli and the phage lambda, where mutations in a surface protein can make the bacteria resistant to phage attack. These mutations also occur in a surface-exposed part of the protein and do not affect the other functions of this protein (Gehring et al., 1987; Hofnung, 1995). However, the E. coli/phage lambda studies were performed in the laboratory, whereas this V. cholerae study appears to be the first report that suggests a predator-prey relationship between phage and bacteria in the human intestine.
In the stool sample from the Bangladeshi patient, 22% of bacterial isolates were resistant to the ICP2 phage; and Seed et al. identified four different genetic changes that made the bacteria able to resist this phage attack. All of these mutations were in a gene called toxR, which encodes a protein that regulates the expression of numerous genes, including ompU. Since these ToxR mutants do not produce the phage’s receptor—the OmpU protein—this confers resistance to phage attack. However, the ToxR protein also regulates genes that control the virulence of the bacteria, and the ToxR mutants were unable to start new infections in an animal model of cholera. Therefore, in contrast with the OmpU mutants, it is more difficult to unambiguously assign the selection of ToxR mutants as resulting solely from defending against phage attack. Instead the selection of these non-infectious mutants could also be explained by such mutations making it ‘cheaper’ for these bacteria to grow in the digestive tract at the expense of the virulent clones.
Although it is perhaps counterintuitive, mutations that reduce virulence can have a selective advantage during an infection (Diard et al., 2013). Expressing so-called virulence proteins or factors is costly for an individual bacterium, and mutants that stop making these factors can, therefore, benefit at the expense of other bacteria that continue to do so. This advantage, however, is only short-lived as these less virulent mutants are unable to start new infections themselves. Regardless of the precise mechanism, the selection for the non-infectious ToxR mutants observed by Seed et al. suggests that phage predation may have contributed to the collapse of the infection and the selection of less virulent strains.
Finally, the results of Seed et al., together with the previous work by other groups that it builds on, highlight the important role that phages can play in shaping V. cholerae populations. These findings firmly place these viruses as an important ‘third’ party that must also be considered when trying to understand host–pathogen interactions.
References
-
Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phageProceedings of the National Academy of Sciences of USA 102:6119–6124.https://doi.org/10.1073/pnas.0502069102
-
Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phagesProceedings of the National Academy of Sciences of USA 102:1702–1707.https://doi.org/10.1073/pnas.0408992102
-
Bacteriophage lambda receptor site on the Escherichia coli K-12 LamB proteinJournal of Bacteriology 169:2103–2106.
Article and author information
Author details
Publication history
Copyright
© 2014, De Paepe and Petit
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,094
- views
-
- 82
- downloads
-
- 3
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Ecology
- Microbiology and Infectious Disease
Interspecies interactions involving direct competition via bacteriocin production play a vital role in shaping ecological dynamics within microbial ecosystems. For instance, the ribosomally produced siderophore bacteriocins, known as class IIb microcins, affect the colonization of host-associated pathogenic Enterobacteriaceae species. Notably, to date, only five of these antimicrobials have been identified, all derived from specific Escherichia coli and Klebsiella pneumoniae strains. We hypothesized that class IIb microcin production extends beyond these specific compounds and organisms. With a customized informatics-driven approach, screening bacterial genomes in public databases with BLAST and manual curation, we have discovered 12 previously unknown class IIb microcins in seven additional Enterobacteriaceae species, encompassing phytopathogens and environmental isolates. We introduce three novel clades of microcins (MccW, MccX, and MccZ), while also identifying eight new variants of the five known class IIb microcins. To validate their antimicrobial potential, we heterologously expressed these microcins in E. coli and demonstrated efficacy against a variety of bacterial isolates, including plant pathogens from the genera Brenneria, Gibbsiella, and Rahnella. Two newly discovered microcins exhibit activity against Gram-negative ESKAPE pathogens, i.e., Acinetobacter baumannii or Pseudomonas aeruginosa, providing the first evidence that class IIb microcins can target bacteria outside of the Enterobacteriaceae family. This study underscores that class IIb microcin genes are more prevalent in the microbial world than previously recognized and that synthetic hybrid microcins can be a viable tool to target clinically relevant drug-resistant pathogens. Our findings hold significant promise for the development of innovative engineered live biotherapeutic products tailored to combat these resilient bacteria.
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.