1. Neuroscience
Download icon

Synaptic plasticity and cognitive function are disrupted in the absence of Lrp4

  1. Andrea M Gomez
  2. Robert C Froemke
  3. Steven J Burden  Is a corresponding author
  1. Skirball Institute of Biomolecular Medicine, NYU Medical Center, United States
Research Article
  • Cited 16
  • Views 2,219
  • Annotations
Cite this article as: eLife 2014;3:e04287 doi: 10.7554/eLife.04287

Abstract

Lrp4, the muscle receptor for neuronal Agrin, is expressed in the hippocampus and areas involved in cognition. The function of Lrp4 in the brain, however, is unknown, as Lrp4-/- mice fail to form neuromuscular synapses and die at birth. Lrp4-/- mice, rescued for Lrp4 expression selectively in muscle, survive into adulthood and showed profound deficits in cognitive tasks that assess learning and memory. To learn whether synapses form and function aberrantly, we used electrophysiological and anatomical methods to study hippocampal CA3-CA1 synapses. In the absence of Lrp4, the organization of the hippocampus appeared normal, but the frequency of spontaneous release events and spine density on primary apical dendrites were reduced. CA3 input was unable to adequately depolarize CA1 neurons to induce long-term-potentiation. Our studies demonstrate a role for Lrp4 in hippocampal function and suggest that patients with mutations in Lrp4 or autoantibodies to Lrp4 should be evaluated for neurological deficits.

Article and author information

Author details

  1. Andrea M Gomez

    Skirball Institute of Biomolecular Medicine, NYU Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Robert C Froemke

    Skirball Institute of Biomolecular Medicine, NYU Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Steven J Burden

    Skirball Institute of Biomolecular Medicine, NYU Medical Center, New York, United States
    For correspondence
    steve.burden@med.nyu.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All procedures were approved by the New York University School of Medicine Institutional Animal Care and Use Committee (Protocol 140406-01).

Reviewing Editor

  1. Christian Rosenmund, Charité-Universitätsmedizin Berlin, Germany

Publication history

  1. Received: August 10, 2014
  2. Accepted: November 19, 2014
  3. Accepted Manuscript published: November 19, 2014 (version 1)
  4. Version of Record published: December 15, 2014 (version 2)

Copyright

© 2014, Gomez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,219
    Page views
  • 330
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    James M Murray
    Research Article
    1. Neuroscience
    Ting Zhang et al.
    Research Article Updated