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Abstract Vascular remodeling under conditions of growth or exercise, or during recovery from

arterial restriction or blockage is essential for health, but mechanisms are poorly understood. It has

been proposed that endothelial cells have a preferred level of fluid shear stress, or ‘set point’, that

determines remodeling. We show that human umbilical vein endothelial cells respond optimally

within a range of fluid shear stress that approximate physiological shear. Lymphatic endothelial cells,

which experience much lower flow in vivo, show similar effects but at lower value of shear stress.

VEGFR3 levels, a component of a junctional mechanosensory complex, mediate these differences.

Experiments in mice and zebrafish demonstrate that changing levels of VEGFR3/Flt4 modulates

aortic lumen diameter consistent with flow-dependent remodeling. These data provide direct

evidence for a fluid shear stress set point, identify a mechanism for varying the set point, and

demonstrate its relevance to vessel remodeling in vivo.

DOI: 10.7554/eLife.04645.001

Introduction
Homeostasis, one of the central concepts in physiology (Cannon, 1929), posits that physiological

variables have an optimum value or set point such that deviations from that set point activate

responses that return those variables toward their original value. For example, changes in central

body temperature trigger sweating, altered blood flow to the skin or shivering to restore normal

temperature. In the vasculature, arteries remodel under sustained changes in blood flow, with

increased or decreased flow triggering outward or inward remodeling, respectively, to adjust lumen

diameters accordingly (Thoma, 1893; Kamiya and Togawa, 1980; Kamiya et al., 1984; Langille and

O’Donnell, 1986; Langille et al., 1989; Langille, 1996; Tronc et al., 1996; Tuttle et al., 2001). These

studies have given rise to the concept that the endothelium encodes a fluid shear stress set point that

governs remodeling responses (Rodbard, 1975; Cardamone and Humphrey, 2012) (Figure 1A).

While appealing, there is no direct evidence for such a mechanism. Moreover, if it exists, the set point

must itself be variable, since different types of vessels, for example, arteries, veins and lymphatics,
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generally have very different magnitudes of fluid shear stress (Lipowsky et al., 1980; Dixon et al.,

2006; Suo et al., 2007).

Arterial remodeling is crucial in normal physiological adaptation to growth and exercise, and is

a major determinant of outcomes in cardiovascular disease (Kohler et al., 1991; Corti et al., 2011;

Padilla et al., 2011). Outward remodeling of atherosclerotic vessels helps to maintain lumen diameter

and blood flow, whereas inward remodeling leads to ischemia associated with angina and peripheral

vascular disease (Ward et al., 2000). Additionally, flow-dependent remodeling of small blood vessels

near sites of myocardial infarction provides collateral circulation that plays a major role in restoring

cardiac function (Heil and Schaper, 2004), whereas failure to remodel is a major factor in progression

to heart failure.

Flow-dependent remodeling is initiated by inflammatory activation of the endothelium, leading to

recruitment of leukocytes that assist with remodeling in several ways including secretion of matrix

metalloproteinases, cytokines and extracellular matrix proteins (Silvestre et al., 2008; Schaper, 2009;

Silvestre et al., 2013). Once the remodeling phase is completed, inflammation is resolved and the

vascular wall stabilized. NF-κB plays a major role in the initial inflammatory activation (Castier et al.,

2009; Sweet et al., 2013), whereas signaling through TGF-β is critical in the anti-inflammatory,

stabilization phase (Walshe et al., 2009) .

These considerations led us to investigate the existence of a fluid shear stress set point and its

relevance to vascular remodeling. Our results provide strong evidence for a fluid shear stress set point

eLife digest Blood and lymphatic vessels remodel their shape, diameter and connections during

development, and throughout life in response to growth, exercise and disease. This process is called

vascular remodeling.

The endothelial cells that line the inside of blood and lymphatic vessels are constantly exposed to

the frictional force from flowing blood, termed fluid shear stress. Changes in shear stress are sensed

by the endothelial cells, which trigger vascular remodeling to return the stress to the original level. It

has been proposed that remodeling is governed by a preferred level of fluid shear stress, or set

point, against which deviations in the shear stress are compared. Thus, changing the fluid flow

through a blood vessel increases or decreases shear stress, which results in the vessel remodeling to

restore the original level of shear stress. Like all remodeling, this process involves inflammation to

recruit white blood cells, which assist with the process.

Baeyens et al. investigated whether such a shear stress set point exists and what its biological

basis might be using cultured endothelial cells from human umbilical veins. These cells remained

stable and in a resting state when a particular level of shear stress was applied to them; above or

below this shear stress level, the cells produced an inflammatory response like that seen during

vascular remodeling. This suggests that these cells do indeed have a set point for shear stress. The

same response occurred in human lymphatic endothelial cells, although in these cells the shear stress

set point was much lower, correlating with the low flow in lymphatic vessels.

Baeyens et al. then discovered that the shear stress set point is related to the level of a protein

called VEGFR3 in the cells, which was recently found to participate in shear stress sensing.

Endothelial cells from lymphatic vessels normally produce much greater quantities of VEGFR3 than

those from blood vessels. Reducing the amount of VEGFR3 in lymphatic endothelial cells increased

the set point shear stress, while increasing the levels in blood vessel cells decreased the set point.

This suggests that the levels of this protein account for the difference in the response of these two

cell types. Baeyens et al. then tested this pathway by reducing the levels of VEGFR3 in zebrafish

embryos and in adult mice. In both animals, this caused arteries to narrow, showing that VEGFR3

levels also control sensitivity to shear stress—and hence vascular remodeling—inside living

creatures.

Understanding in detail how vascular remodeling is regulated could help improve treatments for

a wide range of cardiovascular conditions. To do so, further work will be needed to develop methods

to control the sensitivity of endothelial cells to shear stress and to identify other proteins that might

specifically control the narrowing or the expansion of vessels in human patients.

DOI: 10.7554/eLife.04645.002
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in vascular endothelium. They also show that vascular

and lymphatic endothelium have different set points,

that this difference is mediated by differences in

expression of VEGFR3, and provide evidence that

this pathway controls artery remodeling in vivo.

Results

Is there a set point for fluid shear
stress?
To test the existence of a shear stress set point,

we built a flow chamber that creates a gradient of

shear stress along a single culture slide. Following

a previous design (Usami et al., 1993), the width

of the chamber progressively decreases to yield

a linear gradient (Figure 1B). We then measured

several biological responses associated with fluid

shear stress and vascular remodeling. To assay

responses as a function of shear stress, we took

successive microscopic images along the cham-

ber. Depending on localization, these responses

correlated with calculated values of shear stress.

Changing the gasket thickness and flow rate

allowed us to control the range of shear stress

for each experiment (Figure 1B).

We first measured endothelial cell alignment in

flow, which is a well-studied response associated

with vessel stabilization and suppression of in-

flammatory pathways (Levesque and Nerem,

1985; Wang et al., 2012; Baeyens et al., 2014).

Alignment was quantified by measuring the angle

between the major axis of the nucleus and the

flow direction (Baeyens et al., 2014). Human

umbilical vein endothelial cells (HUVECs) were

subjected to 16 hr of laminar shear stress

ranging from 2 to 60 dynes.cm−2. HUVECs

aligned in the direction of the flow, between

approximately 10 and 20 dynes.cm−2, but were misaligned or oriented perpendicularly, against

the flow direction, outside this range (Figure 2A, Figure 2—figure supplement 1). This result

agrees with previous studies showing perpendicular alignment of endothelial cells under very

high shear stress (Viggers et al., 1986; Dolan et al., 2011; Dolan et al., 2012).

Next, to assess NF-κB activation, we measured the nuclear translocation of the p65 subunit of

NF-κB. NF-κB showed baseline activation in cells without flow, which decreased between

approximately 10 and 25 dynes.cm−2, and dramatically increased at very high shear (Figure 2B,

Figure 2—figure supplement 1). The suppression of NF-κB translocation in this range is

consistent with previous observations that sustained laminar flow is anti-inflammatory (Mohan

et al., 1997; Berk, 2008). Lastly, we measured the activation of TGFβ/SMAD signaling by assaying

nuclear translocation of Smad1. Strikingly, flow induced Smad translocation with a sharp

maximum between 10 and 20 dynes.cm−2 and repressed translocation at higher values

(Figure 2C, Figure 2—figure supplement 1). The results obtained with the gradient chamber

were validated by examining 2, 12 and 50 dynes.cm−2 using normal parallel flow chambers

(Figure 2—figure supplement 1).

Taken together, these results show that HUVECs have a biphasic response to shear stress such that

anti-inflammatory, stabilization pathways are activated between approximately 10 and 20 dynes.cm−2,

while lower or higher shear stress is pro-inflammatory. This behavior is consistent with a shear stress

set point within the range of 10 and 20 dynes.cm−2 for these cells.

Figure 1. Testing the set point hypothesis.

(A) Definition of the ‘shear stress set point’. (B) Picture

of a silicone gasket used in the gradient flow chamber

with the corresponding calculation of the theoretical

shear stress level across the channel with two different

conditions of gasket thickness and flow rate.

DOI: 10.7554/eLife.04645.003
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Analysis of lymphatic endothelial cells
An essential aspect of the set point hypothesis is that it must differ between different types of vessels.

In vivo, average shear stress in lymphatic vessels is much lower than in arteries or veins (Lipowsky

et al., 1980; Dixon et al., 2006; Suo et al., 2007). We therefore examined the behavior of human

dermal lymphatic endothelial cells (HDLEC), using modified chamber parameters to obtain values of

shear stress from 0.5 to 20 dynes.cm−2 (Figure 1). In these experiments, HUVECs aligned between

8 and 20 dynes.cm−2, (Figure 2A and Figure 3A) whereas HDLEC aligned maximally between 4 and

6 dynes.cm−2 (Figure 3A, Figure 3—figure supplement 1). The minimum for NF-κB translocation also

shifted to between 4 and 10 dynes.cm−2 (Figure 3B, Figure 3—figure supplement 1), which

corresponds well to in vivo measurements (Dixon et al., 2006). These results indicate that lymphatics

have a higher sensitivity to shear stress compared to HUVECs, consistent with the set point concept.

VEGFR3 expression regulates the set point for shear stress in vitro
A number of shear stress responses, including cell alignment and NF-κB activation, require

mechanotransduction via VEGFR2, whose ligand-independent transactivation by flow requires

PECAM-1 and VE-cadherin (Tzima et al., 2005). We therefore considered whether differences in

expression of these proteins might account for the difference in flow sensitivity between HUVECs and

HDLECs. However, no major differences in levels of these proteins were observed (Figure 3C).

VEGFR3, a close homolog of VEGFR2, is highly expressed in lymphatic cells (Kaipainen et al. 1995)

and recent work in our lab showed that it is activated by flow in vascular endothelial cells similarly to

VEGFR2 (Coon et al., 2015). These considerations prompted us to examine levels of this receptor as

well, which showed approximately 10-fold higher expression in lymphatic ECs compared to

HUVECs (Figure 3C). We therefore considered whether VEGFR3 levels might be responsible for

the higher flow sensitivity of lymphatic ECs.

HDLECs were therefore transfected with VEGFR3 siRNA, which reduced its expression to

approximate the level in HUVECs (Figure 4A). We also transduced HUVECs with adenovirus coding

for hVEGFR3-GFP (Figure 4A), which increased levels by ∼10-fold and infected >90% of the cells

(Figure 4—figure supplement 1). Cell alignment in flow was then analyzed. Depletion of VEGFR3 in

HDLECs shifted the optimal alignment to between 10 to 20 dynes.cm−2 (Figure 4B, Figure 4—figure

supplement 2), similar to HUVECs. Conversely, over-expression of VEGFR3 in HUVECs decreased the

optimal response toward the lower shear stress levels seen with lymphatic ECs (Figure 4C, Figure

4—figure supplement 2). Taken together, these results show that VEGFR3 levels are a major

determinant of the difference in shear stress sensitivity between HUVECs and HDLECs.

We also confirmed VEGFR3 activation by flow in lymphatic endothelial cells. Onset of flow

stimulated VEGFR3 phosphorylation maximally at 6 dynes.cm−2 in HDLEC (Figure 5), which

corresponds well to the set point of around 5 dynes.cm−2 in these cells. HUVECs, by contrast,

exhibited a weaker response that was shifted to higher shear, consistent with their higher set.

VEGFR3 controls blood vessels diameter in zebrafish, in a VEGF-C-
independent manner
To test whether VEGFR3 levels control sensitivity to shear stress and vascular remodeling in vivo, we

examined Danio rerio (zebrafish). This system has the advantage that development proceeds normally

without blood flow, thus, fluid shear stress can be altered or even stopped without affecting viability

(Langheinrich et al., 2003). The notion that levels of VEGFR3 (Flt4 in zebrafish) determine the shear

stress set point predicts that reducing VEGFR3 expression will induce inward remodeling of the

vessels in order to increase shear stress and restore normal signaling. We used a strain in which blood

vessels are labeled by expression of kdrl:mCherry (VEGFR2) and flt4:Citrine (VEGFR3) reporters. kdrl:

mCherry was highly visible in the dorsal aorta and the posterior cardinal vein, whereas flt4:Citrine was

low (though detectable) in the dorsal aorta and higher in the cardinal posterior vein and the

developing thoracic duct (Figure 6, Figure 6—figure supplement 1). Flt4/VEGFR3 and its ligand,

VEGF-C, are associated with development of lymphatic vasculature and segmental arteries in

zebrafish (Covassin et al., 2006; Kuchler et al., 2006). To assay the effect of FLT4 and VEGFC

dosage on vessels diameter, we injected zebrafish embryos at the one cell stage with previously

validated VEGFC and FLT4 morpholinos at two different concentrations. These antisense oligos

target the respective mRNAs and induce a dose dependent loss of function (Nicoli et al., 2012;
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Villefranc et al., 2013). At 72 hr post fertiliza-

tion (hpf), the progressive inhibition of VEGFC

did not perturb the remodeling of blood vessel

or vessel diameter but as expected inhibited

the development of the thoracic duct, the first

zebrafish lymphatic vessel (Yaniv et al., 2006)

(Figure 6, white stars). By contrast, progressive

inhibition of FLT4 reduced the diameter of the

dorsal aorta with loss of thoracic duct evident

at a higher dose of FLT4 morpholino (Figure 6).

These results suggested that VEGF-C-

independent Flt4 activation is required for

artery diameter and exclude an indirect effect

of lymphatic development on the artery

development. Interestingly, a similar decrease

of the dorsal aorta diameter can be observed in

a recent paper (Kwon et al., 2013). Although

these authors focused on the growth of

motoneurons, the dorsal aorta is readily visible

in images of Flt1 mCherry reporter embryos; its

diameter is obviously smaller in expando

embryos expressing a kinase dead Flt4, as well

as in wildtype embryos treated with Flt4

morpholino or VEGFR3 inhibitors but not

after injection with VEGFC morpholino, in

accordance with our own observations.

To test the role of flow in this process, embryos

were treated with 40 μM nifedipine, a voltage-

dependent calcium channel blocker that stops the

heart and thus blood flow (Langheinrich et al.,

2003). Blocking flow led to a decreased vessel

diameter (Figure 6, Figure 6—figure

supplement 1), supporting the role of shear

stress in determining lumen size. Interestingly,

lumen diameter was similar in embryos treated

with high dose Flt4 morpholino and with

nifedipine. To test whether Flt4 acts on a flow

pathway, we then combined these treatments.

Strikingly, in the absence of flow, neither Flt4

nor VEGF-C morpholinos caused further

changes in vessel size. Taken together, these

results support the conclusion that VEGF-C-

independent activation of VEGFR3 by flow

may determine the endothelial cell sensitivity

to flow and vessel remodeling, consistent

with the existence of a fluid shear stress set

point.

Interestingly, ligand-independent responses

for VEGFR3 are consistent with developmental

mouse phenotypes: deletion of VEGF-C and

VEGF-D does not affect the development and

maturation of blood vessels during mice

development, while deletion of VEGFR3 does

(Haiko et al., 2008). Ligand-dependent

responses are thus required for lymphangio-

genesis but probably not for flow responses.

Figure 2. Set point for shear stress. (A) Cell orientation:

the average orientation of HUVEC nuclei was measured

in each picture, to obtain average orientation at a given

shear stress. (n = 16, Mean ± SEM, ANOVA: F = 15.02,

p < 0.0001). With no flow, cell orientation was random

(average = 45˚). (B) NF-κB activation: p65 nuclear

Figure 2. continued on next page
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VEGFR3 and artery remodeling in
mice
Lastly, we investigated whether VEGFR3 controls

artery remodeling in mice in a similar manner.

Expression of VEGFR3 in adult arteries has been

reported to be low (Gu et al., 2001; Witmer

et al., 2002; Tammela et al., 2008), thus, we first

verified its transcription in the thoracic aorta.

Using a transgenic Vegfr3::YFP reporter mouse

(Calvo et al., 2011), expression of YFP was

readily detected, confirming Vegfr3 expression in

adult arteries (Figure 7A). We confirmed this

observation by staining a longitudinal section of

the thoracic aorta with an anti-VEGFR-3 antibody

(Figure 7B). Interestingly, VEGFR3 expression

was not uniform: weaker expression was

detected in the outer curvature or some portions

of the carotid artery, associated with higher shear stress, while stronger expression was observed in

the inner curvature, associated with low shear stress (Figure 7—figure supplement 1).

Because deletion of Vegfr3 in mice leads to major cardiovascular defects and embryonic lethality

(Dumont et al., 1998), we used an inducible knock out strategy in adult Vegfr3fl/fl mice (Haiko et al.,

2008) that also contain an endothelium-specific, tamoxifen-inducible Cre (Cdh5-CreERT2) allele (Wang

et al., 2010). Cdh5 CreERT2, Vegfr3fl/fl mice, referred as EC iΔR3, grow normally without any defect prior

to tamoxifen injection. Two month old Vegfr3fl/fl (wild-type, WT) and EC iΔR3 mice were injected with

tamoxifen and examined at 1, 2, 3 or 7 weeks. 1 week after tamoxifen injection, no VEGFR3 expression

was visible in the thoracic aorta (Figure 7B) and in the ear skin lymphatics of EC iΔR3 mice (Figure 7C).

3 weeks after deletion of Vegfr3, the dermal lymphatic network in the skin was completely intact but

vessel diameter was dramatically decreased (WT: 38 ± 5 μm and EC iΔR3: 22 ± 2 μm, n = 4, p < 0.001).

We also observed a ∼15% reduction of the diameter of the descending aorta (Figure 7D,E). No further

change was observed when mice were examined at 7 weeks (Figure 7E), indicating that vessels

remodeled and then stabilized. No change in body weight was observed 3 weeks after injection (28.4 g

± 2 for WT and 28.3 g ± 2.7 for EC iΔR3 mice). The curvature of the aortic arch was also reproducibly

decreased after excision, an unexpected result that we have not further investigated.

To investigate the role of remodeling pathways, we stained longitudinal sections of the thoracic

aorta for MMP9, a matrix metalloprotease involved in flow-dependent vascular remodeling (Bond

et al., 1998; Godin et al., 2000;Magid et al., 2003). Following Vegfr3 deletion, MMP9 in the thoracic

aorta was highly elevated at 1 week but decreased to baseline at later times (Figure 7F). This

observation strongly supports the notion that Vegfr3 deletion induces inward remodeling of the

thoracic aorta which is followed by stabilization. Increased MMP9 expression may be induced through

NF-κB (Sun et al., 2007). We hypothesize that elevating the set point causes the endothelium to

signal low shear, which induces inward remodeling. Together, these data support the concept that

vessel lumen diameter is controlled by a VEGFR3-dependent shear stress set point.

Discussion
Living organisms have developed an extensive repertoire of mechanisms to adapt to stresses and

maintain homeostasis. For more than a century, investigators have observed effects suggesting that

the blood flow controls vascular diameter (Thoma, 1893; Langille and O’Donnell, 1986; Langille

et al., 1989; Langille, 1996), a mechanism that would optimize perfusion by adjusting vascular

morphology in response to tissue demand. It has been hypothesized that, as for thermoregulation,

there is an optimal value of flow which is maintained through feedback mechanisms to prevent

deviation from this value. This is what we term the ‘shear stress set point’ theory (Rodbard, 1975).

The current data show that HUVECs align in the direction of flow, inhibit NF-κB and activate Smads

within a narrow range of fluid shear stress magnitudes. This range corresponds to the physiological

flow within the umbilical vein estimated at around 8.4 to 12.5 dynes.cm−2 ((Kiserud and Rasmussen,

1998; Boito et al., 2002; Christensen et al., 2014); shear stress = 8 × viscosity (velocity/diameter),

Figure 2. Continued

translocation in HUVEC was measured either in no

flow (dotted line: average) or after 16 hr of flow in

the gradient chamber (n = 6, Mean ± SEM, ANOVA:

F = 10.97, p < 0.0001). (C) Smad1 activation: Smad1

nuclear translocation in HUVECs was measured without

flow (dotted line: average) or after 16 hr of flow in

the gradient chamber (n = 6, Mean ± SEM, ANOVA:

F = 13.47, p < 0.0001).

DOI: 10.7554/eLife.04645.004

The following figure supplement is available for figure 2:

Figure supplement 1. (A) Quantification of cell

orientation, p65 nuclear translocation or smad1 nuclear

translocation without flow or after 16 hr laminar flow at

the indicated values (NS: not significant, *: p < 0.05, **:

p < 0.01, ****: p < 0.0001).

DOI: 10.7554/eLife.04645.005
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with viscosity = 0.06–0.09 poisse, velocity = 7.1 cm.s−1 and diameter = 4.1 mm). These results imply

that physiological flow inhibits inflammatory pathways and activates anti-inflammatory/stabilization

pathways. By contrast, cells in low or high flow fail to align, activate NF-κB and suppress Smads.

We propose that these responses are involved in the vessel remodeling that reestablishes optimal

blood flow.

It is known that inflammation is a critical component of flow-dependent as well as other forms of

vessel remodeling (Silvestre et al., 2008; Schaper, 2009; Silvestre et al., 2013). It has been recently

demonstrated that inhibiting NF-κB impairs outward remodeling associated with increased shear

stress as well as aneurysm formation (Saito et al., 2013). On the other hand, defective Smad1

signaling in the endothelium is associated with hereditary haemorrhagic telengiectasia (HHT), which is

Figure 3. Set point in HUVECs vs lymphatic endothelial cells. (A) The average orientation of venous cell (HUVEC) or

lymphatic cell (HDLEC) nuclei across the slide was measured as in Figure 2A. (n = 11, Mean ± SEM). The difference

between HUVECs and HDLECs is statistically significant (ANOVA Two-way, p < 0.0001). (B) NF-κB activation: p65

nuclear translocation in HDLEC was measured either in no flow (dotted line: average) or after 16 hr of flow in the

gradient chamber (n = 4, Mean ± SEM, ANOVA: F = 34.32, p < 0.0001). (C) Expression of VE-cadherin, PECAM-1,

VEGFR2 and VEGFR3, proteins involved in the shear stress mechanotransduction through the junctional complex.

Actin was used as a loading control.

DOI: 10.7554/eLife.04645.006

The following figure supplement is available for figure 3:

Figure supplement 1. Representative pictures of HDLEC probed for DAPI and p65 at 5 and 20 dynes.cm−2.

DOI: 10.7554/eLife.04645.007
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characterized by the development of unstable,

arteriovenous malformations (Dupuis-Girod

et al., 2010). Interestingly, these malformations

are preceded by increased vascular lumen di-

ameter, which occurs in a flow dependent

manner (Corti et al., 2011). These observations,

combined with ours, suggest that these two

signaling pathways contribute to balanced con-

trol of the vessel caliber.

Fluid shear stress varies among different types

of vessels, and to some extent even within the

same vessel, suggesting that different cells must

have different set points for shear stress,

depending on their location. Relevant to our

experiments, the shear stress in the human

umbilical vein is estimated at around 8.4–12.5

dynes/cm−2 whereas lymphatic vessels have

highly pulsatile flow with peaks values at around

4–8 dynes.cm−2 and averages that are much

lower (Dixon et al., 2006). The shear stress set

point model therefore predicts that these cell

types will have different set points, which was

borne out in our studies. Furthermore, we found

that this difference can be largely accounted for

by differences in VEGFR3 expression. This re-

ceptor, a close homolog of VEGFR2, is also

activated in response to flow. Both expression

levels in vivo (Witmer et al., 2002) and our

functional experiments in vitro lead to the

conclusion that high expression of VEGFR3

increases sensitivity to shear to give a low shear

stress set point, while low expression of VEGFR3

is associated with higher set points. However, it is

highly likely that other mechanotransducers or

mediators influence set point values. While we

did not observe any major difference in PECAM-1

and VE-cadherin expression between HDLEC and

HUVEC, these two proteins can vary between

different vascular beds (Pusztaszeri et al., 2006;

Herwig et al., 2008), which might also affect the

set point. We used HUVECs as a model for blood

endothelial cells because they are readily avail-

able and their response to shear stress is well

characterized. However, it has been recently

showed that arterial and venous markers greatly

diminish in culture (Aranguren et al., 2013), thus,

whether they fully represent typical venous cells

in vivo should be treated with caution. Compar-

ing fresh primary cells from veins and arteries will

be an interesting direction for future work.

Mechanotransducers apart from the junctional

complex are also likely to be important. There

must also be pathways that distinguish high and

low shear to initiate outward vs inward remodel-

ing. Future work will be required to explore these

Figure 4. VEGFR3 expression controls the shear stress

set point. (A) Western Blot of VEGFR3 and GFP in

HDLECs with and without VEGFR3 siRNA (10 nM), and in

HUVECs with and without adenoviral expression of

hVEGFR3-GFP. Actin serves as a loading control. (B)

Effect of VEGFR3 siRNA in HDLECs on set point. Cell

alignment was assayed after shear stress for 16 hr (n = 6).

Data were smoothed with a LOWESS fit to improve

visualization (mean ± SEM; HDLEC vs HDLC + VEGFR3

siRNA: p = 0.004; HDLEC + VEGFR3 siRNA vs HUVEC:

p = 0.45). (C) Effect of VEGFR3 over-expression on set

Figure 4. continued on next page
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pathways in more detail and their relevance to

vascular remodeling.

The notion that vascular remodeling is gov-

erned by a shear stress set point, which is itself

set by activation of various receptors and

signaling pathways, may be relevant to a number

of applications. Recovery from atherosclerotic

luminal narrowing or myocardial infarction is

thought to proceed in part via flow-dependent

vessel remodeling (Heil and Schaper, 2004).

Vascular graft adaptation also requires activation

of signaling pathways activated by high shear

stress to promote healing of the graft by

preventing intimal proliferation (Kohler et al.,

1991). Arteriovenous malformations are also

thought to have a flow-dependent component

(Corti et al., 2011). Thus, further understanding

of the molecular sensors and downstream signal-

ing pathways that control flow-dependent

remodeling is relevant to a broad range of vascular dysfunction.

Materials and methods

Cell culture
Human Umbilical Vein Endothelial Cells (HUVECs) pooled from three different donors were obtained

from the Yale Vascular Biology and Therapeutics program and cultured in M199 medium

supplemented with 20% Fetal Bovine Serum, 50 μg.ml−1 of Endothelial Cell growth Supplement

(ECGS) prepared from bovine hypothalamus, 100 μg.ml−1 heparin, 100 U.ml−1 penicillin and 100 μg.ml−1

streptomycin. They were used between passage 3 and 7. Human Dermal Lymphatic Endothelial Cells

(HDLECs) were obtained from Lonza (Basel, Switzerland) and cultured in EGM-2 MV medium and used

from passage 5 to 7. Cells were starved in M199 medium supplemented with 5% FBS and 100 U.ml−1

penicillin and 100 μg.ml−1 streptomycin for a minimum of 4 hr before further treatments.

Shear stress
Cells were seeded on tissue culture plastic slides cut from 150 mm tissue culture dishes (Falcon),

coated with 20 μg.ml−1 fibronectin. Confluent cells were subjected to steady laminar shear stress in

a modified parallel plate flow chamber (Figure 1) in which the gasket was a silicon sheet of either 0.8

or 1.6 mm height (Grace Bio-Labs, Bend, OR, #664172 and #664283) cut to generate a linear gradient

of shear stress, calculated from (Usami et al., 1993). Flow was applied for 16 hr in starvation medium.

Cells were then fixed with 4% formaldehyde in PBS for 10 min, permeabilized with 0.5% Triton x-100

in PBS for 10 min, blocked with Startingblock buffer (ThermoScientific) for 30 min at room

temperature and probed overnight at 4˚C with a primary antibody diluted in Startingblock buffer.

Slides were stained with Hoechst 33342 to label nuclei, with rabbit anti-p65 antibody (Cell Signaling)

to label NF-κB, and with rabbit anti-Smad1 antibody (Cell Signaling).

Image analysis
Images were acquired with a Perkin Elmer spinning disk confocal microscope equipped with an

automated stage which was used to take successive pictures along the chamber channel. Masks of the

images were made using a combination of an adaptive histogram equalization algorithm with intensity

and size thresholding. Cell orientation was calculated by taking the masks of the cell nuclei, fitting to

an ellipse, and finding the angle between the flow direction and the major-axis of the ellipse. Nuclear

translocation was computed by taking the mask of the nucleus and determining the integrated

intensity of the transcription factor stain (Smad1 or p65) in the nucleus and in the whole cell. The

‘translocation factor’ (TF) was calculated by dividing the integrated intensity in the nucleus by the

value for the whole cell. If the entire signal is localized to the nucleus, TF = 1, while if the entire signal

is cytoplasmic, TF = 0.

Figure 4. Continued

point. Alignment after 16 hr flow was assayed in

HUVECs infected with adenovirus expressing mCherry

or hVEGFR3-GFP as before. Data were smoothed with

a LOWESS fit to improve visualization (n = 10, values are

means ± SEM; HUVEC + mCherry vs HUVEC + VEGFR3-

GFP: p < 0.0001).

DOI: 10.7554/eLife.04645.008

The following figure supplements are available for figure

4:

Figure supplement 1. (A) Representative pictures of

HUVEC cells expressing hVEGFR3-GFP (GFP signal

displayed) after 16 hr of stimulation at 5 and 20

dynes.cm−2.

DOI: 10.7554/eLife.04645.009

Figure supplement 2. Non-smoothened data of the

graphs displayed in Figure 4B,C.

DOI: 10.7554/eLife.04645.010
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siRNA transfection and adenoviral expression
Depletion of VEGFR3 was achieved by transfecting 10 nM siRNA (L-003138-00 OnTarget Smartpool

Human FLT4, ThermoScientific) with Lipofectamine RNAi Max (Invitrogen), following the manufac-

turer’s instructions. Transfection efficiency was assessed by Western-blot. Human VEGFR3-GFP was

cloned in adenoviral (pAd) expression vector. Cells were infected with the virus in medium with

polybrene (5 mg/ml) overnight and used 48 hr later.

FACS
GFP expression in HUVEC or HUVEC infected with VEGFR3-GFP was assayed on a Stratedigm S1000EX

(Stratedigm, San Jose, CA). Data were analyzed with the FlowJo software (TreeStar, Ashland, OR).

Western blotting
Cells were washed with cold PBS and proteins extracted with Laemmli’s buffer. Samples were run on

10 or 12% SDS-PAGE and transferred onto nitrocellulose membranes. The membranes were blocked

with StartingBlock buffer (ThermoScientific) and probed with primary antibodies overnight at 4˚C:

VEGFR3 (R&D systems), phospho-VEGFR3 (Cell Applications), VEGFR2 (Cell Signaling), PECAM-1

(Abcam), VE-cadherin (Santa Cruz), GFP (Invitrogen) and actin (Santa Cruz). DyLight conjugated

fluorescent secondary antibodies (680 nm and 800 nm, Thermoscientific) or HRP-conjugated antibodies

were used to detect primary antibodies. Bands were detected and quantified with an Odyssey infrared

imaging system for DyLight antibodies (Li-Cor) or a BioRad western blot imaging system (Bio Rad).

Zebrafish
Zebrafish were grown and maintained according to protocols approved by the Yale University

Animal Care. The Tg(kdrl:mCherry; flt4:citrine) was used (Bussmann and Schulte-Merker, 2011).

Figure 5. VEGFR3 activation by shear stress. HDLECs (left) and HUVECs (right) were stimulated for 15 min with shear

stress at the indicated levels. VEGFR3 transactivation was assayed by phosphorylation on Y1230, detected by

Western blotting with pY1230 antibody (n = 5 independent experiments; *: p < 0.05, **: p < 0.01, ****: p < 0.0001).

DOI: 10.7554/eLife.04645.011
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Morpholinos (Nicoli et al., 2012) were injected at the indicated concentrations and morphants were

observed in a confocal microscope (SP5 Leica Microsystems). Images captured using Leica

application suite software. Chemical treatment with nifedipine 40 μM was performed as previously

described, 4 hr prior imaging (Bussmann et al., 2011).

Mice
All animal experiments were approved by the Institutional Care and Use Committee of Yale University.

The Vegfr3::YFP (Calvo et al., 2011), Cdh5CreERT2 (Pitulescu et al., 2010; Wang et al., 2010),

Vegfr3flox/flox (Haiko et al., 2008) mice were described previously. Cdh5CreERT2 mice were crossed

with Vegfr3flox/flox mice to generate endothelial-specific inducible Vegfr3 mutant mice. 6–8 weeks old

Vegfr3flox/flox mice, with or without the Cre recombinase, were injected intra-peritoneally with 2 mg

tamoxifen (TX; at 20 mg/ml in peanut oil (Sigma) with 10% Ethanol) once per day for 5 consecutive

days (induction period). Mice were euthanized then fixed by perfusion with 3.7% formaldehyde 1, 2, 3

or 7 weeks after induction. Ear tissue was fixed overnight in 3.7% formaldehyde. The ear skin was

removed, cleaned of connective tissue and cartilage, and permeabilized for 4 hr in permeabilization

buffer (1% BSA, 1% NGS, 0.5% Tween in PBS). The skin was then incubated with antibody against

LYVE-1 or VEGFR3, in 50% permeabilization buffer/50% PBS for 2 days at 4˚C. After washing, the skin

was incubated with secondary antibodies overnight 4˚C in the same buffer. The skin was then flat

mounted in Fluoromount G (Southern Biotech) and imaged with a Perkin Elmer spinning disk confocal

microscope with a 20× objective. The aorta was removed, cleaned of all connective tissue, fixed

overnight in 3.7% formaldehyde at 4˚C and embedded in paraffin. Paraffin embedding and sectioning

Figure 6. VEGFR3 (Flt4) controls blood vessel caliber in zebrafish. Representative pictures of the dorsal aorta (DA),

posterior cardinal vein (PCV) and thoracic duct (white *) at 72 hr post-fertilization (hpf) in wild type zebrafish embryos

or embryos injected with Flt4 (VEGFR3) morpholino at 0.06 or 0.1 mM, or with VEGF-C morpholino at 0.06 or 0.1 mM.

The mCherry reporter driven by the KDR (VEGFR2) promoter (kdrl:mCherry) is depicted in red and the citrine

reporter driven by the Flt4 promoter (flt4:citrine) is depicted in green. Scale = 20 μm and applies to all pictures. n =
6-15 fishes for each condition, whiskers represents the minimum and maximum data point (NS: non-significant, ***:

p < 0.001 and ****: p < 0.0001, ANOVA).

DOI: 10.7554/eLife.04645.012

The following figure supplement is available for figure 6:

Figure supplement 1. Representative pictures of the dorsal aorta (DA) and posterior cardinal vein (PCV) and

developing thoracic duct (*) in wild type zebrafish embryos with a citrine reporter associated to Flt4 promoter (flt4:

citrine) before and approximatively 2 hr after nifedipine treatment.

DOI: 10.7554/eLife.04645.013
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were performed by the Yale Pathology department, in the Tissue Microarray facility. Aortas were cut

longitudinally, paraffin was removed in xylene baths and sections progressively rehydrated before

antigen retrieval for 30 min at 95˚C in citrate buffer (10 mM sodium citrate, 0.05% Tween, pH = 6).

Sections were blocked for 30 min in StartingBlock blocking buffer (ThermoScientific) and probed

either with anti-MMP9 antibody (Abcam, 1/400), anti-VEGFR3 antibody (R&D) or anti-GFP antibody

(Invitrogen, 1/400). Slides were then washed 3× in PBS-Tween and once in PBS, then incubated with

donkey-anti rabbit AlexaFluor 647 secondary antibody (Molecular Probes, 1 hr at RT, 1/500). Slides

were washed 3× in PBS-Tween and once in PBS, then mounted in Fluoromount G (Southern Biotech).

Slides were imaged with a Nikon Eclipse 80i epifluorescence microscope. Image analysis of MMP9

staining was performed by measuring the area under the curve of the fluorescence signal coming from

the media in 4 different 20× pictures for each individual aorta. The fluorescence profile was obtained

with MeasureEndo, an ImageJ macro.

Statistics
Values indicated in the text are mean ± SD. At least three independent experiments were performed

for each condition. Statistical tests were performed by using either analysis of variance tests (ANOVA)

or unpaired Student’s t-tests. The ANOVA test performed on Figures 2 and 3 tested the null

hypothesis that shear stress magnitude does not have an effect on either cell orientation or p65 and

Smad1 nuclear translocation.
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Figure 7. Continued

Figure 7. Transient vascular remodeling in EC iΔR3mice. (A) Longitudinal paraffin section of the thoracic aorta of a Vegfr3::YFP (VEGFR3 reporter) mouse.

YFP was detected with an anti-GFP antibody. Scale bar = 50 μm. (B) VEGFR3 and DAPI staining of a longitudinal section of the thoracic aorta of Vegfr3fl/fl

(WT) or EC iΔR3 mice, 3 weeks after Tx injection. Scale bar: 50 μm. (C) Lyve1 and VEGFR3 staining of the lymphatic network in ear skin from Vegfr3fl/fl (WT)

or EC iΔR3 mice. Pictures were taken 1 week after Tx injection. Scale bar = 50 μm. (D) Aorta from oil injected-EC iΔR3 (WT) or Tx-injected EC iΔR3 mice,

2 weeks after Tx injection. Scale bar = 1 mm. (E) Diameters (graph on right) were measured in thoracic aortas (images on left) from Vegfr3fl/fl (WT) or EC

iΔR3 mice, 3 weeks (WT: n = 8 and EC iΔR3: n = 7) and 7 weeks (WT: n = 6 and EC iΔR3: n = 5) after Tx treament (whiskers indicate the minimum and

maximum data point, ***: p < 0.001, ANOVA). The measurement was performed right after the curvature, 1 mm below the subclavian artery bifurcation.

(F) Longitudinal paraffin sections of the thoracic aorta from Vegfr3fl/fl (WT) or EC iΔR3 mice or EC iΔR3 mice, probed for MMP9 (blue) and nuclei (red) after

injection of Tx for the indicated time (WT is 1 week post-injection). Distribution of the area under the curve of MMP9 fluorescence from the media is

plotted on the left (n ≥ 3 mice for each condition, whiskers are 10–90%, cross is the arithmetic mean).

DOI: 10.7554/eLife.04645.014

The following figure supplement is available for figure 7:

Figure supplement 1. VEGFR3 and DAPI staining of a longitudinal section different portions of the aorta. Scale bar: 50 μm.

DOI: 10.7554/eLife.04645.015
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