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Abstract mRNA localization is critical for eukaryotic cells and affects numerous transcripts, yet

how cells regulate distribution of many mRNAs to their subcellular destinations is still unknown. We

combined transcriptomics and systematic imaging to determine the tissue-specific expression and

subcellular distribution of 5862 mRNAs during Drosophila oogenesis. mRNA localization is

widespread in the ovary and detectable in all of its cell types—the somatic epithelial, the nurse cells,

and the oocyte. Genes defined by a common RNA localization share distinct gene features and differ

in expression level, 3′UTR length and sequence conservation from unlocalized mRNAs. Comparison

of mRNA localizations in different contexts revealed that localization of individual mRNAs changes

over time in the oocyte and between ovarian and embryonic cell types. This genome scale image-

based resource (Dresden Ovary Table, DOT, http://tomancak-srv1.mpi-cbg.de/DOT/main.html)

enables the transition from mechanistic dissection of singular mRNA localization events towards

global understanding of how mRNAs transcribed in the nucleus distribute in cells.

DOI: 10.7554/eLife.05003.001

Introduction
Cell differentiation is accompanied by polarization and segregation of membranes, cytoplasm, and

organelles. A powerful mechanism to generate subcellular asymmetries used by eukaryotes and even

prokaryotes is mRNA localization in combination with controlled protein translation (reviewed in

Medioni et al., 2012). Long-range mRNA transport in most metazoans relies on the polarized

cytoskeleton and the microtubule minus- and plus-end motor complexes. mRNA enrichment at

microtubule minus-ends is aberrant in mutants that affect the dynein motor complex, while plus-end

directed transport requires kinesin molecules (reviewed in Bullock, 2011; Medioni et al., 2012)

Mechanistic dissection of several canonical localization examples showed that, mRNAs localize

through cis-regulatory sequences, zipcodes, which are often present in the 3′UTR of the transcript

(reviewed in Jambhekar and Derisi, 2007) and zipcode-binding proteins that initiate the formation of

transport competent ribonucleoproteins (RNPs) (Dienstbier et al., 2009; Bullock et al., 2010; Chao

et al., 2010; Dix et al., 2013). mRNAs can also harbour two antagonizing localization signals that act

consecutively in cells and direct mRNAs sequentially to opposing microtubule ends (Ghosh et al.,

2012; Jambor et al., 2014), suggesting that transport RNPs could be regulated. It has further been

shown that some mRNA localization elements are active in several cell types suggesting that the

mRNA transport machinery is widely expressed and mRNA localization elements function in a cell-

type independent manner (Kislauskis et al., 1994; Bullock and Ish-Horowicz, 2001; Snee et al.,

2005; Jambor et al., 2014).
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In addition to microtubule-based transport, some mRNAs can enrich by trapping to a localized

anchoring activity (Forrest and Gavis, 2003; Sinsimer et al., 2011) or by hitch-hiking along with

a localization-competent mRNA (Jambor et al., 2011). Recent live-imaging studies revealed that the

same mRNA can, depending on the cell type, use both diffusion and active transport mechanisms

(Park et al., 2014). Furthermore, in vitro data showed that mRNA transport along microtubules can

occur both uni- and bi-directionally, suggesting mRNAs can switch between processive and diffusive

transport modes (Soundararajan and Bullock, 2014).

mRNA localization is perhaps best characterized in the oocyte of Drosophila melanogaster

(D. melanogaster) where localization of oskar, bicoid, and gurken is instrumental for setting up the

embryonic axes (Berleth et al., 1988; St Johnston et al., 1989; Ephrussi et al., 1991; Neuman-

Silberberg and Schüpbach, 1993). However, more recent work suggests that mRNA localization is not

occurring only for few singular mRNAs but instead is a widespread cellular feature that affects a large

proportion of expressed mRNAs (Shepard et al., 2003; Blower et al., 2007; Lecuyer et al., 2007; Zivraj

et al., 2010; Cajigas et al., 2012). How a cell distinguishes localized from ubiquitous transcripts and

orchestrates transport of many mRNAs remains enigmatic. It is conceivable that each localized mRNA

carries its own zipcode sequence that directs it to a specific subcellular location. However, despite wealth

of data on co-localized transcripts, computational methods thus far fail to detect such signals in a reliable

manner. Alternatively co-packaging of several mRNA species, only one of which carries specific

localization signal, has been shown in at least two cases (Lange et al., 2008; Jambor et al., 2011). It is

also unclear to what extent the mRNA localization status is subject to tissue specific regulation.

Here, we describe a genome-wide image-based resource that unravels the global landscape of mRNA

localization in the Drosophila ovary by combining stage-specific mRNA sequencing with systematic

fluorescent in situ hybridizations (FISH) and imaging. The localized transcripts show characteristic gene

level features, such as longer and highly conserved 3′UTRs, which clearly distinguish subcellular enriched

from ubiquitous mRNAs. Comparing mRNA localizations across the sampled time-points showed that the

eLife digest To make a protein, the DNA sequence that encodes it must first be ‘transcribed’ to

build a molecule of messenger RNA (called mRNA for short). Although many mRNA molecules are

found throughout a cell, some are ‘localized’ to certain areas; and recent evidence suggests that this

mRNA localization may be more common than previously thought.

Not much is known about how cells identify which mRNAs need to be localized, or how these

molecules are then transported to their destination. The localization process has been studied in

most detail in the developing egg cell—also known as an oocyte—of the fruit fly species Drosophila

melanogaster. These studies have identified few mRNA molecules that, if they are not carefully

localized within the cell, cause the different parts of the fly embryo to fail to develop correctly when

the oocyte is fertilized.

Jambor et al. created an open-access online resource called the ‘Dresden Ovary Table’ that shows

how 5862 mRNA molecules are distributed in several cell types involved in oocyte production in the

ovary of female D. melanogaster flies. This resource consists of a combination of three-dimensional

fluorescent images and measurements of mRNA amounts recorded at different stages in the

development of the oocyte.

Using the resource, Jambor et al. demonstrate that all of the cell types that make up the ovary

localize many different mRNA molecules to several distinct destinations within the cells. The localized

mRNAs share certain features, with mRNAs localized in the same part of the cell showing the most

similarities. For example, localized mRNAs have longer so-called 3′ untranslated regions (3′UTR) that
carry regulatory information and these sequences are also more evolutionarily conserved. Further,

when the mRNA molecules in the oocyte were examined at different times during its development

and compared with the embryo, the majority of these mRNAs were found to change where they are

localized as the organism develops.

The resource can be used to gain insight into specific genetic features that control the distribution

of mRNAs. This information will be instrumental for cracking the ‘RNA localization code’ and

understanding how it affects the activity of proteins in cells.

DOI: 10.7554/eLife.05003.002
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localization status of the majority of mRNAs changes in the oocyte as oogenesis progresses. These

changing localizations are not due to alternative gene expression since the germline cells of the

Drosophila ovary show only little transcriptional change. Integrative analysis of ovary localization

data together with similar data from embryos (Lecuyer et al., 2007) also revealed that mRNA localizations

differ across cell types. Therefore, mRNA localization is widespread in cells and is highly regulated.

Results

Widespread mRNA localization in Drosophila ovaries
To globally investigate post-transcriptional regulation through mRNA localization, we systematically

probed and imaged the expression and subcellular distributions of mRNAs in egg-chambers mass

isolated from Drosophila ovaries. We combined stage-specific mRNA sequencing (3Pseq and

RNAseq) with genome-wide fluorescent in situ hybridization (FISH). RNA sequencing data, expression

pattern annotations (using a hierarchical controlled vocabulary-http://tomancak-srv1.mpi-cbg.de/cgi-

bin-public/ovary_annotation_hierarchy.pl) and images (representative 2D images and all original

z-stacks) are collected in a publicly accessible database, the Dresden Ovary Table, DOT (http://

tomancak-srv1.mpi-cbg.de/DOT/main) (Figure 1—figure supplement 1A,B). This genome-wide

resource also integrates data on tissue-specific gene expression (Tomancak et al., 2002, 2007) and

subcellular mRNA localization (Lecuyer et al., 2007) in Drosophila embryos.

Based on our in situ hybridization screen, we identified 3475 mRNAs as being expressed and most of

these mRNAs were also detectable by RNA sequencing. Both sequencing techniques were in good

agreement with each other (Figure 1A, Figure 2—figure supplement 1A, Figure 5—figure supplement 1A).

Of the expressed genes, 64% showed ubiquitous mRNA distribution in ovary cells throughout

oogenesis (ubiquitous), but we also observed mRNA expressions restricted to subsets of cells (cellular)

and mRNAs that asymmetrically localized in the cytoplasm (subcellular) or to the nuclei of cells (nuclear).

Subcellular mRNA localization affected 790 mRNAs (22%) but was limited to small number of

subcellular domains (Figure 1B–C). The largest group was 591 mRNAs that were enriched in the oocyte

portion of the syncytial egg-chamber during early oogenesis (fwe, Imp, Shroom). At this stage, the

microtubule minus ends of the polarized microtubule cytoskeleton are also concentrated in the oocyte

(reviewed in Steinhauer and Kalderon, 2006). At mid-oogenesis the oocyte establishes its own

polarized microtubule cytoskeleton (Steinhauer and Kalderon, 2006) and at this stage, we observed

106 mRNAs enriched towards the anterior and 119 mRNAs enriched at the posterior pole. The quality of

these localizations ranged from tight (mus210, Lcp65Ac) to diffuse association (yemalpha, fs(1)N) at the

anterior-dorsal, the entire anterior or the posterior cortex. mRNAs were also detected in subcellular

domains of the nurse (msk, spoon) and somatic epithelial cells (CG43693, CG12171). For few mRNAs,

we observed previously unknown ovary accumulations, for example mRNAs in cytoplasmic granules

(CG17494), depleted from the oocyte (Nacalpha), showing cortical enrichment (Actn), or forming ring-

like structures (CG14639, Figure 1B’, Figure 2—figure supplement 1E).

The 309 mRNAs (13%) of the cellular category were predominantly expressed in the somatic

epithelium (follicle cells) and often restricted to a subset of epithelial cells at specific oogenesis stages

(Figure 2A,B). 191 RNAs were detectable specifically in ovarian nuclei, mostly of the endocycling,

polyploid nurse cells, but also in epithelial cells and in 29 cases in the oocyte nucleus (Figure 2C,D).

The RNAs in ovarian nuclei were visible from stage 9 of oogenesis onwards and their localization

changed appearance from stage 9 to 10 (Figure 2—figure supplement 1B). Nuclear patterns varied

from ring-like signal to dispersed foci or widespread distribution in the nucleoplasm and were not

linked to the chromosomal position of the genes (Figure 2—figure supplement 1C). Precursors of

micro RNAs and long non-coding RNAs also showed varying degrees of nuclear enrichments

(Figure 2—figure supplement 1D).

In summary, our screen revealed countless new instances of tissue-specific gene expression and

mRNA localization in the ovary. The relatively low number of different subcellular localization

sites allowed us to group mRNAs into subcellular localization gene-sets containing tens to hundreds

of co-regulated genes.

Global features of localized mRNAs
The division of RNAs into gene sets enabled us to address whether genes within each class are

functionally related (Figure 1D, Figure 1—figure supplement 2). Gene Ontology (GO) analysis
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showed that the subcellular gene set is distinct from the cellular and the nuclear gene sets. Consistent

with their respective expression, cellular genes are enriched for epithelial development, lipid

trafficking and cuticle formation, nuclear genes for RNA regulatory processes and the subcellular gene

Figure 1. Summary of the fluorescent in situ hybridization (FISH) screen in ovaries. (A) Summary of key numbers of the screen. For each of the 6091 FISH

experiments, we annotated the signal as no signal, ubiquitous, or specific. Specific and some ubiquitous signals were imaged. (B) Schematic of exemplary

subcellular expression patterns. (B′) Exemplary subcellular expression patterns. In the syncytial early egg-chamber, 591 mRNAs are transported from the

site of transcription in the nurse cells into the developing oocyte: mRNAs are either restricted to a cortical domain (fwe) or detectable in the entire

ooplasm (Imp). mRNAs also simultaneously enriched in the oocyte portion of the syncytial egg-chamber and at the apical membrane of the somatic

epithelial cells (Shroom). Five mRNAs were specifically excluded from the oocyte portion and enriched in the nurse cells (Nacalpha). Few mRNAs were

enriched anterior in stage 2–7 oocytes (mus209). mRNAs showed ubiquitous granules in the cytoplasm (CG17494) or rarely ring-like staining patterns

(RpS6, inset [10 × 10 μm] showing only the RNA channel). mRNAs enriched around the nucleus of the oocyte and/or the nurse cells (msk) varying from

a ring around the entire nucleus to restricted localization in sub-areas of the perinuclear space (spoon). Apical enrichment (CG43693) or basal localization

(CG12171) was detected in late epithelial somatic cells. Anterior and posterior RNA localization varied between diffuse (fs(1)N, yemalpha) and tight cortical

enrichments (Lcp65Ac, mus210). (C) Distribution of subcellular localized mRNAs in subcategories. Note: mRNAs can appear in more than one subgroup.

(D) GO-term enrichment analysis of ubiquitous, cellular, nuclear, and subcellular gene sets.

DOI: 10.7554/eLife.05003.003

The following figure supplements are available for figure 1:

Figure supplement 1. Experimental outline and database features.

DOI: 10.7554/eLife.05003.004

Figure supplement 2. GO-term enrichment analysis for gene sets.

DOI: 10.7554/eLife.05003.005
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Figure 2. Summary of cellular and nuclear expression patterns. (A,C) Exemplary FISH experiments for the cellular

(A) and nuclear (C) expression sets. RNA is shown in green and the DNA (labelled with DAPI) is shown in magenta.

Scale bars: 30 μm. (A) tutl is expressed in cap cells at the tip of the germarium, while Ect3 mRNA is detectable in the

somatic epithelial cells of the germarium. Several mRNAs are expressed in mosaic pattern, indicating cell cycle

control in somatic epithelial cells (His3.3A, Obp99a) and in nurse cells (His3.3A). Expression in the anterior and

posterior follicle cells is often seen simultaneously (CG11275, CG11147, Nep2). Some mRNAs were expressed only in

anterior follicle cells that become migratory border cells (Men-b) or in posterior follicle cells (CG9336). CG8303 is

expressed in the somatic cells destined to become columnar epithelium. aop is exclusively seen in follicle cells that

will give rise to the squamous epithelium and several mRNAs are specifically expressed here at later stages (ImpL2,

CG7997). mRNAs are also expressed in cells forming the border of columnar and squamous epithelial cells (inx2).

(C) Nuclei enrichments of RNAs in nurse cells varies from a ring-like expression (CG11076) to foci in a discrete area

(Dbp80), widespread foci (CG10962), or nucleoplasm signal (Rm62). RNAs are also detectable in epithelial cell nuclei

(pip) and for 28 RNAs also in the oocyte nucleus (e.g., CG5819). Greyscale image shows the respective RNA staining

only in a zoomed-in view. (B) The cellular gene set was subcategorized according to the specific cellular expression

Figure 2. continued on next page
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set for reproductive processes, cytoskeleton organization, and cell cycle regulation. Anterior and

posterior gene sets differed: anterior genes were enriched for microtubule terms and, being localized

in proximity to the meiotic oocyte nucleus, are additionally associated with chromosome and cell cycle

regulation terms. The posterior mRNAs associated strongly with signalling, cell fate commitment, and

membrane organization terms. The GO analysis suggests that mRNAs that co-localize in the

cytoplasm are functionally related.

We next asked whether the proteins encoded by the mRNAs show physical interactions. To this

end, we analysed the protein interaction data (mentha interactome database [Calderone et al.,

2013]), which revealed that proteins of the posterior gene set participate in significantly more

protein–protein interactions than of the anterior gene set (Figure 3B). This suggests that the close

proximity of their transcripts in the cell could be of functional importance. The gene sets defined by

our ovary screen also maintained distinct expression patterns during embryogenesis. Genes of the

subcellular sets are enriched among genes expressed in the central nervous system and epithelia,

suggesting an interesting relatedness of these polarized tissues (Figure 3A, Figure 3—figure

supplement 1). Thus, gene sets defined by ovary expression are co-regulated also beyond oogenesis.

We next investigated whether there are further global features that could set localized mRNAs

apart from ubiquitous ones. Ovarian expressed mRNAs differed in their expression levels over several

orders of magnitude. Using our stage specific 3Pseq data, we analysed the expression levels for each

gene set. Ubiquitous and subcellular mRNA expression levels were overall comparable however, the

posterior class was expressed significantly higher than all other localization classes, including the

related anterior mRNAs (Figure 3C–C’, Figure 3—figure supplement 2A). Considering how

seemingly inefficient posterior transport is (Zimyanin et al., 2008), higher expression levels could be

an additional measure to ensure that enough mRNAs will eventually localize. In particular, the late

phase accumulation of posterior localized mRNAs in the enlarged oocyte (Forrest and Gavis, 2003;

Sinsimer et al., 2011) could benefit from high expression levels.

Yet, expression level alone cannot account for subcellular localization. We therefore compared the

gene-level variables of each localization class and revealed that subcellular mRNAs had significantly

longer 3′UTR sequences and this was more pronounced for the posterior localization class (Figure 3D,

D’). The posterior gene set further showed longer gene structures, longer 5′UTRs, longer exons and
introns, a higher number of exons and introns, and a higher intron proportion compared to ubiquitous

and anterior mRNAs (Figure 3—figure supplement 2B–H). Consistent with the observation that

localized mRNAs are enriched in non-coding portions, the exon proportion was the highest in the

ubiquitous gene set (Figure 3—figure supplement 2I). The high intron proportion of posterior genes

is particularly interesting in light of the recent finding that the stable deposition of the exon junction

complex, required for posterior oskar mRNA localization, is correlated with long intron-containing

genes (Ashton-Beaucage et al., 2010; Ghosh et al., 2012). Localized genes not only had longer 3′
UTRs, but also showed higher 3′UTR sequence conservation than ubiquitous genes, and again this was

significantly more pronounced in the posterior gene set (Figure 3E,E’). We also observed longer and

more conserved 3′UTRs in the embryo localized mRNAs (apical, posterior) compared to the embryo

ubiquitous mRNAs (Figure 3—figure supplement 3A,B based on data from [Lecuyer et al., 2007]),

indicating that these features are not specific to oocyte-localized mRNAs.

The posterior gene set shows clearly distinct functional and gene architectural features compared

to all the other categories. We therefore decided to investigate whether the cytoplasmic localization

of the novel candidate mRNAs depends on the known components of RNA localization machinery in

the oocyte. First, we probed the dependency of mRNA localization on the microtubule cytoskeleton.

Transport of known mRNAs towards the anterior and the posterior pole of the oocyte requires an

intact microtubule cytoskeleton (reviewed in Steinhauer and Kalderon, 2006). We observed that

Figure 2. Continued

pattern. Individual mRNAs can fall into several of these subgroups. (D) Instances of nuclear RNA enrichments in

nurse cells, epithelial cells, and the oocyte.

DOI: 10.7554/eLife.05003.006

The following figure supplement is available for figure 2:

Figure supplement 1. FISH screen results and controls.

DOI: 10.7554/eLife.05003.007
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Figure 3. Localized mRNAs show gene set specific features. (A) Linear hierarchy plot (Tomancak et al., 2007) showing stage- and tissue-specific re-

expression of the ovary gene sets in embryogenesis. (B) Protein interaction analysis per gene set revealed that posterior genes, but not anterior genes,

share significantly more protein–protein interactions than would be expected by chance. (C) Boxplot showing the median mRNA expression level is

significantly higher in the posterior gene set compared to anterior mRNAs (C′: Kolmogorov–Smirnov p-value: 3.9e-06). Shown are 3Pseq

quantifications from late ovary mRNA (for early, full ovaries and early embryogenesis see Figure 3—figure supplement 2A). For description of gene

sets see Supplementary file 1. (D–E) Distributions of median 3′UTR length (D) and conservation of the 3′UTR sequence (E, across 24 Drosophila

species) for gene sets. (D′–E′) Results of a non-parametric randomization test to show that (D′) ubiquitous and subcellular genes (p-value = 0) and

anterior and posterior genes (p-value = 0.0018) have significantly different median 3′UTR lengths (i.e., no or little overlap of densities) and (E′) that
Figure 3. continued on next page
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the localization of all new anterior and posterior candidate mRNAs is lost in colchicine-treated

egg-chambers, while ubiquitously distributed mRNAs or RNA foci in the nucleoplasm, that lacks

a microtubule cytoskeleton, were unaffected by the colchicine treatment (Figure 3—figure

supplement 4A–C, Supplementary file 8).

However, mRNA localization requires more than an intact microtubule cytoskeleton. We therefore

next investigated the localization of candidate posterior mRNAs in mutant egg-chambers that affect

the localization of the known posterior mRNA, oskar. Posterior transport of oskar mRNA requires

components of the exon junction complex, the RNA binding protein Staufen and an intact

microtubule cytoskeleton (van Eeden et al., 2001; St Johnston et al., 1989; Ephrussi et al., 1991;

Hachet and Ephrussi, 2001, 2004; Micklem et al., 2000). The posterior enrichment of the selected

candidate mRNAs was severely reduced in egg-chambers mutant for an exon junction complex

component (Btz1), that has a disrupted cytoskeleton (SpireRP) or that lack Staufen (StauD3) protein. The

localization of all candidate posterior mRNAs resembled the mis-localized oskar mRNA in these

mutant conditions (Figure 3—figure supplement 5A).

Oskar protein is a known to be required for the assembly of functional pole plasm and the

subsequent localization of mRNAs such as nanos (Ephrussi et al., 1991; Ephrussi and Lehmann,

1992). Therefore, we next investigated whether the novel candidate mRNAs also require Oskar

protein for their posterior localization. We used genetic combinations that result in lack of Oskar

protein (osk84/Df(3R)pXT103). In these Oskar protein deficient egg-chambers oskar mRNA is initially

localized at the posterior pole at stage 9. However, the mRNA becomes successively detached from

stage 10 onwards due to the lack of Oskar protein-mediated RNA anchoring (Ephrussi et al., 1991;

Vanzo and Ephrussi, 2002). The novel candidates initially localized in the absence of Oskar protein at

stage 9 but their posterior localization was reduced from stage 10 onwards (Figure 3—figure

supplement 5B). Based on these experiments, we propose that the initial posterior localization of the

candidate mRNAs, unlike the localization of nanos mRNA, is independent from Oskar protein.

Interestingly, if we completely remove posterior oskar RNA from the egg-chambers (oskA87/Df(3R)

pXT103) (Jenny et al., 2006), we do not observe posterior signal for any of the novel candidate mRNAs,

both at stage 9 and stage 10 (Figure 3—figure supplement 5B). We propose that the novel

candidate mRNAs require oskar mRNA to initially reach the posterior pole and Oskar protein to

remain stably anchored at the posterior pole beyond stage 9. The notable exception is zpg mRNA,

that adopts posterior localization only at late stage 9/early stage 10 egg-chambers. Based on our

experiments, we cannot determine whether zpg mRNA requires oskar mRNA or protein for its

localization.

mRNAs do not change transcripts but change localization during
oogenesis
Our findings revealed that co-localized mRNAs share global features and have similar cytoplasmic

requirements for their localization. However, as seen with zpg, mRNAs within gene sets differ in the

precise timing and consequently regulation of their localization. We therefore investigated the

Figure 3. Continued

ubiquitous genes are significantly less conserved in their 3′UTRs than subcellular genes (p-value: 0) and posterior genes show higher conservation than

anterior genes (p-value: 0.0032).

DOI: 10.7554/eLife.05003.008

The following figure supplements are available for figure 3:

Figure supplement 1. Ovary gene sets have specific expression patterns during embryogenesis.

DOI: 10.7554/eLife.05003.009

Figure supplement 2. Gene features of subcellular enriched mRNAs.

DOI: 10.7554/eLife.05003.010

Figure supplement 3. Embryo localized mRNAs also have long, conserved 3′UTRs.
DOI: 10.7554/eLife.05003.011

Figure supplement 4. Cytoplasmic but not nuclear mRNA localization requires the cytoskeleton.

DOI: 10.7554/eLife.05003.012

Figure supplement 5. Posterior mRNA localization is impaired in posterior localization pathway mutants.

DOI: 10.7554/eLife.05003.013
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time-course of mRNA localizations in detail. In the oocyte, mRNAs can be oocyte-enriched, anterior or

posterior localized (Figure 4A). By comparing exemplary mRNAs across oogenesis time points

(Figure 4A’), we observed that after being oocyte-enriched mRNAs could enrich at either anterior

(Dok) or posterior pole (ZnT35C), but also de-localize and show ubiquitous distribution (exu).

Conversely, mRNAs that showed ubiquitous distribution during early oogenesis could adopt posterior

localization at later stages (aret). These examples show that multiple combinations of mRNA

distributions from early to late oogenesis are possible and mRNAs that belong to the same gene set

early are not necessarily grouped together at other time points.

The same dynamics was also apparent when we compared localizations beyond the oocyte

(Figure 4B). Maternal mRNAs that eventually enriched at the posterior pole during early

embryogenesis showed any combination of mRNA distributions during oogenesis (Figure 4B’). For

example, the anterior, ubiquitous and perinuclear mRNAs Bsg25D, ssp2 and CG14814 are all eventually

enriched at the posterior pole in early embryos (Lecuyer et al., 2007; fly-fish.ccbr.utoronto.ca).

Figure 4. mRNA localizations change across time-points. (A) Schematic of changing mRNA distributions in germline

cells (nurse cells, oocyte) in stage 4–7 and stage 9–10 egg-chambers. (A′) Exemplary mRNAs that show diverging

combinations of mRNA localizations over the course of oogenesis: After initially being oocyte enriched at stage 2–7,

Dok mRNA becomes detectable at the anterior pole, ZnT35C mRNA at the posterior pole and exu mRNA becomes

ubiquitously distributed at stage 9/10. aret mRNA being ubiquitously distributed at stage 2–7 becomes weakly

detectable at the posterior pole. (B) Schematic of mRNA distributions in ovary and embryonic cell types. (B′) mRNA

expressions in ovarian and embryonic cells. All embryo data are from http://fly-fish.ccbr.utoronto.ca/. Sdc mRNA is

localized where microtubules minus ends are enriched (Callaini and Anselmi, 1988; Clark et al., 1997; Delanoue

and Davis, 2005) in the syncytial egg-chamber, in epithelial cells of the ovary and of the stage 4–5 embryo. Bsg25D

mRNA is oocyte enriched, then localizes at the anterior pole in the oocyte but enriches at the posterior pole in the

early embryo. Similarly, ssp2mRNA enriches in the oocyte during oogenesis and localizes towards the posterior pole

in early embryos but during late oogenesis undergoes a ubiquitous phase. CG14814 mRNA is initially ubiquitous,

then shows perinuclear localization and in early embryos is enriched at the posterior pole. (A′–B′): FISH showing the

RNA in green and DNA (labelled with DAPI) in magenta. Scale bar 30 μm. Embryo data are from http://fly-fish.ccbr.

utoronto.ca/ (Lecuyer et al., 2007).

DOI: 10.7554/eLife.05003.014
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The changes in mRNA localization status within the oocyte over time prompted us to ask whether

this could be explained by transcriptional regulation during oogenesis. Are we observing different

transcript variants that differ in their cytoplasmic distribution? Alternative splicing was previously

shown to differentially regulate mRNA localization by producing localized and non-localized isoforms

of the same gene (Whittaker et al., 1999; Horne-Badovinac and Bilder, 2008). We therefore probed

our stage-specific transcriptomic data for changes in gene and isoform expression. For the exemplary

mRNAs shown in Figure 4, we could not detect significant changes in the expressed isoform

(measured by RNAseq) or the 3′UTR end (measured by 3Pseq; Figure 5A).

We next asked whether global transcriptional changes occur that could explain differential mRNA

localization during oogenesis. In agreement with results from gene expression analyses of whole

ovaries measured by microarray (Chintapalli et al., 2007) and RNAseq (Graveley et al., 2011), we

find that about half of the D. melanogaster genes were expressed at each sampled time point and the

vast majority of these expressed transcripts, 85%, were detectable at every time point from early

oogenesis until embryogenesis (Figure 5—figure supplement 1B,C). Also the expression levels

across time points were highly correlated (Figure 5B, Figure 5—figure supplement 1D), suggesting

that the transcriptome remained constant throughout oogenesis. Significant up- or down regulation

of gene expression levels was only observed for 626 transcripts and among them are only rare

examples of germline-specific transcripts (padj < 0.1, Figure 5B: black data points, Supplementary

files 2–4, Figure 5—figure supplement 1E–F). Instead, GO-term analysis associated genes under

differential expression with extracellular matrix, vitelline membrane, and cuticle formation, consistent

with their expression in the somatic epithelial cells (Figure 5—figure supplement 1E). Across the

entire oogenesis, we also could not detect shortening or lengthening of the 3′UTRs, changes in the

number of transcript ends and while 55% of genes were expressed in alternative isoforms, the vast

majority (>99%) of genes showed no change in isoform expression (Figure 5C–D, Figure 5—figure

supplement 1G–J, Supplementary files 5–7). Furthermore, the ubiquitous gene set showed similar

transcript diversity as subcellular genes. Therefore, changing expression levels, isoform expression,

and alternative polyadenylation cannot explain the changing localization of the majority of mRNAs.

The stability of the transcriptome from egg chamber formation until the onset of zygotic transcription

also suggests that oogenesis is not dependent on transcriptional changes but rather on post-

transcriptional regulation of the expressed transcripts, in particular through mRNA localization.

Global changes of mRNA localization during development
A substantial portion of expressed mRNAs is localized during oogenesis. Given that the transcriptome

is rather stable yet individual mRNAs show changing localizations across oogenesis, we next analysed

mRNA localizations during this period globally. Within one cell, the oocyte, only few mRNAs are

localized at all time points, while the majority of localizations is temporary with intermittent ubiquitous

phases (Figure 6A). The oocyte has a highly polarized microtubule cytoskeleton that undergoes

dramatic re-polarizations across oogenesis (reviewed in Steinhauer and Kalderon, 2006). All mRNA

localizations we observed were at sites that are known to enrich for microtubule plus or minus ends.

Microtubule orientation is a hallmark of cell polarity. In order to compare localizations across

oogenesis stages, we categorized the localized mRNAs as being in proximity to microtubule minus- or

plus- ends (plus and minus category Figure 6B, inset). We do not show direct association of all

localised mRNAs with microtubules. However, microtubule cytoskeleton is required for RNA

localization (Steinhauer and Kalderon, 2006) and the oocyte enriched, anterior and posterior

localizations categories correspond to where the microtubule minus and plus ends are enriched

(Theurkauf et al., 1992; Januschke et al., 2006).

At the different time-points of oogenesis the number of localized mRNAs varied; it was the highest

at stage 2–7 and dropped to around 100 mRNAs at stage 8 and increased only slightly again towards

stage 10 of oogenesis (Figure 6B). Also, the number of mRNAs in the minus and plus categories

changed yet at different rates: during early oogenesis, the majority of mRNAs are in the minus

category but the number of genes in this category rapidly dropped at stage 8 and further decreased

throughout oogenesis. In contrast, the mRNAs in the plus category were increasing towards the end

of oogenesis (Figure 6B).

To understand these trends in more detail, we plotted individual mRNAs over the course of

oogenesis and clustered them by the localization category. Using this ‘localization-dendrogram’, we

revealed that the changing localization of single mRNAs (Figure 4) is a global feature of localized
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mRNAs and occurred at all stages of oogenesis (Figure 6C). Using the localization dendrogram, we

observed several groups: mRNAs that remained in the minus category at all time points, mRNAs that

switched from minus category to ubiquitous distribution (this was by far the biggest category), mRNAs

that switch from minus to plus category (with and without intermittent ubiquitous distribution) and

ubiquitous mRNAs that become localized and affiliated with the plus category. It is noteworthy that

such de novo localization of an initially ubiquitous transcript was not observed for the minus category.

The dendrogram also revealed that such changes in localization occurred at all time points of

Figure 5. mRNA expression is stable during oogenesis. (A) Changing localization of ZnT35C, exu, aret, Dok, Bsg25D and ssp mRNAs across time-points

(see Figure 4) does not coincide with a change in transcript expression: the expressed 3′UTRs (sampled by 3′prime sequencing, red) and transcript

isoforms (sampled by RNAseq, green) do not change from early oogenesis to late oogenesis/early embryogenesis. (B) Pair-wise correlation of early/late

3Pseq data revealed that the stage-specific transcriptomes were highly similar (Pearson Correlation: 0.79); only few genes, highlighted in black, were

significantly up- or down-regulated (p-value adjusted for multiple testing <0.1). (C) Correlation analysis of expressed transcript isoform (deduced from

RNAseq data) revealed that from early to late ovaries almost no transcript-isoforms significantly changed in their expression level. Transcripts with

significant changes are shown in black. (D) Only ∼300 genes (early-full: 298; late-full: 308; full-embryo: 346) changed their mean-weighted 3′UTR length

that is indicative of an alternative polyadenylation. Alternative UTR form usage across oogenesis was found for 1 (early-late oogenesis)/4 (late-full

oogenesis) anterior mRNAs (red) and for 4 (early to late oogenesis)/5 (late to full oogenesis) posterior mRNAs (blue).

DOI: 10.7554/eLife.05003.015

The following figure supplement is available for figure 5:

Figure supplement 1. The transcriptome shows little variation over the course of oogenesis.

DOI: 10.7554/eLife.05003.016
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Figure 6. mRNA localizations are changing across cell types and within cells over time. (A) In the oocyte, most mRNAs of the subcellular category also

have phases with ubiquitous mRNA distribution. (B) The number of localized mRNAs in the oocyte varies over oogenesis time points. mRNAs are grouped

according to their relative localization with respect to the polarised microtubule cytoskeleton (Steinhauer and Kalderon, 2006). Red = mRNAs that

localize where microtubule minus ends are enriched (minus category), blue = mRNAs in proximity of microtubule plus ends (plus category). (C) Time

course of clustered single mRNA localizations. Each line represents an mRNA, indicated below are the oogenesis time-points. Localizations to the poles of

the oocyte are colour-coded in red (minus category) or blue (plus category); ubiquitous phases of the mRNA are shown in grey. A summary of the trend of

mRNA localizations in each cluster and the number of entries is shown to the right. (D) Overlap of mRNAs localized in either germline (oocyte, nurse cells),

epithelial (follicle cells) and embryonic cell types shown as a Venn-diagram: Only 5 (<1%) mRNAs localized in all sampled cell types, 89 (14%) mRNAs

localized in at least two cell types. The largest group in each cell type was mRNAs localized in proximity to sites known to be enriched for microtubule

minus-ends (Callaini and Anselmi, 1988; Clark et al., 1997; Delanoue and Davis, 2005); in the early egg-chamber: oocyte-enriched; in somatic epithelial

follicle cells: apical; in embryonic epithelial cells: apical. Only 3 mRNAs (<1%) showed this localization in all cell types, 29 mRNAs (9%) in two cell types.

DOI: 10.7554/eLife.05003.017

The following figure supplement is available for figure 6:

Figure supplement 1. Changing localization of mRNAs in ovaries and embryos.

DOI: 10.7554/eLife.05003.018
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oogenesis: mRNAs could switch from minus category to ubiquitous distribution at stage 8, 9 or 10 or

enrich in the plus category, that is, adopt posterior localization at stage 9 or 10 of oogenesis. These

localization time-courses recapitulate the localization pattern of the well-characterized, singular

mRNAs such as oskar, gurken, nanos, and bicoid; however, our data show that each of them occurs for

multiple co-regulated mRNAs.

It has been shown that mRNA localization to the oocyte portion of the syncytial egg-chamber, to

the apical side of somatic epithelial cells of the ovary and of embryonic epithelial cells in the embryo

(stage 4–5) is functionally equivalent (Bullock and Ish-Horowicz, 2001; Jambor et al., 2014). Indeed,

we observed mRNAs that were oocyte enriched and apical in epithelial cells (Figure 4B’ Sdc). How

general is this phenomenon? Does the majority of mRNAs localize to equivalent sites in different cell

types or is it a property of singular mRNAs? To address these questions, we use again the microtubule

polarity as a universal proxy of cell polarity that enables comparison of equivalent localization sites

across tissues. This allows us to extend the minus and plus categories in ovaries to include data from

embryos (Lecuyer et al., 2007). Minus category includes additionally apical sets from embryo and

plus category includes pole plasm and basal embryonic enrichment categories (Figure 6—figure

supplement 1B). We do not include pole cell annotations in the plus category since this is not

a subcellular localization but rather a cell-specific expression pattern. The posterior pole plasm and

anterior embryo categories reflect the polarity of embryonic body axis and do not imply any

microtubule-related localization mechanism. It is for instance known that some RNAs become

restricted to the posterior pole by selective degradation protection mechanism (reviewed in Lipshitz

and Smibert, 2000). This grouping enables us to compare localization of mRNAs between life cycle

stages (ovaries and embryos) and cell types (germline and epithelial cells).

To address whether oogenesis localized transcripts remain localized into early embryogenesis, we

extended the localization dendrogram to stage 1–3 (maternally loaded transcripts) and stage 4–5

(after the onset of zygotic transcription) of embryogenesis (Figure 6—figure supplement 1A,B). This

revealed that only very few of the minus and plus category mRNAs remained localized in

embryogenesis: only three of the minus category mRNAs and a few more in the plus category. The

plus category increased slightly at stage 1–3 of embryogenesis as a few ubiquitous oogenesis

transcripts became localized. A rise of mRNAs in the minus category was only detectable at stage 4–5

of embryogenesis (apical localization) when the initiation of zygotic transcription occurs. We conclude

that mRNAs are differentially localized in different developmental contexts.

Since many oocyte localized genes are also expressed in the somatic epithelium of the ovary and

again during embryogenesis, we next wondered whether localization is preserved in different cell

types. We took advantage of the wealth of FISH data now available for Drosophila and combined our

data for the somatic epithelial cells and the germline (nurse cells, oocyte) cells of the ovary with the

FISH screen performed on embryonic cells (Lecuyer et al., 2007). These screens in combination

covered 9114 genes of which 1674 mRNAs showed subcellular localization at least at one time point

either during oogenesis or embryogenesis and thus are ‘localization competent’ (Figure 6—figure

supplement 1C). Filtering of the data sets for mRNAs that were probed by FISH in all three cell types

resulted in 720 mRNAs of which only five mRNAs were localized in all three, and 89 mRNAs were

localized in two cell types (Figure 6D). Strikingly, the data also show that with respect to microtubule

polarity, only three mRNAs were in each cell type localized to the side where also microtubule minus

ends are enriched (Dok, Sdc, CG12006; Figure 6D). Other types of localization, for example, nuclear

RNA enrichment, had similarly minimal overlap across cell types (Figure 6—figure supplement 1D).

The relative lack of mRNA localization to equivalent subcellular destinations indicates that while many

mRNAs are localization competent, their localization appears to be cell type specific and

developmentally regulated.

Discussion
We generated a comprehensive resource, the Dresden Ovary Table (DOT, http://tomancak-srv1.

mpi-cbg.de/DOT/main.html) that includes stage-specific transcriptomic and image-based RNA

expression and subcellular localization data for the entire oogenesis from cystoblast division to the

beginning of embryogenesis. Our resource consists of 52,000 carefully selected, annotated, stage-

specific images of ovarian gene expression, and localization patterns that can be searched online or

downloaded for in-depth computational analysis. The curated images are linked to 32,000 raw 3D

image stacks available for interactive browsing that will facilitate further discovery. The ovary data
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set is integrated with similar data on gene expression and RNA localization patterns in Drosophila

embryos (Tomancak et al., 2007) enabling comparisons between tissues on a gene-by-gene basis.

All visual expression patterns are described with controlled vocabularies facilitating searches and

grouping of co-regulated genes. Together, this resource represents one of the most comprehen-

sive databases of spatio-temporal gene expression patterns for two intensively studied

developmental systems. The vast majority of the patterns shown in DOT are novel, often providing

the very first data for computationally predicted genes. This makes the resource an excellent

starting point for in-depth mechanistic studies and for enrichment analysis of gene sets generated

in other genomics studies.

The global analysis of the annotation data allowed us to define gene sets of co-localized mRNAs and

show that localized, particularly posterior mRNAs, have a more complex gene structure, longer and

higher conserved non-coding features and higher expression levels than ubiquitous mRNAs. These

properties of localised mRNAs are significant for both the oogenesis and embryogenesis data sets.

Although they are not by themselves predictive of the localization status of individual mRNAs, it will be

interesting to examine these properties in other cellular and developmental contexts. Our analysis, for

example, predicts that the neuronal transcripts that must reach the distant synaptic compartments, would

encode long, highly expressed transcripts analogous to the posterior localization gene set in the oocyte.

Similarly to embryonic cells, ovarian cells also show prevalent subcellular mRNA localizations. In

contrast to the embryo system (Lecuyer et al., 2007), ovarian cells displayed more homogenous

subcellular enrichments. With few exceptions, the candidate mRNAs localized at sites known to be

enriched for either microtubule minus or plus ends. Curiously, we observed that the ovarian localized

mRNAs themselves are strongly enriched for genes with cytoskeletal functions, as were localized

mRNAs in the embryo (Lecuyer et al., 2007). This is particularly interesting in light of a recent model

suggesting a self-organizing principle for the polarized cytoskeleton in mouse neurites through

localized mRNAs and localized translation (Preitner et al., 2014). A local source of cytoskeletal

proteins, for example, in the early oocyte could be beneficial to allow the rapid re-organization and

growth of the cytoskeleton at the transition from early to mid-oogenesis. Next to cytoskeletal

regulating factors, anterior mRNAs that localize in proximity to the meiotic oocyte nucleus were

enriched for terms assigning a cell cycle regulating function. It will be interesting to investigate

whether anterior mRNA localization affects meiosis, a process shown to be regulated through

translational control (Tadros et al., 2007; Benoit et al., 2008; Cui et al., 2013; Kronja et al., 2014).

Curiously at stage 9 and 10, we also identified mRNAs enriched in the nuclei of the oocyte. These

mRNAs could either be nurse cell transcripts imported into the meiotic oocyte nucleus or else the

controversial instances of transcription from the meiotic nucleus (Saunders and Cohen, 1999;

Cáceres and Nilson, 2005).

Cross-tissue and time-course analyses revealed the changing mRNA localization profile during

development and that the well-described, canonical examples of mRNA localization in the ovary

(Berleth et al., 1988; St Johnston et al., 1989; Ephrussi et al., 1991; Neuman-Silberberg and

Schüpbach, 1993) represent classes of co-regulated mRNAs. Considering that the transcriptome

appears stable, we find it surprising that the same mRNA isoforms and thus the same primary

sequences show such differential localizations during oogenesis. Such pervasive changes in

localization status of mRNAs contradict the model that mRNAs localize through sequence encoded

mRNA zipcodes (reviewed in Medioni et al., 2012) and that the general localization machinery is

active in all cell types analysed (Bullock and Ish-Horowicz, 2001; Jambor et al., 2014). It will

therefore be interesting to investigate whether specificity of mRNA localization is based on selective,

cell-type-specific mRNA regulation machinery or a zipcode signal that is under specific temporal

control. mRNAs can, for example, harbour two consecutively acting localization signals that direct

mRNAs sequentially to opposing microtubule ends (Ghosh et al., 2012; Jambor et al., 2014).

However, how one signal is de-activated and the other activated is yet unknown. Alternatively, only

few mRNAs could have a zipcode for their localization and the vast majority would be co-transported

with these regulated mRNAs in large transport granules. Finally, it is also conceivable that subcellular

mRNAs could be locally trapped by unidentified physical properties of subcellular cytoplasmic

domains or that similarly to the early embryo, some localization patterns result from protection from

general cytoplasmic degradation (reviewed in Lipshitz and Smibert, 2000). All these mechanisms

could be active consecutively or in combination during development, which could result in the

observed diversity in mRNA localization.
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Regardless of the specific mechanisms of mRNA transport, our genome-wide analysis shows

that mRNA localization is a phenomenon contingent on the cellular context and is most likely

highly regulated during development. It also highlights that oocytes do not rely on transcriptional

but on post-transcriptional mechanisms to regulate gene expression, in particular (but likely not

limited to) mRNA localization. Our resource enables the transition from deep mechanistic

dissection of singular mRNA localization events towards systemic examination of how mRNAs

transcribed in the nucleus distribute in cells and how this affects cellular architecture and cell

behaviour in development.

Materials and methods

Mass isolation of Drosophila egg-chambers
Flies were grown under standard laboratory conditions, fed for 2 days with fresh yeast at 21 and 25˚C.

For isolation of egg-chambers, we developed a mass isolation protocol (see below) that allows us to

enrich separated egg-chambers of all stages.

RNA isolation, sequencing, and analysis
We isolated total mRNA using TRIreagent (Sigma Aldrich, Germany) from stage 1 to 7 egg-chambers,

including the germline stem cells, from stage 8 to 10 egg-chambers and from total ovaries containing

mainly stage 11 and older egg-chambers. Additionally, RNA from 0 to 2 hr embryos was isolated. We

used two complementary mRNA sequencing approaches; standard whole mRNA sequencing (RNAseq)

and a sequencing method, 3Pseq, that captures specifically the sequence adjacent to the poly(A) tail.

Our 3Pseq protocol is similar to the SAPAS method described previously (Fu et al., 2011). In contrast to

SAPAS, total mRNA was fragmented chemically, resulting in 200 nucleotide long molecules. cDNA was

generated and amplified using a polyT primer terminating with a dinucleotide made of non-T followed

by a random base and a 5′ template switch primer; both primers containing Illumina adaptors. This

allowed us to capture each expressed polyadenylated mRNA once and thereby precisely quantify

expression level (Vineeth Surendranath and Andreas Dahl, personal communication). Of the ∼50 million

(3Pseq) and 100 million (RNAseq) Illumina reads, we mapped 70% (3Pseq) and 90% (RNAseq) to the D.

melanogaster release 5.52 genome with Bowtie. Quantification was done using HTSeq (Anders and

Huber, 2010). Normalization and differential expression was done using DESeq (Anders and Huber,

2010). Noise thresholds of 70 and 50 counts, for RNAseq and 3Pseq respectively, were derived from

observing the distributions of normalized counts. 3′UTR forms were assigned by overlaying annotated

Flybase UTR forms with 3Pseq reads lying within 200 nucleotides of the annotated 3′UTR end. Alternate

Polyadenylation events were called by calculating the mean-weighted UTR length (Ulitsky et al., 2012),

a difference of 200 nucleotides in the mean-weighted lengths corresponding to two biological stages

resulted in the gene being considered as undergoing Alternate Polyadenylation.

96-well fluorescent in situ hybridization
We used an established protocol for in situ hybridization in 96-well plates (Tomancak et al., 2007)

with minor adaptations (see below): we added an over-night wash step after hybridization, incubate

the anti-DIG antibody over night and used fluorescent tyramides for probe detection. Each

experiment was evaluated and imaged using a wide-field microscope (Zeiss Axioplan Imaging, Zeiss,

Germany) equipped with an optical sectioning device (DSD1, Andor Technology, UK) to generate

confocal-like z-stacks.

Annotation and database
We developed a controlled vocabulary to describe the cell types and relevant subcellular

structures for oogenesis for germline and somatic cells (http://tomancak-srv1.mpi-cbg.de/cgi-bin-

public/ovary_annotation_hierarchy.pl). Experiments showing no detectable FISH signal were

classified as ‘no signal at all stages’, while experiments resulting in a homogeneous signal

throughout oogenesis were classified as ‘ubiquitous signal at all stages’. Gene expression patterns

were imaged up to stage 10B of oogenesis after which cuticle deposition prevents probe

penetration. Each pattern that did not fall in the above-mentioned classes was imaged at all stages of

oogenesis in several individual egg-chambers per time point. We collected 3D images and used
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custom scripts in FIJI (Schindelin et al., 2012) to manually select and orient representative 2D images

that were uploaded to the Dresden Ovarian-expression Table (DOT) (http://tomancak-srv1.mpi-cbg.

de/DOT/main). The 2D images remain linked to the original image stacks and all the raw stacks that

were used to create an exemplary 2D image are available for interactive inspection using a simple

image browsing cgi script. Thus, the record of each in situ experiment for a given gene consists of

a set of 2D images assigned to a specific oogenesis stage and described using annotation terms

selected from the controlled vocabulary. For definition of broad classifications, subclass grouping

and embryo annotation class definition, see Supplementary file 1.

Binary matrix
The binary matrix summarizes the data of our screen in tabular form, which facilitates access to the

multidimensional image annotation data and integrates them with the RNAseq and 3Pseq data. The

binary matrix is a freeze from September 2013, based on which our analyses were done. The

binary matrix is provided as a flat file for independent bioinformatics investigation of the data set

(http://tomancak-srv1.mpi-cbg.de/cgi-bin-public/dump_binary_matrix_ovary.pl?db=insitu_ovaries).

The matrix contains the following information for each annotated gene: the FlyBase ID; the

expression levels as raw as well as normalized counts from RNAseq and 3Pseq experiments for early-,

late- and full ovaries and 0–2 hr embryos; the pair-wise comparison of expression over the time course

analysed, raw and normalized; the mean-weighted length indicating alternative 3′UTR expression.

The binary matrix additionally contains the annotation of FISH expression patterns. The expression terms

are from the controlled vocabulary (CV). If the CV term is true its value is equal to one, otherwise it is zero. If

a gene is annotated twice during the screen, the CV values are summed up and thus result in values >1.
We also provide information which clone was used to prepare the FISH probe; the classification into

broad annotation classes (‘no signal’; ‘ubiquitous’; ‘specific’, see ‘Results’. All reliable genes in these

categories were used for the analysis and the table in Figure 1A); classification of specific expression

patterns into subclasses (‘cellular’, ‘subcellular’, ‘nuclear’); reliability status: ‘reliable’ and ‘non-reliable’

(genes probed with more than one RNA probe that resulted in conflicting annotations [n = 247], were

labelled as ‘not reliable’. 185 ‘unreliable’ cases resulted from a ‘no signal’ vs ‘ubiquitous’ or ‘no signal’

vs ‘specific’ annotations, here we assume one of the probes to be non-functional. 57 ‘unreliable’

annotations were due to different probes giving a ‘ubiquitous’ and ‘specific’ signal, respectively. One

possibility is that probes were specific to different isoforms of the gene); pn-status: comparison of

sequencing and FISH results (TN = true negative: genes expressed below cut-off in either RNAseq or

3Pseq and giving a ‘no signal’ in FISH experiments. FN = false negatives: genes expressed below cut-

off in either RNAseq or 3Pseq and giving a ‘ubiquitous’ or ‘specific’ in FISH signal. TP = true positives:

genes expressed above cut-off in either RNAseq or 3Pseq and giving a ‘ubiquitous’ or ‘specific’ in FISH

signal. FP = false positives: genes expressed above cut-off in either RNAseq or 3Pseq and resulting in

a ‘no signal’ FISH annotation (see Figure 1—figure supplement 2A)).

GO-term analysis
For GO-term enrichment of gene sets we used the DAVID web server (Huang da et al., 2009). Terms

or features enriched at a false discovery rate (FDR) of ≤10% and/or a Benjamini p-value of <0.1 were

considered significant. Two stringencies were applied: the standard FDR cut-off (≤10%) or the more

stringent ‘Benjamini’ p-value (≤0.1).

Colchicine treatment and mutant analysis
Flies were fed for 15 hr at 25˚C with fresh yeast paste supplemented with 50 μg/ml colchicine

(Cha et al., 2002). The effect of colchicine on individual egg-chambers was determined by scoring

the detachment of the oocyte nucleus from the anterior cortex and its migration towards the centre of

the oocyte. To test posterior localization in mutants that affect oskar mRNA localization we used

ovaries from homozygous SpireRP (Manseau and Schupbach, 1989), StauD3 (St Johnston et al., 1991),

and Btz1 (van Eeden et al., 2001) flies. Further, we analysed egg-chambers from osk84/Df(3R)pXT103

flies lacking functional Oskar protein (Lehmann and Nüsslein-Volhard, 1986) and from oskar3′UTR/+;
oskA87/Df(3R)pXT103 flies that entirely lack endogenous oskar mRNA but develop past the early

oogenesis arrest characteristic for oskar RNA null flies due to a transgenic source of oskar 3′UTR
(Jenny et al., 2006) that is incapable posterior localization.
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Gene feature variable
For analysis of the annotated gene features, we used the flybase gff data (D. melanogaster release 5.52).

3′UTR length and conservation
For each gene, we defined the most used UTR form as the form that was most highly expressed

(relative to any other forms expressed from the same gene) and which had UTR ends that overlapped

by ± 200 bp with a FlyBase annotated UTR end. From this data, we extracted unique 3′UTR lengths for

each gene. Sequence conservation of 3′UTRs was measured as median phyloP scores (Pollard et al.,

2010) across all bases in the most used UTR form for 3′UTR sequence alignments across 24 Drosophila

species (using the D. melanogaster UTR co-ordinates). PhyloP scores were calculated using the R

package Rphast (Hubisz et al., 2011). Median UTR lengths and conservation scores were

bootstrapped by re-sampling genes with replacement from selected annotation sets 100,000

times and calculating median values for each re-sample. p-values were calculated as the number of

re-samples in which the annotation group with a lower median value was greater than or equal to the

re-sampled median of the annotation group to which it was being compared, divided by 100,000.

Protein interactions
A manually curated D. melanogaster protein–protein interaction network was downloaded from the

mentha interactome database (Calderone et al., 2013). To test whether genes belonging to certain

annotation groups participated in more protein–protein interactions within the annotation group than

expected by chance, we adopted the following randomization-based approach. A random sample,

the size of the number of genes in an annotation group that participate in at least one interaction in

the total protein interactome, was taken from the total set of genes belonging to the protein

interactome, and the number of protein interactions within this random sample was scored, minus

loops. This was repeated 100,000 times to generate a distribution of the number of interactions

obtained by randomly sampling the number of genes belonging to the annotation group from the

total interactome. The p-value was calculated as the number of randomly sampled networks that had

as many or more interactions as the real annotation group divided by 100,000.

Protocol: mass-isolation of egg-chambers

1. Flies were fed with fresh yeast and kept for 1–2 days at 25˚C.
2. Mixed sex flies were narcotized with CO2 for a maximum of 5 min before proceeding to step 3.
3. Narcotized flies were immediately immersed in 4% Formaldehyde in PBS (for FISH experiments) or in PBS

supplemented with 0.1% Tween-10 (for ovarian extract or total RNA isolation).
4. Flies were rapidly processed twice through a grinding mill adaptor at a fine setting (grade step ‘3’) on a standard

food processor (Kitchen Aid).
5. The ground flies were size-separated using 850, 450, and 212 μm sieves successively, resulting in a flow-through

highly enriched for separated egg-chambers of all stages.
6. Collection of mass-isolated material:

a. For FISH experiments, the co-isolation of testis and gut materials did not disturb the subsequent analysis and
the material was allowed to settle by gravity and to be fixed for additional 15 min in 4% Formaldehyde,
resulting in an overall fixation time of 20 min. The supernatant was then removed, the material washed twice
in 1×PBS and then transferred stepwise into 100% methanol for storage at −20˚C.

b. For isolation of total RNA, we manually selected egg-chambers at early stages (germarium to stage 7,
previtellogenesis), late stages (stage 9–10, postvitellogenesis), and full ovaries highly enriched for stage 11+
egg-chambers using a stereomicroscope. For each stage we collected at least 10 μl of total material that was
frozen immediately.

Protocol: 96-well plate fluorescent in situ hybridization (FISH)

1. Mass isolated egg-chambers were transferred stepwise (MeOH/PBT 3:1; MeOH/PBS 1:1; MeOH/PBS 1:3) into
PBT0.1% (each wash few minutes).

2. Egg-chambers were then washed 6× in PBT0.1%, 5 min each.
3. Egg-chambers were briefly washed in PBT0.1%/Hyb 1:1.
4. Pre-hybridization of egg-chambers was done in 200 μl hybridization buffer at 55˚C for 1 hr.
5. Egg-chambers were then added to a 96-well plate and hybridized over-night at 55˚C in 200 μl hybridization

buffer with Dextran Sulfate supplemented with 2 μl of probe.
6. 100 μl of warm Wash Buffer was added to each well and immediately removed together with probe-solution.
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7. Egg-chambers were rinsed once with 150 μl of Wash Buffer and then washed four times for one hour at 55˚C in
Wash Buffer.

8. Egg-chambers were then washed five times for 1 hr at 55˚C in 150 μl PBT0.1%, the last wash was done over-
night at 55˚C.

9. Egg-chambers were washed twice for 1 hr at room temperature in 150 μl PBT0.1%.
10. The primary antibody (Anti-Digoxigenin-POD Fab Fragments [Roche, Germany]) was diluted 1:200 in PBT0.1%

and egg-chambers were incubated in 200 μl antibody solution overnight.
11. Egg-chambers were rinsed with 150 μl of PBT0.1% and then washed ten times for 30 min at RT in 150 μl of

PBT0.1%.
12. For detection egg-chambers were incubated with Cy3-Tyramides (Perkin–Elmer, Boston Mass.) 1:70 diluted in

amplification buffer for 30 min.
13. Egg-chambers were then washed ten times for 30 min at room temperature in 150 μl of PBT0.1%. DAPI,

diluted 1:1000, was included in one wash step.
14. All PBT0.1% was removed and ∼50 μl mounting medium was added.
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Neuman-Silberberg FS, Schüpbach T. 1993. The Drosophila dorsoventral patterning gene gurken produces
a dorsally localized RNA and encodes a TGFa-like protein. Cell 75:165–174. doi: 10.1016/S0092-8674(05)
80093-5.

Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C, Lopez-Jones M, Meng X, Singer RH. 2014. Visualization of
dynamics of single endogenous mRNA labeled in live mouse. Science 343:422–424. doi: 10.1126/science.
1239200.

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. 2010. Detection of nonneutral substitution rates on mammalian
phylogenies. Genome Research 20:110–121. doi: 10.1101/gr.097857.109.

Preitner N, Quan J, Nowakowski DW, Hancock ML, Shi J, Tcherkezian J, Young-Pearse TL, Flanagan JG. 2014.
APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule
assembly. Cell 158:368–382. doi: 10.1016/j.cell.2014.05.042.

Saunders C, Cohen RS. 1999. The role of oocyte transcription, the 5’UTR, and translation repression and
derepression in Drosophila gurken mRNA and protein localization. Molecular Cell 3:43–54. doi: 10.1016/S1097-
2765(00)80173-2.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source
platform for biological-image analysis. Nature Methods 9:676–682. doi: 10.1038/nmeth.2019.

Shepard KA, Gerber AP, Jambhekar A, Takizawa PA, Brown PO, Herschlag D, Derisi JL, Vale RD. 2003.
Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA
microarray analysis. Proceedings of the National Academy of Sciences of USA 100:11429–11434. doi: 10.1073/
pnas.2033246100.

Sinsimer KS, Jain RA, Chatterjee S, Gavis ER. 2011. A late phase of germ plasm accumulation during Drosophila
oogenesis requires lost and rumpelstiltskin. Development 138:3431–3440. doi: 10.1242/dev.065029.

Snee MJ, Arn EA, Bullock SL, Macdonald PM. 2005. Recognition of the bcd mRNA localization signal in Drosophila
embryos and ovaries. Molecular and Cellular Biology 25:1501–1510. doi: 10.1128/MCB.25.4.1501-1510.2005.

Soundararajan HC, Bullock SL. 2014. The influence of dynein processivity control, MAPs, and microtubule ends on
directional movement of a localising mRNA. eLife 3:e01596. doi: 10.7554/eLife.01596.

St Johnston D, Beuchle D, Nüsslein-Volhard C. 1991. Staufen, a gene required to localize maternal RNAs in the
Drosophila egg. Cell 66:51–63. doi: 10.1016/0092-8674(91)90138-O.

St Johnston D, Driever W, Berleth T, Richstein S, Nüsslein-Volhard C. 1989. Multiple steps in the localization of
bicoid RNA to the anterior pole of the Drosophila oocyte. Development 107(Suppl):13–19.

Jambor et al. eLife 2015;4:e05003. DOI: 10.7554/eLife.05003 21 of 22

Tools and resources Developmental biology and stem cells | Genomics and evolutionary biology

http://dx.doi.org/10.1093/bib/bbq072
http://dx.doi.org/10.1261/rna.262607
http://dx.doi.org/10.1261/rna.2686411
http://dx.doi.org/10.1261/rna.041566.113
http://dx.doi.org/10.1242/dev.02179
http://dx.doi.org/10.1242/dev.02456
http://dx.doi.org/10.1242/dev.02456
http://dx.doi.org/10.1083/jcb.127.2.441
http://dx.doi.org/10.1016/j.celrep.2014.05.002
http://dx.doi.org/10.1016/j.celrep.2014.05.002
http://dx.doi.org/10.1111/j.1600-0854.2008.00763.x
http://dx.doi.org/10.1111/j.1600-0854.2008.00763.x
http://dx.doi.org/10.1016/j.cell.2007.08.003
http://dx.doi.org/10.1016/0092-8674(86)90375-2
http://dx.doi.org/10.1016/0092-8674(86)90375-2
http://dx.doi.org/10.1016/S0959-437X(00)00116-7
http://dx.doi.org/10.1101/gad.3.9.1437
http://dx.doi.org/10.1242/dev.078626
http://dx.doi.org/10.1093/emboj/19.6.1366
http://dx.doi.org/10.1016/S0092-8674(05)80093-5
http://dx.doi.org/10.1016/S0092-8674(05)80093-5
http://dx.doi.org/10.1126/science.1239200
http://dx.doi.org/10.1126/science.1239200
http://dx.doi.org/10.1101/gr.097857.109
http://dx.doi.org/10.1016/j.cell.2014.05.042
http://dx.doi.org/10.1016/S1097-2765(00)80173-2
http://dx.doi.org/10.1016/S1097-2765(00)80173-2
http://dx.doi.org/10.1038/nmeth.2019
http://dx.doi.org/10.1073/pnas.2033246100
http://dx.doi.org/10.1073/pnas.2033246100
http://dx.doi.org/10.1242/dev.065029
http://dx.doi.org/10.1128/MCB.25.4.1501-1510.2005
http://dx.doi.org/10.7554/eLife.01596
http://dx.doi.org/10.1016/0092-8674(91)90138-O
http://dx.doi.org/10.7554/eLife.05003


Steinhauer J, Kalderon D. 2006. Microtubule polarity and axis formation in the Drosophila oocyte. Developmental
Dynamics 235:1455–1468. doi: 10.1002/dvdy.20770.

Tadros W, Goldman AL, Babak T, Menzies F, Vardy L, Orr-Weaver T, Hughes TR, Westwood JT, Smibert CA,
Lipshitz HD. 2007. SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its
translation is activated by the PAN GU kinase. Developmental Cell 12:143–155. doi: 10.1016/j.devcel.2006.10.
005.

Theurkauf WE, Smiley S, Wong ML, Alberts BM. 1992. Reorganization of the cytoskeleton during Drosophila
oogenesis: implications for axis specification and intercellular transport. Development 115:923–936.

Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker
SE, Rubin GM. 2002. Systematic determination of patterns of gene expression during Drosophila embryogenesis.
Genome Biology 3:RESEARCH0088. doi: 10.1186/gb-2002-3-12-research0088.

Tomancak P, Berman BP, Beaton A, Weiszmann R, Kwan E, Hartenstein V, Celniker SE, Rubin GM. 2007. Global
analysis of patterns of gene expression during Drosophila embryogenesis. Genome Biology 8:R145. doi: 10.
1186/gb-2007-8-7-r145.

Ulitsky I, Shkumatava A, Jan CH, Subtelny AO, Koppstein D, Bell GW, Sive H, Bartel DP. 2012. Extensive
alternative polyadenylation during zebrafish development. Genome Research 22:2054–2066. doi: 10.1101/gr.
139733.112.

van Eeden FJ, Palacios IM, Petronczki M, Weston MJ, St Johnston D. 2001. Barentsz is essential for the posterior
localization of oskar mRNA and colocalizes with it to the posterior pole. The Journal of Cell Biology 154:511–524.
doi: 10.1083/jcb.200105056.

Vanzo NF, Ephrussi A. 2002. Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila
oocyte. Development 129:3705–3714.

Whittaker KL, Ding D, Fisher WW, Lipshitz HD. 1999. Different 3’ untranslated regions target alternatively
processed hu-li tai shao (hts) transcripts to distinct cytoplasmic locations during Drosophila oogenesis. Journal of
Cell Science 112:3385–3398.

Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A, Davis I, St Johnston D. 2008. In vivo imaging of oskar
mRNA transport reveals the mechanism of posterior localization. Cell 134:843–853. doi: 10.1016/j.cell.2008.06.
053.

Zivraj KH, Tung YC, Piper M, Gumy L, Fawcett JW, Yeo GS, Holt CE. 2010. Subcellular profiling reveals distinct and
developmentally regulated repertoire of growth cone mRNAs. The Journal of Neuroscience 30:15464–15478.
doi: 10.1523/JNEUROSCI.1800-10.2010.

Jambor et al. eLife 2015;4:e05003. DOI: 10.7554/eLife.05003 22 of 22

Tools and resources Developmental biology and stem cells | Genomics and evolutionary biology

http://dx.doi.org/10.1002/dvdy.20770
http://dx.doi.org/10.1016/j.devcel.2006.10.005
http://dx.doi.org/10.1016/j.devcel.2006.10.005
http://dx.doi.org/10.1186/gb-2002-3-12-research0088
http://dx.doi.org/10.1186/gb-2007-8-7-r145
http://dx.doi.org/10.1186/gb-2007-8-7-r145
http://dx.doi.org/10.1101/gr.139733.112
http://dx.doi.org/10.1101/gr.139733.112
http://dx.doi.org/10.1083/jcb.200105056
http://dx.doi.org/10.1016/j.cell.2008.06.053
http://dx.doi.org/10.1016/j.cell.2008.06.053
http://dx.doi.org/10.1523/JNEUROSCI.1800-10.2010
http://dx.doi.org/10.7554/eLife.05003


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /PDFXOutputConditionIdentifier (FOGRA27)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'eLife'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


