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Abstract Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding

how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve

and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome

integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins

to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis

and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of

centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest

suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state

in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to

proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism

underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for

why zebrafish and newts, but not mammals, can regenerate their heart.

DOI: 10.7554/eLife.05563.001

Introduction
The adult mammalian heart is considered to be a post-mitotic organ, as mammalian cardiomyocytes

lose their ability to proliferate shortly after birth (Li et al., 1996; Soonpaa et al., 1996; Zebrowski and

Engel, 2013). This is supported by the limited regenerative capacity of the adult mammalian heart

(Senyo et al., 2014) and the fact that primary adult cardiomyocyte-born tumors are extremely rare, if

they exist at all (Dell’Amore et al., 2011). Understanding the underlying mechanisms governing the

post-mitotic state of adult mammalian cardiomyocytes may clarify whether it is possible to induce

cardiac regeneration based on cardiomyocyte proliferation as seen in zebrafish and newts (Poss et al.,

2002; Bettencourt-Dias et al., 2003; Gamba et al., 2014). Tremendous efforts have been invested to

induce postnatal mammalian cardiomyocyte proliferation. However, besides the fact that cell

cycle promoting factors (e.g., Cyclins) are downregulated around birth, while cell cycle inhibitors
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(e.g., Cyclin-dependent kinase inhibitors) are induced (Ikenishi et al., 2012), little is known about the

mechanisms that induce cell cycle exit or establish the post-mitotic state in mammalian

cardiomyocytes (van Amerongen and Engel, 2008).

The centrosome is a solitary, juxtanuclear organelle in metazoan cell-types. It consists of a pair of

tubulin-based structures, called centrioles, encased in a dense, non-membranous, multi-protein cloud

called the pericentriolar matrix (PCM), which is further surrounded by a dispersed array of proteins

termed centriolar satellites (Bettencourt-Dias, 2013). Traditionally, the centrosome is known as the

microtubule organizing center (MTOC) of the cell, and is required for primary cilium formation

(Kim and Dynlacht, 2013). Recently, the centrosome has emerged as a critical signaling hub for the

cell cycle regulatory machinery (Doxsey et al., 2005). For instance, centrosome localization of Cyclin E

and Cyclin A is required for G1/S cell cycle progression (Pascreau et al., 2011). Consistent with this

role, increasing evidence supports the requirement of a functional centrosome for proliferative

potential in mammalian cell-types (Doxsey et al., 2005). For instance, cells undergo G0/G1 arrest

when (i) centrosomes are removed via laser ablation, (ii) centrosome integrity is disrupted via

knockdown of centrosome proteins, or (iii) centriole biogenesis is blocked via a chemical inhibitor

(Hinchcliffe et al., 2001; Khodjakov and Rieder, 2001; Srsen et al., 2006; Mikule et al., 2007;

Wong et al., 2015).

To date, the role of centrosome integrity in cell proliferation has always been studied in the context

of centrosome component mutants. Here, we show that centrosome integrity is developmentally

regulated in mammalian cardiomyocytes, revealing a novel mechanism that renders cells post-mitotic.

Our findings might have important implications for efforts to induce therapeutic cardiomyocyte

proliferation in adult mammalian hearts.

Results
A normal diploid cell in G0/G1-phase contains one centrosome with two paired centrioles. During

S-phase the centrosome duplicates whereby the two parental centrioles form daughter centrioles.

Around the transition from G2-phase to mitosis, parental centrioles ‘split’ (loss of cohesion) resulting in

two separated centrosomes that become part of the spindle poles during mitosis (Doxsey et al.,

2005). When centrosome integrity is compromised during G0/G1-phase, centrioles can lose cohesion

eLife digest Muscle cells in the heart contract in regular rhythms to pump blood around the

body. In humans, rats and other mammals, the vast majority of heart muscle cells lose the ability to

divide shortly after birth. Therefore, the heart is unable to replace cells that are lost over the life of

the individual, for example, during a heart attack. If too many of these cells are lost, the heart will be

unable to pump effectively, which can lead to heart failure. Currently, the only treatment option in

humans with heart failure is to perform a heart transplant.

Some animals, such as newts and zebrafish, are able to replace lost heart muscle cells throughout

their lifetimes. Thus, these species are able to fully regenerate their hearts even after 20% has been

removed. This suggests that it might be possible to manipulate human heart muscle cells to make

them divide and regenerate the heart. Recent research has suggested that structures called

centrosomes, known to be required to separate copies of the DNA during cell division, are used as

a hub to integrate the initial signals that determine whether a cell should divide or not.

Here, Zebrowski et al. studied the centrosomes of heart muscle cells in rats, newts and zebrafish.

The experiments show that the centrosomes in rat heart muscle cells are dissembled shortly after

birth. Centrosomes are made of several proteins and, in the rat cells, these proteins moved to the

membrane that surrounded the nucleus. On the other hand, the centrosomes in the heart muscle

cells of the adult newts and zebrafish remained intact.

Further experiments found that that breaking apart the centrosomes of heart muscle cells taken

from newborn rats stops these cells from dividing. Zebrowski et al.’s findings suggest that the loss of

centrosomes after birth is a possible reason why the hearts of adult humans and other mammals are

unable to regenerate after injury. In the future, these findings may aid the development of methods

to regenerate human heart muscle and new treatments that may limit division of cancer cells.

DOI: 10.7554/eLife.05563.002
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(i.e., become unpaired) adopting a premature ‘split’ configuration, defined as a distance >
2 μm between centrioles (Graser et al., 2007). To determine if centrosome integrity changes in

cardiomyocytes during development, we analyzed centriole configuration using antibodies against

γ-tubulin, a marker of both the centriole and the PCM (Sonnen et al., 2012). Centrioles were observed

to be in a typical paired configuration in the majority of cultured cardiomyocytes isolated from

embryonic day (E) 15, E18, and postnatal day (P) 0 rat hearts (Figure 1A,B) as well as in cardiomyocytes

from E15 and P0 rat heart sections (Figure 1—figure supplement 1A,B). In contrast, shortly after birth,

centrioles were split in the vast majority of P3 and P5 cardiomyocytes in vitro (Figure 1A,B) and in vivo

(Figure 1—figure supplement 1A,B). Analysis of mother and daughter centriole markers (Odf2 and

Centrobin, respectively) in isolated rat cardiomyocytes verified that each γ-tubulin signal represented

a single centriole (Figure 1—figure supplement 1C). As an internal control, cardiac non-myocytes

from the same cultures and tissue sections were examined. The majority of non-myocytes in the heart

are fibroblasts, endothelial cells, and smooth muscle cells that all have the ability to proliferate. At all

examined developmental stages, non-myocytes showed a typical paired-centriole configuration

indicating that the split-centriole phenotype was cardiomyocyte-specific (Figure 1B and

Figure 1—figure supplement 1A,B). Collectively, these data demonstrate that centriole cohesion,

and thus centrosome integrity, is lost in mammalian cardiomyocytes shortly after birth.

To identify an underlying cause of the split-centriole phenotype, the cellular localization of various

centrosome proteins was assessed in isolated cardiomyocytes from different developmental stages.

The PCM proteins Pericentrin and Cdk5Rap2 have previously been shown to be required for centriole-

cohesion (Graser et al., 2007; Matsuo et al., 2010). Consistent with this function, both PCM proteins

localized to the centrosome in E15-isolated cardiomyocytes (Figure 1C,D and Figure 1—figure

supplement 1D,E). In contrast, both proteins were localized to the nuclear envelope in P3-isolated

cardiomyocytes (Figure 1C,D and Figure 1—figure supplement 1D,E). Although remnants of

Pericentrin and Cdk5Rap2 could be observed at the centriole in P3-isolated cardiomyocytes

(Figure 1C,D and Figure 1—figure supplement 1D,E), their presence was significantly reduced when

centrioles were split (Figure 1E and Figure 1—figure supplement 1F). Pcnt siRNA-mediated

knockdown in P0-isolated cardiomyocytes resulted in an increase of split-centrioles (Figure 1F,G),

confirming that Pericentrin is required for centriole-cohesion in cardiomyocytes. In contrast to PCM

proteins, the centriole-associated proteins CEP135, Odf2, and Centrobin were not observed at the

nuclear envelope in P3-isolated cardiomyocytes (Figure 1C and Figure 1—figure supplement 1C,D).

Collectively, these results indicate that loss of centriole cohesion is accompanied by redistribution of

centrosome proteins to the nuclear envelope.

Centrosome localization of Pericentrin is dependent on the centriole satellite protein PCM1

(Dammermann and Merdes, 2002; Barenz et al., 2011). Consistent with this, PCM1 localized at the

centrosome and the nuclear envelope in E15- and P3-isolated cardiomyocytes, respectively

(Figure 1C,H and Figure 1—figure supplement 1D). Further, nuclear envelope localization of

PCM1 occurred by P0 (Figure 1H), prior to that of Pericentrin (Figure 1D). Occasionally, PCM1 was

observed in a semi-belt pattern at the nuclear envelope proximal to the centrosome in E15-isolated

cardiomyocytes (Figure 1—figure supplement 1G), indicating a transitional state. These data

suggest that in cardiomyocytes, PCM1 is also required for the localization of Pericentrin to the

centrosome. To test this, we overexpressed the major isoform of Pericentrin associated with the

centrosome, Pericentrin B, in E15-, P0-, and P3-isolated cardiomyocytes and non-myocytes.

Pericentrin B-GFP localized to centrioles in non-myocytes as well as E15-isolated cardiomyocytes

(Figure 1—figure supplement 2A,B). In contrast, Pericentrin B-GFP did not localize to the centrioles

in the vast majority of P0- and P3-isolated cardiomyocytes but rather created cellular aggregates

which were not observed in E15 cardiomyocytes or non-myocytes. These data indicate that the

machinery required for centrosome integrity is lost in postnatal cardiomyocytes.

To determine if relocalization of centrosome proteins to the nuclear envelope and loss of centriole-

cohesion is caused by cell autonomous mechanisms, long-term culturing experiments were

performed. Long-term culturing of E15-isolated and P0-isolated cardiomyocytes resulted in PCM1

and Pericentrin relocalization to the nuclear envelope (Figure 1I) and loss of paired-centrioles

(Figure 1J), respectively. Further, mouse iPSC-derived cardiomyocytes had split-centrioles and the

centrosome proteins PCM1 and Pericentrin localized to the nuclear envelope (Figure 1—figure

supplement 2C). These results indicate that loss of centrosome integrity begins during fetal

development and progresses in a cell autonomous manner.
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Figure 1. Loss of centrosome integrity during heart development. (A) Analysis of centriole (γ-tubulin) configuration
in E15- or P5-isolated ventricular rat cardiomyocytes (Troponin I). Nuclei: DAPI. PC: paired-centrioles. SC: split-

centrioles. Scale bar: 5 μm. (B) Frequency of cells with paired-centrioles during development. Bi: Binucleated.

(C) Analysis of the localization of the centrosome proteins PCM1, PCNT (Pericentrin), and CEP135 in isolated

cardiomyocytes. (D) PCNT localization frequency in cardiomyocytes isolated from different developmental stages.

(E) Centrosomal PCNT signal intensity in P3-isolated cardiomyocytes with paired- and split-centrioles relative to

E15-isolated cardiomyocytes. (F) Frequency of paired-centrioles in P0-isolated cardiomyocytes after siRNA-

mediated Pcnt knockdown. scr: scrambled. (G) Representative images of the analysis in (F). (H) PCM1 localization

frequency in cardiomyocytes isolated from different developmental stages. (I) Analysis of PCM1 and PCNT

localization in E15-isolated cardiomyocytes cultured for either 1 or 8 days. (J) Frequency of P0-isolated

cardiomyocytes with paired-centrioles after 1 day, 3 days, or 6 days in culture. (K) RT-PCR analysis of Pcnt B and

S isoform expression during rat heart development in vivo. (L) Localization of PCNT isoforms. P3-isolated

cardiomyocytes immunostained with antibodies against either both PCNT B and S isoforms or only the PCNT B

isoform. Yellow arrows: cardiomyocyte nuclei. Red arrows: non-myocyte nuclei. Unless otherwise noted, scale bars:

10 μm; red arrowheads: centrioles; data are mean ± SD, n = 3, *: p < 0.05. For the experiments ≥ 10 cells (E), ≥ 50

cells (B, F, J), ≥ 100 (D, H) cells were analyzed per experimental condition.

DOI: 10.7554/eLife.05563.003

The following figure supplements are available for figure 1:

Figure supplement 1. Loss of centrosome integrity during heart development.

DOI: 10.7554/eLife.05563.004

Figure supplement 2. Loss of centrosome integrity during heart development.

DOI: 10.7554/eLife.05563.005
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Previously, it has been demonstrated that Pcnt is alternatively spliced (Miyoshi et al., 2006),

resulting in two isoforms; Pericentrin B which resembles the human Pericentrin Kendrin, and

Pericentrin S, which lacks an N-terminus region. Pericentrin B is ubiquitously expressed at all

developmental stages. In contrast, expression of Pericentrin S starts late in fetal development and was

found to be specific for adult heart and skeletal muscle (Miyoshi et al., 2006). Therefore, we

speculated that expression of the Pericentrin S isoform may coincide with changes in centrosome

integrity during the development of cardiomyocytes. RT-PCR analysis revealed the appearance of

Pcnt S expression shortly before birth in the heart (Figure 1K). Antibodies specific for the Pericentrin

B isoform indicated that Pericentrin S, and not Pericentrin B, was the predominant Pericentrin isoform

at the nuclear envelope in P3-isolated cardiomyocytes (Figure 1L). These results indicate that Pcnt is

alternatively spliced during perinatal heart development and this change is related to its relocalization

to the nuclear envelope.

Loss of centrosome integrity in postnatal cardiomyocytes suggested that centrosome function

might be compromised as well. Nearly all cell-types studied to date are capable of forming a primary

cilium when arrested in G0/G1-phase (Bowser and Wheatley, 2000, Nigg and Stearns, 2011). This

suggests that cardiomyocytes, which are arrested shortly after birth in G0/G1 phase (Takeuchi, 2014),

should be capable of ciliogenesis. Yet, given that PCM1, which is required for ciliogenesis (Kim et al.,

2008), is lost from the centrosome during development, we speculated that ciliogenesis is suppressed

in cardiomyocytes. Induction of ciliogenesis via serum starvation resulted in the formation of a primary

cilium in E15-isolated cardiomyocytes and non-myocytes (Figure 2A). However, the frequency of

cardiomyocytes capable of ciliogenesis decreased with heart development (Figure 2B) with less than

1% of isolated postnatal cardiomyocytes, which were arrested in G1/G0 as confirmed by lack of Ki67

expression and FACS analysis (Figure 2—figure supplement 1A–D), forming a primary cilium.

Further, no postnatal binucleated cardiomyocytes were observed to be capable of ciliogenesis

(Figure 2A). In contrast to cardiomyocytes, the frequency of cardiac non-myocytes capable of

ciliogenesis was high at all developmental stages investigated (Figure 2B).

Pericentrin and Cdk5Rap2 are required for the centrosome to function as the cellular MTOC

(Takahashi et al., 2002; Choi et al., 2010). As these proteins localize to the nuclear envelope during

neonatal development, we hypothesized that the cellular MTOC is transferred from the centrosome to

the nuclear envelope. In accordance with this hypothesis, microtubules were found to predominantly

emanate from the centrosome in E15-isolated cardiomyocytes as also observed in non-myocytes. In

contrast, in P3-isolated cardiomyocytes microtubules were found to predominantly emanate from the

nuclear envelope (Figure 2C). The local shift of the MTOC during development was confirmed by

a MTOC-regrowth assay (Figure 2D and Figure 2—figure supplement 1E,F), which further

demonstrated that microtubules do not emanate from centrioles in P3-isolated cardiomyocytes

(Figure 2E and Figure 2—figure supplement 1G,H). Finally, siRNA-mediated knockdown of Pcnt in

P3-isolated cardiomyocytes demonstrated that Pericentrin is required for a functional MTOC at the

nuclear envelope (Figure 2F and Figure 2—figure supplement 1I). Collectively, these results indicate

that, in addition to centrosome integrity, centrosome function is progressively compromised in

cardiomyocytes during development.

Given that traditional centrosome functions of ciliogenesis and microtubule organization are lost in

postnatal cardiomyocytes, we hypothesized that there would be a relationship between centrosome

integrity and proliferative potential. To test this, the cell cycle marker Ki67 was assessed in

cardiomyocytes from different developmental stages. Cardiomyocyte proliferative potential de-

creased with neonatal development (Figure 3A). Moreover, P3-isolated cardiomyocytes with paired-

centrioles exhibited greater proliferative potential than those with split centrioles (Figure 3B,C) at

a frequency similar to that of E15- and P0-isolated cardiomyocytes (Figure 3A,C)—of which the vast

majority have paired-centrioles (Figure 1B). In contrast, cardiac non-myocyte proliferative potential,

as well as the percentage of non-myocytes with paired centrioles, did not decrease during neonatal

development (Figure 3—figure supplement 1A). Subsequently, we tested whether centrosome

integrity is required for cardiomyocyte proliferative potential. Centrosome integrity was disrupted by

either siRNA-mediated knockdown of Pcnt, or overexpression of a RFP-tagged dominant negative

C-terminal Pericentrin (RFP-PeriCT), which displaces endogenous Pericentrin localization (Gillingham

and Munro, 2000; Mikule et al., 2007). Immunofluorescence analysis confirmed that RFP-PeriCT

localizes to the centrioles in P0-isolated cardiomyocytes (Figure 3—figure supplement 1B). Both

methods used to disrupt centrosome integrity suppressed P0-isolated cardiomyocyte proliferative
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Figure 2. Loss of centrosome function during heart development. (A) Identification of primary cilium (Arl13b) in E15-

and P5-isolated cardiomyocytes (Troponin I) and non-myocytes. Centrioles: γ-tubulin. White circle: nuclei.

(B) Frequency of ciliated cardiomyocytes and non-myocytes isolated from hearts at different developmental stages.

Data are mean ± SD, n = 3, *: p < 0.05. ≥ 200 cells were analyzed for each condition. (C) Localization of the cellular

MTOC (Pericentrin [PCNT]) in E15- and P3-isolated cardiomyocytes. Microtubules: acetylated-α-tubulin; yellow
arrowheads: PCNT-positive MTOC. (D) Localization of microtubule regrowth (yellow arrowhead). E15- or P3-isolated

cardiomyocytes treated with nocodazole or nocodazole followed by wash-out. (E) Analysis of microtubule regrowth

at centrioles. P3-isolated cardiomyocytes were treated as in (D). Yellow arrowheads: Cdk5Rap2-positive centrioles in

non-myocytes; White arrowheads: Cdk5Rap2-positive centrioles in cardiomyocytes. (F) Pericentrin is required for

a functional MTOC. P3-isolated cardiomyocytes transfected with scrambled or PCNT siRNAs and analyzed for

microtubule formation. Scale bars: 10 μm.

DOI: 10.7554/eLife.05563.006

The following figure supplement is available for figure 2:

Figure supplement 1. Loss of centrosome function during heart development.

DOI: 10.7554/eLife.05563.007
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Figure 3. Absence of centrosome integrity results in cell cycle aberrations. (A) Correlation between proliferative

potential (Ki67) and centrosome integrity (split-centrioles). Overlay of the frequency of Ki67-positive E15-, P0-, P3-,

or P5-isolated cardiomyocytes in response to 20% fetal bovine serum (FBS) (bars) and the frequency of

cardiomyocytes with split-centrioles at different developmental stages according to Figure 1B (red line).

(B) Representative images indicating that 20% FBS-stimulated P3-isolated cardiomyocytes (Troponin I) with

paired-centrioles (γ-tubulin) exhibited greater proliferative potential (Ki67) than those with split centrioles.

Scale bars: 10 μm. (C) Frequency of Ki67-positive P3-isolated cardiomyocytes in response to 20% FBS in the presence

or absence of p38 MAP kinase inhibitor (p38i). (D–F) Pericentrin (PCNT) is required for cardiomyocyte

proliferative potential. (D) Relative frequency of Ki67-positive P0-isolated cardiomyocytes treated with scrambled or

PCNT siRNA in response to 20% FBS. (E) Representative images of 20% FBS-stimulated P0-isolated cardiomyocytes

transfected with a construct driving RFP-tagged dominant negative C-terminal Pericentrin (RFP–PeriCT) expression

and stained for Ki67. Scale bars: 10 μm. (F) Quantitative analysis of (E). (G, H) Analysis of centrioles (γ-tubulin)
during metaphase (H3P). (G) Representative images of P3-isolated cardiomyocytes in metaphase in the presence

or absence of p38i upon stimulation with 10% FBS. Scale bars: yellow: 50 μm; red: 10 μm. (H) Quantitative

analysis of (G). (I) Representative images of centrioles in adult cardiomyocytes in metaphase stimulated with

Figure 3. continued on next page
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potential (Figure 3D–F). Taken together, these data indicate that loss of centrosome integrity

promotes G0/G1 cell cycle arrest in mammalian cardiomyocytes.

Disruption of centrosome integrity promotes p38MAP kinase (p38)-mediated G1/S cell cycle arrest

(Mikule et al., 2007; Pascreau et al., 2011). Previously, it has been demonstrated that p38 inhibition

(p38i) allows postnatal cardiomyocyte proliferation (Engel et al., 2005). This raised the question

whether p38i can over-ride post-mitotic arrest in cardiomyocytes with split-centrioles. p38i enhanced

the proliferative potential of P3-isolated cardiomyocytes with split-centrioles (Figure 3C). These

results indicate that suppression of the p38-mediated stress-activated pathway can promote cell cycle

progression in cardiomyocytes that lack centriole-cohesion.

A bipolar mitotic spindle is required for high fidelity chromosome segregation (Pihan, 2013). Thus,

we determined if the observed changes in centrosome integrity affects spindle pole number during

mitosis in postnatal cardiomyocytes when cell cycle progression is induced. In response to serum

stimulation, P0- and P3-isolated cardiomyocytes exhibited a typical metaphase consisting of two

γ-tubulin foci (Figure 3G,H). p38i had no effect on the number of γ-tubulin foci in P0-isolated

cardiomyocytes during metaphase (Figure 3H). In contrast, p38i resulted in a significant increase in

metaphases containing multiple γ-tubulin foci in P3-isolated cardiomyocytes (Figure 3G,H). Similarly,

adult-isolated cardiomyocytes induced to re-enter the cell cycle by p38i + FGF1 also exhibited

multiple γ-tubulin foci during metaphase (Figure 3I). These data indicate that over-riding cell cycle

arrest in cardiomyocytes results in multiple spindle poles.

In contrast to mammals, adult newts and zebrafish can regenerate their heart through cardiomyocyte

proliferation (Poss et al., 2002; Bettencourt-Dias et al., 2003). This suggests that they either do not

establish a post-mitotic state by disassembling their centrosomes or they are able to reverse this

mechanism upon injury. To test which scenario occurs in these species, we analyzed their centrosomes.

Paired centrioles could readily be identified in adult newt and zebrafish cardiomyocyte nuclei

(Figure 4A). Further, the frequency of newt and zebrafish cardiomyocyte nuclei with intact centrosomes

was similar to that of non-myocyte nuclei (Figure 4B). In addition, MTOC-regrowth assays demonstrated

that centrosomes in zebrafish and newt cardiomyocytes are functional (Figure 4C and Figure 4—figure

supplement 1A,B). Collectively, these results suggest that, unlike mammalian cardiomyocytes, newt and

zebrafish cardiomyocytes maintain centrosome integrity throughout adulthood.

We then sought to determine if zebrafish cells require centrosome integrity for proliferation in vivo. To

determine this, we injected RNA encoding RFP-tagged dominant negative C-terminal Pericentrin (RFP-

PeriCT) into one-cell stage zebrafish embryos. Compared to control embryos (RFP RNA-injected),

a significantly larger number of RFP-PeriCT RNA-injected embryos showed developmental delay at 24 hr

post fertilization (hpf) and a significantly reduced number of H3P-positive cells (Figure 4—figure

supplement 1C–F). Since RFP-PeriCT RNA did not cause necrosis or lethality, it is plausible that the

observed developmental delay was caused, at least partly, by reduced proliferation of RFP-PeriCT-

expressing cells. To further test an effect on proliferation, we injected DNA constructs driving RFP or

dominant negative Pericentrin (RFP-PeriCT) expression from the CMV promoter into one-cell stage

embryos and analyzed the size of RFP-positive clones of cells at 20 hpf. Embryos were sorted into four

classes according to the size of the clones, namely no visible clones (class I), few scattered cells (class II),

medium-sized clones (class III), and large clones (class IV). RFP DNA-injected controls exhibited

comparable numbers of embryos displaying no clones (class 1), scattered (class II), medium-sized (class

III), and larger clones (class IV). In contrast, the majority of RFP-PeriCT DNA-injected embryos contained

either no clones (class I) or few scattered clones (class II), while larger clones (class III and IV) were rarely

seen (Figure 4—figure supplement 1G,H). This suggests that clonal expansion of RFP-PeriCT expressing

cells is reduced, which substantiates the hypothesis that expression of RFP-PeriCT reduces cell proliferative

potential. These results suggest that zebrafish cells require centrosome integrity for proliferation in vivo.

Figure 3. Continued

FGF1 plus p38i. Chromosomes: DAPI. Scale bars: 20 μm. Data are mean ± SD, n = 3, *: p < 0.05. For the

experiments ≥ 20 cells (F), ≥ 25 cells (D), ≥ 40 cells (H), or ≥ 50 cells (A, C) were analyzed per experimental condition.

DOI: 10.7554/eLife.05563.008

The following figure supplement is available for figure 3:

Figure supplement 1. Absence of centrosome integrity results in cell cycle aberrations.

DOI: 10.7554/eLife.05563.009
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Discussion
Increasing evidence supports the requirement of a functional centrosome for cellular proliferative

potential (Doxsey et al., 2005). For instance, somatic cell-types arrest in G0/G1 when centrosomes

are removed or disrupted (Hinchcliffe et al., 2001; Khodjakov and Rieder, 2001; Srsen et al., 2006;

Mikule et al., 2007; Wong et al., 2015). Further, centrosome degradation occurs during female

meiosis—a process believed to inhibit parthenogenesis—with mitotic cycles restored upon

fertilization when the sperm donates a centrosome during zygote formation (Klotz et al., 1990;

Clift and Schuh, 2013). Moreover, relocalization of the MTOC to non-centrosomal loci has been

described for several post-mitotic, highly differentiated, cell-types (Bartolini and Gundersen, 2006).

This body of literature coupled with our results suggests that centrosome integrity can be

developmentally regulated to achieve a post-mitotic state.

Centrosome disassembly appears to be a very effective way to achieve a post-mitotic state. But

why do cardiomyocytes disassemble their centrosomes? Upon birth, the neonatal heart, and the

Figure 4. Centrosome integrity is maintained in adult newt and zebrafish cardiomyocytes. (A) Representative images

of centrosomes (γ-tubulin) in heart cryosections of adult transgenic cmlc2:dsRedExp-nuchsc4 zebrafish, of adult newt

hearts, and adult mouse hearts. Nuclei: DAPI, cardiac nuclei: DsRed or Nkx2.5. Green-framed expansions: newt and

zebrafish cardiomyocyte nuclei with paired-centrioles. Yellow-framed expansion: mouse non-myocyte nucleus with

paired-centrioles. White asterisk: cardiomyocyte nucleus. Yellow scale bar: 10 μm. Red scale bar: 2 μm.

(B) Quantitative analysis of nuclei associated with intact centrosomes in cryosections as shown in (A). Data are mean

± SD, n = 3, ≥ 300 cells were analyzed per experimental condition, *: p < 0.05. (C) Representative images

documenting localization of microtubule regrowth (β-tubulin) in cultured adult zebrafish (Troponin I) and newt

(phalloidin-TRITC) cardiomyocytes. Adult zebrafish were treated with serum (control), nocodazole, or nocodazole

followed by wash out. Adult newt cardiomyocytes were treated with serum (control), ice, or ice followed by return to

normal (norm) temperature. Nuclei: DAPI. Yellow arrowheads: localization of centrosome. Yellow scale bar: 10 μm.

DOI: 10.7554/eLife.05563.010

The following figure supplement is available for figure 4:

Figure supplement 1. Centrosome integrity is maintained in adult newt and zebrafish cardiomyocytes.

DOI: 10.7554/eLife.05563.011
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cardiomyocytes therein, undergo increased hemodynamic stress. Effective cardiomyocyte function in

response to increased hemodynamic stress may require a cytoskeletal architecture more conducive to

handling postnatal physical stresses (e.g., a nuclear envelope-based MTOC). Thus, centrosome

disassembly may be a result of cytoskeletal reorganization. In this scenario, proliferative potential

might be sacrificed for postnatal function.

It has long been considered that skeletal myoblasts and cardiomyocytes have distinct molecular

mechanisms to control their proliferative growth. This theory has been primarily based on the

observation that proliferation and differentiation (contraction) are mutually exclusive in skeletal muscle

but occur in parallel in cardiomyocytes (Ueno et al., 1988). However, our results together with others

(Tassin et al., 1985; Bugnard et al., 2005; Srsen et al., 2006; Fant et al., 2009; Zaal et al., 2011)

challenges this dogma, as establishment of a post-mitotic state in both muscle cell-types coincides

with MTOC relocalization to the nuclear envelope and centrosome disassembly.

The observation that p38i promotes cardiomyocyte proliferative potential in the absence of

a functional centrosome provides some optimism for heart regeneration via proliferation of endogenous

cardiomyocytes. However, we observe that an absence of centrosome integrity correlates with multiple

spindle poles. Although multiple spindle poles are generally resolved into a semi-clustered/pseudo-

bipolar conformation, this process is nevertheless highly prone to the formation of merotelic spindle-

kinetochore attachments, which can promote chromosome missegregation (Ganem et al., 2009).

Indeed, postnatal cardiomyocytes induced to proliferate exhibit chromosome segregation abnormalities

(Engel et al., 2006). While cell viability can exist when aneuploidy is limited (e.g., as seen in Down

Syndrome), aneuploidy is generally not well tolerated (Torres et al., 2008). Therefore, proliferation of

adult cardiomyocytes may not necessarily result in viable daughter cells. Thus, in the absence of

a functional centrosome, whether a particular manipulation induces aneuploidy, and to what degree,

may be a critical factor in determining its regenerative therapeutic potential.

The origin of multiple spindle poles (i.e., multiple γ-tubulin foci) during cardiomyocyte mitosis is not

entirely clear. Interestingly, in addition to centriole-cohesion, Pericentrin and Cdk5Rap2 are also

required for centriole-engagement (Barrera et al., 2010; Lee and Rhee, 2012). During S-phase,

centrioles are duplicated, with each mother centriole forming a daughter centriole, which remains

closely attached (i.e., engaged) until mid-anaphase (Kuriyama and Borisy, 1981; Sluder, 2013).

When mother-daughter centrioles are engaged, only the mother centriole exhibits a strong γ-tubulin
signal (Wang et al., 2011). Thus, one speculation is that when cells that lack centriole-cohesion enter

mitosis, they have an increased likelihood of premature loss of centriole-engagement, thus accounting

for the four γ-tubulin signals observed at metaphase. However, it has to be considered that induction

of mitosis in bi-nucleated cardiomyocytes, which increasingly appear after birth, results in four

γ-tubulin signals in metaphase corresponding to four duplicated centrioles.

The ability of zebrafish and newts to regenerate their heart has gained extensive interest in recent

years. One major question is what distinguishes mammalian cardiomyocytes from those of zebrafish

and newts with regards to their proliferative potential. Our data demonstrate that the state of cellular

differentiation of cardiomyocytes from various species is not evolutionary conserved. The fact that

adult zebrafish and newt cardiomyocytes maintain their centrosome integrity indicates that factors

promoting adult zebrafish cardiomyocyte proliferation might not necessarily induce adult mammalian

cardiomyocyte proliferation.

Recently, it has been shown that planarians can develop and regenerate in the absence of

centrosomes (Azimzadeh et al., 2012). This has questioned the requirement of a centrosome for cell

proliferation during development and regeneration. However, there are significant differences

between planarians and vertebrates in cell cycle control. For example, planarians express only one

single repressive E2F, whereas mammals and zebrafish express several repressive and activating E2Fs.

In addition, planarians do not have Cyclin E or Cyclin A homologs. Further, cyclin-dependent kinase

CDK2 (to which Cyclin E/A usually binds) is expressed at such low levels in planarians that it is

considered functionally dead (Zhu and Pearson, 2013). This is important as in mammals centrosome

localization of Cyclin E and Cyclin A is required for G1/S cell cycle progression (Pascreau et al., 2011).

Thus, at least in the case of Cyclin E and Cyclin A, planarians lack centrosome-regulated cell cycle

factors. In addition, our data indicate that centrosome integrity is required for proliferation during

zebrafish development. This is in agreement with the recent observation that plk4 depletion in

zebrafish impairs centriolar biogenesis during development and increases premature cell cycle exit

(independent of ciliogenesis defects) resulting in reduced zebrafish size (Martin et al., 2014). Other
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examples of centriole-associated genes whose depletion causes cell cycle defects resulting in

impaired development are stil (Pfaff et al., 2007; Vulprecht et al., 2012; Sun et al., 2014) and cetn2

(Delaval et al., 2011). While there is no evidence for the requirement of functional centrosomes in

cardiac regeneration in zebrafish, there are data that indirectly suggest that centrosome function

might be required for cardiac regeneration. For example it has been shown that inhibition of mps1

and plk1, factors implicated in centrosome assembly and maturation (Pike and Fisk, 2011; Joukov

et al., 2014; Kong et al., 2014), impairs cardiac regeneration in zebrafish after apex resection (Poss

et al., 2002; Jopling et al., 2010). Thus, it will be interesting in the future to test if destruction of

centrosome integrity will indeed abolish the ability of zebrafish to regenerate their heart.

Taken together, this study suggests that relocalization of the MTOC disrupts centrosome integrity

which, in turn, promotes a post-mitotic state in mammalian cardiomyocytes. Given the increasing role

of the centrosome in cell cycle control, understanding how centrosome integrity is regulated during

development may reveal new mechanisms to regulate cell proliferation with implications for

regeneration and cancer.

Materials and methods

Animals
The investigation conforms with the Guide for the Care and Use of Laboratory Animals published by

the Directive 2010/63/EU of the European Parliament and according to the regulations issued by the

Committee for Animal Rights Protection of the State of Hessen (Regierungspraesidium Darmstadt) as

well as Baden-Württemberg (Regierungspraesidium Tübingen). Extraction of organs and preparation

of primary cell cultures were approved by the local Animal Ethics Committee in accordance to

governmental and international guidelines on animal experimentation (protocol TS—5/13 Neph-

ropatho; Zebrafish protocol number o.183). Adult (1–2 year) zebrafish (Danio rerio) hearts were

isolated from the transgenic line Tg(cmlc2:dsRedExp-nuchsc4) (Takeuchi et al., 2011). Adult newt

cardiomyocytes were isolated from red-spotted newts (Notophthalmus viridescens, Charles Sullivan,

Nashville, TN, USA). Ventricular cardiomyocytes and whole-hearts were obtained from embryonic day

15 (E15), E18, postnatal day 0 (P0), P3, P5, and adult Sprague–Dawley rats (from Charles River

Laboratories, Cologne, Germany or own bred).

Cell culture
Mammalian and zebrafish ventricular cardiomyocytes were isolated as described previously (Engel

et al., 2005; Sander et al., 2013). Newt ventricular cardiomyocytes were isolated using the following

procedure. To prevent contaminations, animals were kept 24 hr in advance in a Sulfamerazine bath

(5 g/l, Sigma, St. Louis, MO, USA) for disinfection. Organ removal was performed under deep

anesthesia, by incubating the animals in a Tricaine solution (1 g/l, Sigma) with pH 7.4 for 15–20 min.

After decapitation, ventricles were removed, washed several times with 65% L15 Leibovitz media

(Gibco, Grand Island, New York, USA) with antibiotics (2% penicillin/streptomycin and ciprofloxacin

(10 μg/ml)) and incubated over night at 25˚C. Thereafter, enzymatic digestion followed with a sterile

mixture of collagenase (1 mg/ml, Sigma), elastase (0.1 mg/ml, Sigma) and DNase (0.1 mg/ml, Sigma)

with glucose (3 mg/ml, Sigma) and BSA (1.5 mg/ml, Sigma) in aPBS (75% PBS) for 6 hr at 27˚C. After

mechanical dissociation, and several washing step, cells were plated on laminin (15 μg/ml, Sigma)

coated 8-well chamber slides (Nunc) and cultured for 5 days with 65% MEM with Glutamaxx (Gibco)

containing 10% FCS and antibiotics (2% penicillin/streptomycin and ciprofloxacin [10 μg/ml]) at 25˚C

with 5% CO2, media change took place once after 3 days. Mouse iPSC-derived cardiomyocytes

(Axiogenesis AG, Cologne, Germany) were thawed and plated according to manufacturer’s

instructions. Mammalian cardiomyocytes were cultured on 1 mg/ml fibronectin (Sigma)-coated glass

coverslips. Isolated cardiomyocytes were seeded and cultured in DMEM/F-12, GlutamaxTM-I (Life

Technologies, Darmstadt, Germany) + Penicillin (100 U/ml)/Streptomycin (100 μg/ml) (Pen/Step) (Life

Technologies) for 2 days prior to experimentation. To analyze proliferative potential of whole

cardiomyocyte populations, cardiomyocytes were cultured with 20% fetal bovine serum (FBS) (Sigma)

for 2 days. To analyze proliferative potential between cardiomyocytes with paired and split centrioles,

cardiomyocytes were cultured with 20% FBS + 2 mM hydroxyurea (HU) (Sigma), for 2 days. As

centriole-cohesion is normally lost at G2/M, G1/S arrest with hydroxyurea prevents misinterpreting

normal loss of centriole-cohesion (which occurs in G2) for precocious loss of centriole-cohesion (which
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occurs during G1). To analyze mitotic aberrations, neonatal cardiomyocytes were cultured with 10%

FBS for 2 days, and adult cardiomyocytes were seeded in 10% horse serum and 20 μM cytosine

β-D-arabinofuranoside (Sigma) for 2 days and then stimulated with 50 ng/ml FGF1 (R&D Systems,

Abingdon, UK) + p38i (5 μM SB203580, Tocris Biosystems, Bristol, UK) for 2 days as previously

described (Engel et al., 2005). To analyze microtubule regrowth in mammalian and zebrafish

cardiomyocytes, cells were cultured for 2 days and then treated with 5 μg/ml nocodazole (Sigma) for

2.5 hr. Subsequently, cells were washed with nocodazole-free media for 5–10 min to allow

microtubule regrowth. To analyze microtubule regrowth in newt cardiomyocytes, cells were cultured

for 5 days and then placed on ice for 3 hr. Subsequently, cells were returned to 25˚C for 10 min. For

siRNA studies cells were cultured for 2 days prior to transfection of siRNAs (Qiagen, Venlo, Limburg,

Netherlands) using Lipofectamine RNAiMAX (Life Technologies). Cycling and MTOC regrowth assays

utilizing siRNAs were conducted 2 days after siRNA transfection. Plasmids were transfected with

Lipofectamine LTX (Life Technologies) on the day of seeding. Cycling assays were conducted 2 days

after plasmid transfection. To induce ciliogenesis, cardiomyocytes were seeded and cultured in

DMEM GlutaMAXTM-I (Gibco) + Pen/Strep for 3 days.

Cryosections
Hearts from zebrafish, newts, Sprague Dawley rats (Charles River Laboratories), or C57BL/6J mice

(Charles River Laboratories) were oriented perpendicularly in relation to their long axis, embedded in

an O.C.T. compound tissue-freezing medium, and frozen in liquid nitrogen. Hearts were sectioned

with a Leica CM 3000 cryostat (10 μm).

Immunofluorescence analysis
Cryosections were fixed in 3.7% formalin (Sigma) for 10 min at room temperature (RT). Isolated cells

were fixed in either pre-chilled methanol for 5 min at −20˚C or 3.7% formalin (Sigma) for 10 min at RT.

Immunostaining was performed as described previously (Engel et al., 2005) utilizing 3% BSA (Sigma)/

PBS instead of goat-serum as blocking buffer. Formalin-fixed cells were permeabilized prior to

antibody staining with 0.2% Triton X-100 (Sigma)/PBS (10 min, RT). Primary antibodies: goat anti-

Troponin I (1:250, Abcam, Cambridge, UK), rabbit anti-Troponin I (1:250, Santa Cruz Biotechnology,

Heidelberg, Germany), rabbit anti-Cdk5Rap2 (1:500, Millipore, Hessen, Germany), rabbit anti-

Pericentrin (1:700, Covance, Princeton, NJ, USA), mouse anti-γ-tubulin (1:500, Santa Cruz Bio-

technology), rabbit anti-PCM1 (1:500, Santa Cruz Biotechnology), rabbit anti-Odf2 (1;500,

ProteinTech Group, Manchester, UK), rabbit anti-Centrobin (1:500, Sigma), goat anti-Nkx2.5 (1:100,

Santa Cruz Biotechnology), rabbit anti-CEP135 (1:500, Abcam), rabbit anti-phospho-histone

H3-Serine 10 (1:1000, Santa Cruz Biotechnology), rabbit anti-Mef2 (1:500, Santa Cruz Biotechnology),

mouse anti-β-tubulin (KMX) (1:500, Millipore), Phalloidin-TRITC (1:300, Sigma). Rabbit anti-Pericentrin

(1:500; MmPeriC1) against both B and S isoforms was produced as previously described (Mühlhans

et al., 2011). Mouse anti-Pericentrin against the Pericentrin B isoform (1:500; MmPeri N-term clone

7H11 or 8D12) was made against the first 233 amino acids of mouse Percentrin B (AN: NP_032813 or

BAF36559). Primary immune complexes were detected with ALEXA 350-, ALEXA 488-, ALEXA 594-,

or ALEXA 647-conjugated antibodies (1:500, Life Technologies, Carlsbad, CA, USA). DNA was stained

with 0.5 μg/ml DAPI (4′,6′-diamidino-2-phenylindole) (Sigma). Images were captured on a Keyence

BZ9000 Fluorescence Microscope (Keyence, Osaka, Japan), using 63× or 100× objectives. Images

were arranged with ImageJ (Public Domain) and Adobe Illustrator (Adobe, San Jose, CA, USA).

Quantitation of fluorescence intensity by linescan analysis
For the quantitative analysis of protein intensity in cardiomyocytes and non-myocytes at centriolar

loci, a line-plot was generated using software (Keyence) which traversed the centrioles (identified by

γ-tubulin staining) and the average Cdk5Rap2 or Pericentrin background intensity was subtracted

from signals corresponding to γ-tubulin loci. Cardiomyocyte Cdk5Rap2 or Pericentrin signal intensity

was normalized to that of non-myocytes from the same cultures.

Reverse transcriptase PCR (RT-PCR)
RNA was isolated from different developmental stages of rat (E11 to E20, n ≥ 10; P5, P10, and adult,

n ≥ 3) using TRIzol (Life Technologies). RT-PCR was performed following standard protocols. A set of

Zebrowski et al. eLife 2015;4:e05563. DOI: 10.7554/eLife.05563 12 of 16

Short report Cell biology | Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.05563


three primers was used to detect Pcnt B and Pcnt S in the same reaction. Primers used were Pcnt B-F,

5′-CATGGCTCTGCACAATGAAG-3′, Pcnt S-F 5′-CAGGGCTGTTCCATATGTTC-3′, Pcnt-R 5′-GAAG

TCTCCTCAGGGCATCTC-3′.

FACS analysis
Neonatal cardiomyocytes were cultured for 3 days after isolation. On the third day the cells were

washed in PBS, trypsinized, fixed in ice-cold 70% EtOH/15% PBS, and centrifuged (10 min, 700×g,
4˚C). The cell pellet was resuspended in PBS and centrifuged again. Cells were then resuspended in

extraction buffer (50 mM Na2HPO4: 25 mM citric acid (9:1), 0.1% Triton X-100, 0.01% NaN3, pH 7.8)

and incubated for 15 min at RT. Cells were centrifuged and the cell pellet was incubated in 250 μl of
complete DNA staining buffer (10 mM PIPES, 0.1 M NaCl, 2 mM MgCl2, 0.1% Triton X-100, 0.02%

NaN3, pH 6.8), 15 μl of RNase A (10 mg/ml) and 12 μl of propidium iodide (1 mg/ml) for 30 min at RT.

Afterwards the cell suspension was transferred to a FACS tube and 150 μl of PBS was added. Per

sample 10,000 events were analyzed with a BD FACSCanto II (BD Transduction, Heidelberg, Baden-

Württenberg, Germany) and analysed with the FlowJo software.

Zebrafish microinjection
RFP-tagged dominant negative C-terminal Pcnt was PCR-amplified from the RFP-PeriCT construct, using

specific primers (forward: 5′gggcccgaattcGCAAACATGGTGACGTCACCGGTCGCCACCATG3′, re-

verse 5′ gggcccctcgagTCATCGGGTGGCAGGATTTCTTTGAAG 3′) to introduce an EcoRI site at the

5′ end and an XhoI site at the 3′ end and cloned into the EcoRI and XhoI sites of the pCS2+ vector.

Subsequently, mCherry (Clontech, Saint-Germain-en-Laye, France) was introduced into the EcoRI and

BglII sites replacing mDsRed. Capped sense RNA was synthesized in vitro using mMessage mMachine

kits (Life Technologies). RNA (90 pg) or DNA (25 pg) was injected into the cytoplasm of one-cell stage

zebrafish embryos using standard procedures. Embryos were raised at 28.5˚C until indicated time and

were checked for RFP expression.

Quantification of mitosis in zebrafish embryos
Embryos were raised at 28.5˚C until 24 hpf and were fixed in 4% PFA in PBS for 2 hr at RT. After 3 washes

in PBST (PBS + 0.1% Tween), embryos were washed in water and were permeabilized in prechilled

acetone at −20˚C before immunostaining. Mitotic cells were identified using anti-H3P antibodies (1:200,

Cell-Signaling) which were detected with secondary antibodies conjugated to Alexa 555 (1:1000,

Invitrogen). Nuclei were visualized with DAPI. Images of single optical plane at the notochord were

acquired with Leica SP5 confocal (Leica, Wetzlar, Germany). For quantification, the number of H3P-positive

cells was counted manually in a region dorsal to the notochord, 500 μm from the tip of the tail.

Statistical analysis
Data of at least three independent experiments are expressed as mean ± SD. Statistical analysis was

determined using Students t-test using Excel (Microsoft, Redmond, WA, USA) or ANOVA followed by

Post-hoc t-test and Bonferroni correction. For DNA injection experiment into zebrafish embryos,

statistical significance was tested using chi-squared test.
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Tübingen). Extraction of organs and preparation of primary cell cultures were approved by the local

Animal Ethics Committee in accordance to governmental and international guidelines on animal

experimentation (protocol TS - 5/13 Nephropatho; Zebrafish protocol number o.183).

Additional files

Supplementary file

·Supplementary file 1. Homology analysis of PCNT to determine conserved regions for the

identification of PCNT splice isoforms in the adult zebrafish heart.
DOI: 10.7554/eLife.05563.012

References
Azimzadeh J, Wong ML, Downhour DM, Sanchez Alvarado A, Marshall WF. 2012. Centrosome loss in the evolution
of planarians. Science 335:461–463. doi: 10.1126/science.1214457.

Barenz F, Mayilo D, Gruss OJ. 2011. Centriolar satellites: busy orbits around the centrosome. European Journal of
Cell Biology 90:983–989. doi: 10.1016/j.ejcb.2011.07.007.

Barrera JA, Kao LR, Hammer RE, Seemann J, Fuchs JL, Megraw TL. 2010. CDK5RAP2 regulates centriole
engagement and cohesion in mice. Developmental Cell 18:913–926. doi: 10.1016/j.devcel.2010.05.017.

Bartolini F, Gundersen GG. 2006. Generation of noncentrosomal microtubule arrays. Journal of Cell Science 119:
4155–4163. doi: 10.1242/jcs.03227.

Bettencourt-Dias M, Mittnacht S, Brockes JP. 2003. Heterogeneous proliferative potential in regenerative adult
newt cardiomyocytes. Journal of Cell Science 116:4001–4009. doi: 10.1242/jcs.00698.

Bettencourt-Dias M. 2013. Q&A: who needs a centrosome? BMC Biology 11:28. doi: 10.1186/1741-7007-11-28.
Bowser S, Wheatley D. 2000. Where are primary Cilia found?. http://www.bowserlab.org/primarycilia/cilialist.html.
Bugnard E, Zaal KJ, Ralston E. 2005. Reorganization of microtubule nucleation during muscle differentiation. Cell
Motility Cytoskeleton 60:1–13. doi: 10.1002/cm.20042.

Choi YK, Liu P, Sze SK, Dai C, Qi RZ. 2010. CDK5RAP2 stimulates microtubule nucleation by the gamma-tubulin
ring complex. The Journal of Cell Biology 191:1089–1095. doi: 10.1083/jcb.201007030.

Clift D, Schuh M. 2013. Restarting life: fertilization and the transition from meiosis to mitosis. Nature Reviews.
Molecular Cell Biology 14:549–562. doi: 10.1038/nrm3643.

Dammermann A, Merdes A. 2002. Assembly of centrosomal proteins and microtubule organization depends on
PCM-1. The Journal of Cell Biology 159:255–266. doi: 10.1083/jcb.200204023.

Zebrowski et al. eLife 2015;4:e05563. DOI: 10.7554/eLife.05563 14 of 16

Short report Cell biology | Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.05563.012
http://dx.doi.org/10.1126/science.1214457
http://dx.doi.org/10.1016/j.ejcb.2011.07.007
http://dx.doi.org/10.1016/j.devcel.2010.05.017
http://dx.doi.org/10.1242/jcs.03227
http://dx.doi.org/10.1242/jcs.00698
http://dx.doi.org/10.1186/1741-7007-11-28
http://www.bowserlab.org/primarycilia/cilialist.html
http://dx.doi.org/10.1002/cm.20042
http://dx.doi.org/10.1083/jcb.201007030
http://dx.doi.org/10.1038/nrm3643
http://dx.doi.org/10.1083/jcb.200204023
http://dx.doi.org/10.7554/eLife.05563


Delaval B, Covassin L, Lawson ND, Doxsey S. 2011. Centrin depletion causes cyst formation and other ciliopathy-
related phenotypes in zebrafish. Cell Cycle 10:3964–3972. doi: 10.4161/cc.10.22.18150.

Dell’Amore A, Lanzanova G, Silenzi A, Lamarra M. 2011. Hamartoma of mature cardiac myocytes: case report and
review of the literature. Heart, Lung & Circulation 20:336–340. doi: 10.1016/j.hlc.2011.01.015.

Doxsey S, Zimmerman W, Mikule K. 2005. Centrosome control of the cell cycle. Trends in Cell Biology 15:303–311.
doi: 10.1016/j.tcb.2005.04.008.

Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, Jiang H, Wang Y, Keating MT. 2005. p38 MAP kinase
inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development 19:1175–1187.
doi: 10.1101/gad.1306705.

Engel FB, Schebesta M, Keating MT. 2006. Anillin localization defect in cardiomyocyte binucleation. Journal of
Molecular and Cellular Cardiology 41:601–612. doi: 10.1016/j.yjmcc.2006.06.012.

Fant X, Srsen V, Espigat-Georger A, Merdes A. 2009. Nuclei of non-muscle cells bind centrosome proteins upon
fusion with differentiating myoblasts. PLOS ONE 4:e8303. doi: 10.1371/journal.pone.0008303.

Gamba L, Harrison M, Lien CL. 2014. Cardiac regeneration in model organisms. Current Treatment Options in
Cardiovascular Medicine 16:288. doi: 10.1007/s11936-013-0288-8.

Ganem NJ, Godinho SA, Pellman D. 2009. A mechanism linking extra centrosomes to chromosomal instability.
Nature 460:278–282. doi: 10.1038/nature08136.

Gillingham AK, Munro S. 2000. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil
proteins AKAP450 and pericentrin. EMBO Reports 1:524–529. doi: 10.1093/embo-reports/kvd105.

Graser S, Stierhof YD, Nigg EA. 2007. Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion.
Journal of Cell Science 120:4321–4331. doi: 10.1242/jcs.020248.

Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G. 2001. Requirement of a centrosomal activity for cell
cycle progression through G1 into S phase. Science 291:1547–1550. doi: 10.1126/science.291.5508.1547.

Ikenishi A, Okayama H, Iwamoto N, Yoshitome S, Tane S, Nakamura K, Obayashi T, Hayashi T, Takeuchi T. 2012.
Cell cycle regulation in mouse heart during embryonic and postnatal stages. Development, Growth &
Differentiation 54:731–738. doi: 10.1111/j.1440-169X.2012.01373.x.
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