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THE NATURAL HISTORY OF MODEL ORGANISMS

The unexhausted potential of
E. coli
Abstract E. coli’s hardiness, versatility, broad palate and ease of handling have made it the most

intensively studied and best understood organism on the planet. However, research on E.coli has

primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli

is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-

faceted niche in the wild. Recent studies of ‘wild’ E. coli have, for example, revealed a great deal

about its presence in the environment, its diversity and genomic evolution, as well as its role in the

human microbiome and disease. These findings have shed light on aspects of its biology and ecology

that pose far-reaching questions and illustrate how an appreciation of E. coli’s natural history can

expand its value as a model organism.
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Introduction
In 1884, the German microbiologist and pedia-

trician Theodor Escherich began a study of infant

gut microbes and their role in digestion and

disease. During this study, he discovered a fast-

growing bacterium that he called Bacterium coli

commune, but which is now known as the

biological rock star that is Escherichia coli

(Escherich, 1988; Shulman et al., 2007;

Zimmer, 2008). E. coli’s meteoric rise and

exalted status in biology stem from how easy

it is to find and work with. Hardy, non-

pathogenic, and versatile strains that grow

quickly on many different nutrients can be

isolated from virtually any human. These traits

made E. coli a mainstay in microbiology

teaching lab collections. Consequently, when

early 20th century microbiologists cast about

for a model organism, E. coli was one of the

most widely available choices.

Those who chose to work with E. coli included

Bordet and Ciuca (1921), Werkman (1927),

Wollman (1925), Wollman and Wollman

(1937) and Bronfenbrenner and Korb (1925),

Bronfenbrenner (1932), who between them

performed groundbreaking studies on bacterial

physiology, viruses, and genetics (Daegelen

et al., 2009). By the 1940s, its use in many

foundational studies firmly established E. coli as

the bacterial model organism of choice, making it

the obvious organism to work with at the onset

of the molecular biology revolution in the 1950s.

As a result, it became the organism in which the

most basic aspects of life, including the genetic

code, transcription, translation, and replication,

were first worked out (Crick et al., 1961;

Nirenberg et al., 1965; see Judson, 1996 for

an excellent history of early molecular biology

and E. coli’s role in it). The resulting knowledge

and molecular methods for investigating and

manipulating its biology have since led to E. coli’s

prominence in academic and commercial genetic

engineering, pharmaceutical production, and

experimental microbial evolution (see Box 1 for

a glossary of specialist terms used in this

article ), not to mention the biotechnology

industry, which contributed $500 billion to the

global economy in 2011 (Cohen et al., 1973,

Schaechter and Neidhardt, 1987; Lenski,

2004; Bruschi et al., 2011; Kamionka, 2011;

Huang et al., 2012; Kawecki et al., 2013). It is

not hyperbole to say that E. coli is now the

most important model organism in biology

(Zimmer, 2008; see Box 2).

For all of its importance, E. coli is quite

nondescript. It is a fairly typical Gram-negative

bacillus (see ‘Glossary’), measuring only about

1 μm long by 0.35 μm wide, although this can
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vary considerably depending on the strain and

its conditions. Even at high magnification it

looks like nothing more than a tiny sausage

(Figure 1A). It may have whip-like flagella

that it uses to move about its environment, or

hair-like pili that allow it to attach to surfaces

or to other cells (Figure 1B). Physiologically,

it is a facultative aerobe, meaning that it can

grow happily with or without oxygen, but it

cannot grow at extremes of temperature or pH

nor can it degrade dangerous pollutants,

photosynthesize, or do a variety of other

things that interest microbiologists. Phyloge-

netically, it is a member of the Enterobacter-

iaceae, and is closely related to such

pathogens as Salmonella, Klebsiella, Serratia,

and the infamous Yersinia pestis, which causes

plague (Brenner and Farmer, 2007).

The helpful lodger: E. coli’s
relationship(s) with its hosts
In nature, E. coli is principally a constituent of the

mammalian gut microbiome (see ‘Glossary’), but

it is also found, albeit less commonly, in the gut

microbiomes of birds, reptiles and fish, as well as

in soil, water, plants, and food (Hartl and

Dykhuizen, 1984; Leimbach et al., 2013). Its

mammalian abode is why E. coli can metabolize

lactose, the control of which was the subject of

seminal studies of gene regulation (Jacob et al.,

1960; Jacob and Monod, 1961). E. coli is

typically the most common aerobe in the lower

intestine of mammals. However, the gut is

primarily an anoxic environment, and the ex-

tremely large, highly diverse (500+ taxa) gut

microbial community is dominated by obligate

Box 1. Glossary

Accessory genes—Genes that are not among the invariant

core genome of a microbe, and are thus not present in all

strains of a given species. Accessory genes are thought to

improve an organism’s fitness in a particular environmental

or ecological context.

Biofilm—A group of microbes that grow together while

adhering to each other and to a surface. Biofilms typically

contain complex, diverse communities embedded in an

extracellular, gelatinous matrix of polysaccharides, pro-

teins, and DNA.

Experimental microbial evolution—A recently devel-

oped field of biology in which experiments with fast-

growing and evolving populations of microorganisms are

used to investigate evolutionary questions that cannot be

addressed with slow-growing, larger organisms.

Flexible genome—The set of genes within a microbe’s

genome that are not ubiquitous in a species, but instead

vary from strain to strain within that species. Typically, the

flexible genome is larger than the core genome. Also

called the dispensable, accessory, or adaptive genome.

Gram-negative—A diverse group of bacteria that have

two membranes that regulate the entry of substances into

and out of the cell, between which is a rigid cell wall that

maintains the cell’s shape and structural integrity. The

name comes from the failure of these bacteria to retain

crystal violet dye during the Gram-stain procedure.

Hemolytic anemia—Anemia caused by abnormal break-

down of red blood cells. In cases of E. coli O157:H7

infection, hemolytic anemia is caused by red blood cells

being fragmented by blood clots that form in the

capillaries.

Microbiome—The total microbial community that lives on

and within the body of a large, multi-cellular organism like

a human. The gut microbiome is typically by far the largest

component of an organism’s total microbiome.

Pan-genome—The complete set of all genes found

among all strains of a microbial species.

Pathotype—A group of pathogenic strains of E. coli that

cause disease in the same part of the body and via the

same mechanism.

Restriction Enzyme—A DNA-degrading enzyme that

recognizes and cleaves DNA at or near a particular

sequence referred to as a ‘restriction site’. Bacteria

produce restriction enzymes to defend against viruses by

degrading their DNA upon its insertion into the cell. Also

called a ‘restriction endonuclease’.

Shiga-like Toxin—A protein toxin produced by enter-

ohemorrhagic E. coli that binds to particular receptors on

the surfaces of epithelial cells in small blood vessels,

mainly in the kidney, intestines, and lungs. Once in a cell,

it inhibits protein synthesis and causes the cell to die

(Griffin and Tauxe, 1991).

Thrombocytopenia—A lack of platelets in the blood, which

reduces the ability of blood to clot. In E. coli O157:H7

infections, it is caused by large numbers of platelets being

used up in small blood clots that form in the capillaries.

Virome—The sum total of all viruses that exist within or on

an organism, including those within the microbiome, and

those integrated into the organism’s genome.

DOI: 10.7554/eLife.05826.002
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anaerobes, such as members of Bacteroides and

Firmicutes, which alone comprise ∼90% or more

of the total gut microbial population (Bäckhed

et al., 2005; Eckburg et al., 2005; Claesson

et al., 2009; Tenaillon et al., 2010). By contrast,

E. coli typically constitutes only 0.1–5% of the

community, which partly reflects the fact that its

niche is to be found in the relatively thin layer of

mucus that lines the gut. In the mucus layer, E.

coli grows in a complex, multi-species biofilm

(see ‘Glossary’) in which it competes for an array

of nutrients—one of the origins of its broad diet

(Chang et al., 2004; Beloin et al., 2008). This

rich food supply enables E. coli to maintain

population densities of 106–109 cells per gram

of fecal matter despite unavoidable and regular

bulk losses (Savageau, 1983; Chang et al.,

2004). In the human gut, the E. coli population

typically includes a set of long-term residential

strains, and also short-term transients that vary

with diet, health, and with exposure to antibiotics

(Sears et al., 1950; Savageau, 1983). The human

gut E.coli population also varies due to its

constant, largely unknown interactions with the

broader microbiome, and with the host and the

host’s vast virome (see ‘Glossary’), against which

it defends itself with restriction enzymes, which

have become a key tool in molecular biology (see

‘Glossary’) (Kasarjian et al., 2003; Roberts,

2005; Minot et al., 2011; He et al., 2013;

Shoaie et al., 2013; Virgin, 2014).

A host organism carefully regulates its micro-

biome in poorly understood ways that have an

impact on its health (Schluter and Foster, 2012).

For instance, the human gut secretes immuno-

globulin A, which appears to facilitate the

formation of E. coli biofilms on the intestinal

mucosa, suggesting that their presence is wel-

come (Bollinger et al., 2003). While long

considered to have a commensal relationship

with its host, in which E. coli secures food and

a nice warm home while contributing little in

return, it is increasingly clear that the host-E. coli

relationship is really a mutualism. Indeed, E. coli

benefits its host in a number of ways. It produces

vitamin K and vitamin B12, both of which are

required by mammalian hosts (Bentley and

Meganathan, 1982; Lawrence and Roth, 1996).

Box 2. The contributions of E.coli
to biology, medicine and industry

Research using E. coli has led to many advances in a variety

of fields. The following is a sample of these fields, and the

contributions this work has made. Citations are non-

exhaustive and to key literature only.

Molecular Biology, Physiology, and Genetics: Elucida-

tion of the genetic code (Crick et al., 1961), DNA

replication (Lehman et al., 1958), transcription (Stevens,

1960), life cycle of lytic and lysogenic bacterial viruses

(Ellis and Delbrück, 1939; Lwoff, 1953), gene regulation

(Jacob et al., 1960; Jacob and Monod, 1961; Engles-

berg et al., 1965), discovery of restriction enzymes (Linn

and Arber, 1968; Meselson and Yuan, 1968), charac-

terization and study of persister variants (Hu and Coates,

2005; Hansen et al., 2008; Lewis, 2010; Amato et al.,

2013; Amato and Brynildsen, 2014) and swarming

motility behavior (Harshey and Matsuyama, 1994;

Harshey, 2003; Inoue et al., 2007; Partridge and Harshe,

2013a), and elucidation of the structure and function of

ATP synthase (Capaldi et al., 2000).

Pharmaceuticals: In vivo synthesis of recombinant thera-

peutic proteins, including insulin (to treat diabetes), in-

terleukin-2 (metastatic melanoma), human interferon-β
(multiple sclerosis), erythropoietin (anemia), Human growth

hormone (pituitary disorders, short stature, muscle wasting),

human blood clotting factors (hemophilia), pegloticase

(gout), taxol (cancer) and certolizumab (Crohn’s disease)

(reviewed in Kamionka, 2011; Huang et al., 2012).

Evolution: Demonstration of the random nature of

mutations (Luria and Delbrück, 1943; Lederberg and

Lederberg, 1952). Principal model organism in experi-

mental evolution (reviewed in Kawecki et al., 2013), used

to examine many issues, including the relationship

between genomic evolution and adaptation (Barrick

et al., 2009), evolutionary repeatability and the role of

historical contingency in evolution (Travisano et al.,

1995; Cooper et al., 2003; Blount et al., 2008; Meyer

et al., 2012), the origin of novel traits (Blount et al.,

2012), long-term fitness trajectories (Wiser et al., 2013),

effect of sexual recombination on adaptation (Cooper,

2007), and predatory–prey interactions (Chao and Levin,

1977; Lenski, 1988; Meyer et al., 2010, 2012).

Genetic Engineering and Biotechnology: Development

of genetic engineering techniques and technologies,

including molecular cloning and recombinant DNA

(Cohen et al., 1973), allele replacement (Link et al.,

1997; Herring et al., 2003). Used to produce biofuels

(Liu and Khosla, 2010; Janßen and Steinbüchel, 2014),

and industrial chemicals such as phenol (Kim et al., 2014),

ethanol (Hildebrand et al., 2013), mannitol (Kaup et al.,

2004), and a variety of others (Chen et al., 2013).

DOI: 10.7554/eLife.05826.003
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E. coli also maintains a friendly environment for

its anaerobic neighbors by consuming oxygen

that enters the gut. Perhaps most importantly,

E. coli competitively excludes pathogens from its

niche in the gut, rather like how friendly

barbarian tribes, settled by the Roman Empire

on its frontiers, helped to keep out the more

dangerous tribes (Chang et al., 2004).

E. coli’s relationship with a host literally begins

at birth. Newborns are typically inoculated with

maternal E. coli through exposure to her fecal

matter during birth and from subsequent han-

dling (Nowrouzian et al., 2003; Leimbach et al.,

2013). Although perhaps disconcerting to pon-

der, this inoculation seems to be quite important.

Indeed, E. coli becomes more abundant in the

mother’s microbiome during pregnancy, increas-

ing the chances of her newborn’s inoculation

(Koren et al., 2012). The colonizing strains

typically have secretion systems and pili that

allow them to attach to and interact with the

infant’s gut epithelium (Feeney et al., 1980; de

Muinck et al., 2013). This newly established and

rapidly growing E. coli population then changes

the structure and function of the epithelial cells in

ways that appear crucial for healthy microbiome

development (Tomas et al., 2015). It is therefore

concerning that early human infant colonization

by E. coli has been declining in the US and in

other Western nations as rates of caesarean

delivery have increased and hospital hygiene

has continued to improve (Grönlund et al., 1999;

Nowrouzian et al., 2003; Adlerberth, 2006).

Indeed, this decrease has been accompanied

by broader microbiome changes, including in-

creased infant gut colonization by Staphylococcus

aureus, which is linked to an increased risk of

developing a variety of disorders, including asthma,

obesity, and diabetes (Lindberg et al., 2000,

2004; Neu and Rushing, 2011; Sannasiddappa

et al., 2011; Rudi et al., 2012; Azad et al., 2013;

Moeller et al., 2014). The long-term consequences

of disrupting humanity’s long association with

E. coli are under intensive investigation.

Life on the outside: E. coli in the
external environment
An inevitable consequence of being a gut mi-

crobe is to be regularly excreted into the external

world. The mucus lining of the gut is constantly

sloughed off and excreted in fecal matter, so cells

of a resident E. coli population are shed almost as

soon as that population is established. E. coli’s

long-term life cycle is hence biphasic, and de-

spite being exquisitely adapted to the good life

inside of a host, E.coli must also be adapted to

successfully acclimate to a harsher life outside the

host (Savageau, 1983). This is a remarkable feat.

Whereas life on the inside is easy and stable,

every aspect of the external environment, be it

nutrition, temperature, oxygen, moisture, pH,

and/or the surrounding microbial community, can

fluctuate wildly (Savageau, 1983; Winfield and

Groisman, 2003; van Elsas et al., 2011). It is

likely that the hardiness, metabolic flexibility, and

substrate breadth that have made E. coli such

a valuable model organism evolved in part to

permit it to survive this hostility and variability

long enough to make it back to a host (van Elsas

et al., 2011).

Another interesting trait that is almost cer-

tainly relevant to E. coli’s survival of its environ-

mental phase is the production of persister

variants. First observed in Staphylococcus during

experiments with penicillin, persisters are rare,

highly antibiotic-tolerant phenotypic variants that

arise at random in bacterial populations (Hobby

et al., 1942; Bigger, 1944; Balaban et al., 2004;

Figure 1. Scanning Electron Micrographs of E. coli.

(A) E. coli B strain REL606, a laboratory strain with

a typical sausage-shaped morphology. (Photo credit:

Brian Wade). (B) E. coli O119:HND strain A111, an

enteropathogenic strain that produces hair-like pili.

(Photo credit: Nascimento et al., 2014).

DOI: 10.7554/eLife.05826.004
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Lewis, 2010; Zhang, 2014). Persisters are not an

adaptation specifically to antibiotics; their hall-

mark antibiotic tolerance is attributable to their

metabolic inactivity, which is triggered by several

redundant pathways, including those that govern

stress response (Shah et al., 2006; Lewis, 2010;

Amato et al., 2013; Amato and Brynildsen,

2014). Persistence therefore appears to be

a general adaptation that permits small numbers

of dormant cells to survive a variety of environ-

mental fluctuations. E. coli has been, as with so

many other phenomena, a model in which to study

bacterial persistence, and it seems likely that this

capacity to enter a dormant state plays a signifi-

cant role in surviving the considerable fluctuations

it encounters in its external environment.

The external world was long thought to be so

harsh as to preclude E. coli’s growth outside of its

host. While a tiny minority might eventually reach

a new host, most cells were expected to

eventually die. This is the basal assumption

behind using the presence of E. coli as an

indicator of fecal contamination. However, recent

studies have shown that E. coli can, in fact,

establish itself as a member of microbial soil,

water, and plant-associated communities (Lopez-

Torres et al., 1987; Ishii and Sadowsky, 2008;

Texier et al., 2008; Brennan et al., 2010; Berthe

et al., 2013; Dublan et al., 2014). Moreover,

genomic and phylogenetic analyses of collections

of E. coli strains have identified divergent

lineages that appear to be adapted to a primarily

non-host lifestyle (Walk et al., 2009). What

adaptations are required for E. coli to make such

radical ecological shifts, what niches it fills in its

new communities, how stable its presence in

those communities might be, and what impact its

adaptation to these new niches might have on its

capacity to return to a host remain outstanding

questions that must be addressed (see Box 3).

It is possible that these environmental E. coli

populations will help resolve the interesting

problem of swarming motility. It has long been

observed that groups of E. coli cells on water-

restricted surfaces will congregate and engage in

social, coordinated movement over the surface,

a behavior also seen in other bacteria (Harshey

and Matsuyama, 1994; Harshey, 2003; Par-

tridge and Harshey, 2013a,b). However, swarming

has principally been observed and studied on

agar plates in the lab (Partridge and Harshey,

2013a). What function it might serve for E. coli in

nature has been unclear. The gut generally lacks

the sorts of surfaces on which swarming works.

Given that ∼216 E. coli genes are specifically

involved in swarming motility, it is a costly trait

that would not be maintained if it did not confer

some selective benefit (Inoue et al., 2007). It is as

yet unclear if swarming plays any role in the initial

colonization of the gut, but it is associated with

pathogenesis, likely due to its improved coloni-

zation of tissue surfaces that facilitate opportu-

nistic infection (see the next section) (Zhang

et al., 2010; Partridge and Harshey, 2013a).

Given that surfaces, and interfaces between

surfaces, are regularly encountered by environ-

mental bacteria, swarming may well prove to be

an adaptation that enables the exploration and

colonization of viable habitats by E. coli upon

their excretion into the external environment.

Box 3. Outstanding questions
about the natural history of E. coli

c How do E. coli populations become established in soil and
water communities outside of their host? What niches do
they fill? How does adaptation to these new conditions
affect their capacity to recolonize a host organism?

c How often do environmental strains find their way back
to a host?

c What is the function of swarming motility in nature?
c What proportion of any given E. coli strain’s comple-
ment of genes is adaptive to life in a host vs life in the
external environment?

c How many different ecotypes of E. coli that occupy
distinct niches are there?

c To what degree is E. coli’s genomic evolution in the
wild driven by horizontal gene transfer vs mutation?
How much horizontal gene transfer into E. coli comes
from other organisms?

c How do the E. coli pan- and flexible genomes evolve,
and what overlap is there with those of other organisms?

c On average, how many generations do wild E. coli
strains undergo in a year?

c What is the average pace of evolution for wild E. coli?
How does it vary between different strains occupying
different hosts and environments?

c How tightly have E. coli and its hosts co-evolved?
c What impact does change in human lifestyles have on
the relationship between humans and E. coli, and what
are the health consequences?

DOI: 10.7554/eLife.05826.005
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Pathogenic E. coli: A friendly
microbe’s dark side
E. coli’s presence in the environment is a cause for

concern because its relationship with humans is

not entirely benign. Indeed, E. coli is a major cause

of diarrheal diseases, peritonitis, colitis, bacter-

emia, infant mortality, and urinary tract infections

that world-wide cost billions of dollars to treat and

kill roughly 2 million humans each year (Russo and

Johnson, 2003; Kaper et al., 2004). Some strains

may even cause cancer (Arthur et al., 2012).

Some opportunistic E.coli infections are caused by

normally harmless or beneficial strains when in-

troduced to sick hosts or to parts of a host’s body

outside of the gut (Kaper et al., 2004). However,

there are also pathogenic strains that produce

virulence factors and can cause illness in even the

healthiest host. These strains are classified by

where and how they cause disease into groups

called pathotypes (see ‘Glossary’), which include

enteroaggregative, enterohemorrhagic, entero-

pathogenic, enterotoxigenic, uropathogenic,

meningitis-associated, and septicemic-associated

E. coli (Kaper et al., 2004; Leimbach et al., 2013)

(see ‘Glossary’).

The most notorious of these is E. coli O157:

H7, an enterohemorrhagic strain that produces

a shiga-like toxin (Griffin and Tauxe, 1991;

Robinson et al., 2006). This toxin (see ‘Glossary’)

attacks small blood vessels, killing intestinal cells,

and causing bloody diarrhea and severe abdom-

inal pain, as well as hemolytic uremic syndrome

(HUS), a potentially deadly condition that can

involve widespread clots in capillaries and hemo-

lytic anemia, thrombocytopenia, and renal failure

(see ‘Glossary’; Griffin et al., 1988; Kaper et al.,

2004). Treatment can be difficult because anti-

biotics increase the risk of HUS. As a result,

treatment is generally limited to the provision of

fluids, adequate nutrition, medication for pain

and fever, and blood transfusions when neces-

sary (Bitzan, 2009; Smith et al., 2012).

O157:H7 is particularly dangerous because it

can easily contaminate human food supplies. It

resides asymptomatically in cattle and in other

livestock, and can be transferred to humans via

the fecal contamination of meat during its

butchering and packaging (Ferens and Hovde,

2011). It can also contaminate vegetables via

fertilizers and water, and through contact with

live-stock-associated birds (Callaway et al.,

2009, 2014). Through these points of entry into

the human food chain, O157 has caused numer-

ous outbreaks of illness (Frenzen et al., 2005;

Rangel et al., 2005). In the US alone, such

outbreaks have annually affected ∼63,000 indi-

viduals, killing 20, and costing around $405

million in healthcare and in lost productivity

(Mead et al., 1999; Scallan et al., 2011). When

E. coli gets bad press, O157:H7 is almost always

the culprit, and rightfully so.

Diversity and plasticity of the
E. coli genome
The many pathogenic strains of E. coli testify to

the diversity of this single microbial ‘species’, the

full extent of which was only revealed by the

advent of whole-genome sequencing. For exam-

ple, genome sequences have firmly placed all

Shigella strains within the broader E. coli clade

(Pupo et al., 2000; Lukjancenko et al., 2010;

Kaas et al., 2012).

More importantly, sequencing has uncovered

the remarkable plasticity and dynamism of the E.

coli genome that contribute to its genetic and

phenotypic diversity. In 2002,Welch et al. (2002)

reported that three strains of E. coli, the popular

lab strain K-12, O157:H7, and the uropathogenic

strain CFT073, share only 39.2% of their genes.

Subsequent sequencing of more strains has

reduced this core genome to less than 20% of

the more than 16,000 genes in the E. coli pan-

genome (see ‘Glossary’; Lukjancenko et al.,

2010; Kaas et al., 2012).

The remaining genes constitute the flexible

genome (see ‘Glossary’), a vast pool of ‘plug and

play’ genetic variation that can be acquired via

horizontal gene transfer (Lukjancenko et al.,

2010; Mira et al., 2010; Leimbach et al.,

2013). This variation includes prophages, trans-

posable elements, and accessory genes (see

‘Glossary’). These genes encode functions that

can: improve fitness in particular niches; increase

metabolic flexibility; and affect pathogenicity

(Schmidt and Hensel, 2004; Touchon et al.,

2009). Flexible genomic elements are often large

and integrate into the genome at select insertion

hotspots (Touchon et al., 2009). This capacity to

mix and match accessory genetic elements

means that new E.coli strains with novel combi-

nations of traits can arise very quickly. Another

consequence is that the size of the E. coli

genome can vary greatly between strains. While

standard lab strains have genomes of ∼4.5
million base pairs and 4000 genes, pathogenic

strains can have genomes of over 5.9 million base

pairs and 5500 genes (Blattner et al., 1997;

Lukjancenko et al., 2010; de Muinck et al., 2013).

This extensive genetic plasticity poses major

questions for understanding how E. coli evolves
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in the wild over the long-term. For instance, how

does the rate of genomic evolution in a given E.

coli lineage by mutation compare to that by

horizontal gene transfer (Guttman and Dykhui-

zen, 1994; Dolbrindt et al., 2010; Paul et al.,

2013)? Moreover, how much of the E. coli

flexible genome ultimately derives from other

organisms?

Conclusion
E. coli has been tremendously valuable as a de-

contextualized, abstracted model organism,

but it could be of even greater value were we

to gain a better understanding of its ecology

and natural history. As I have discussed, it is

a highly diverse and broadly distributed species

that occupies an expansive, generalized niche in

which it experiences a vast range of environ-

mental and ecological conditions. This breadth

presents two unique and synergistic opportuni-

ties. First, the tools and techniques developed

for, and the knowledge derived from, the study

of E. coli’s lab strains can be applied to studying

its wild relatives in far greater detail than is

possible for any other microbe. This capacity

promises to yield new and profound insights

into the biology of other microbes that experi-

ence similar conditions, as well as the discovery

and identification of new microbiological phe-

nomena. Second, any increase in our knowl-

edge of E. coli’s natural history expands the

range of biological phenomena for which its

strains can be used as models to study. In other

words, the study of E. coli’s natural history can

reveal more than is possible with most organ-

isms, and an increased understanding of its

natural history in turn expands its potential as

a model organism.

An example of this dynamic can be seen in

studies of E. coli biofilms, which have revealed

much about how harmless and pathogenic strains

colonize the gut and persist in the environment

(Wang et al., 2006; Beloin et al., 2008; Nesse

et al., 2014; Vogeleer et al., 2014). These

studies have, in turn, led to the development of

E. coli as a model for studying the formation,

genetics, physiology, and consequences of bio-

films, generating important findings on this most

common of microbial lifestyles (Beloin et al.,

2008). Experimental evolutionary studies of E.

coli biofilms have also led to findings of far-

reaching consequence, such as how biofilms

impact microbial evolution and how they facili-

tate the evolution of antibiotic resistance even

when antibiotics are not present (Ponciano et al.,

2009; Tyerman et al., 2013).

There are many unanswered questions about

E. coli’s natural history (see Box 3). How does

E. coli adapt to non-host environments? What role

does it play in non-host communities? How does it

adapt to life in the soil? Just how fluid is the E. coli

genome? How do environmental and ecological

conditions affect this fluidity? How does the pan-

genome evolve? How much interaction is there

between E. coli’s pan-genome and that of other

microbes? How tightly adapted are hosts to their

E. coli populations? How is E. coli adapting to

changes in the human diet and lifestyle? Each

unanswered question presents opportunities for

novel research into unexplored corners of E. coli’s

natural history, and the subsequent expansion of

its potential as a model. Improved appreciation

and interest in E. coli’s natural history can only

uncover more questions, and increase its poten-

tial even more. If kept in mind by researchers, this

dynamic will guarantee that the most important

model organism of the 20th century will continue

to be one of the most important model organisms

of the 21st century and beyond.
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