

1 **SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy**
2 **response in plants**

3

4 Andrea Mair¹, Lorenzo Pedrotti², Bernhard Wurzinger¹, Dorothea Anrather³, Andrea Simeunovic¹,
5 Christoph Weiste², Concetta Valerio⁴, Katrin Dietrich², Tobias Kirchler⁵, Thomas Nägele¹, Jesús Vicente
6 Carabajosa⁶, Johannes Hanson^{7,8}, Elena Baena-González⁴, Christina Chaban⁵, Wolfram Weckwerth¹,
7 Wolfgang Dröge-Laser², and Markus Teige^{1,9*}

8

9 ¹ Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria

10 ² Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Würzburg, Würzburg, Germany

11 ³ Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria

12 ⁴ Instituto Gulbenkian de Ciência, Oeiras, Portugal

13 ⁵ Department of Plant Physiology, Center for Plant Molecular Biology, University of Tübingen,
14 Tübingen, Germany

15 ⁶ Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain

16 ⁷ Department of Molecular Plant Physiology, Utrecht University, Utrecht, The Netherlands.

17 ⁸ Department of Plant Physiology, Umeå Plant Science Center, University of Umeå, Umeå, Sweden

18 ⁹ Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences,
19 Vienna, Austria

20

21 * Contact Information:

22 markus.teige@univie.ac.at

23

24 Competing interests:

25 The authors declare that no competing interests exist.

26 **Abstract**

27

28 Metabolic adjustment to changing environmental conditions, particularly balancing of growth and
29 defense responses, is crucial for all organisms to survive. The evolutionary conserved
30 AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response
31 in animals, yeast and plants. They act at two different levels: by modulating the activity of key
32 metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well
33 established, the latter function is only partially understood in animals and not at all in plants. Here
34 we identified the *Arabidopsis* transcription factor bZIP63 as key regulator of the starvation response
35 and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization
36 preference, thereby affecting target gene expression and ultimately primary metabolism. A *bzip63*
37 knock-out mutant exhibited starvation-related phenotypes, which could be functionally
38 complemented by wild type bZIP63, but not by a version harboring point mutations in the identified
39 SnRK1 target sites.

40 **Introduction**

41

42 Flexibility in the regulation of gene expression is crucial for all organisms to adjust their metabolism
43 to changing growth conditions. Particularly under stress, available energy resources need to be
44 balanced between defense and growth. The SUCROSE NON-FERMENTING RELATED KINASE 1 (SnRK1)
45 in plants and its orthologs, the sucrose-non-fermenting 1 (Snf1) kinase in yeast and the AMP-
46 dependent protein kinase (AMPK) in mammals, are well-known and crucial master regulators of
47 energy homeostasis. SnRK1 is involved in the regulation of plant metabolism, development, and
48 stress response (Baena-Gonzalez and Sheen, 2008; Polge and Thomas, 2007), Snf1 is required for the
49 switch from fermentative to oxidative metabolism in the absence of glucose (Hedbacher and Carlson,
50 2009), and AMPK regulates glucose, lipid, and protein metabolism, mitochondrial biogenesis, and
51 feeding behavior in animals (Hardie et al., 2012). They are generally activated under energy
52 starvation conditions and trigger metabolic reprogramming to slow down energy-consuming processes
53 and turn on pathways for alternative energy production in order to survive the stress conditions
54 (Hardie 2007, Tome et al., 2014). This happens, in two ways: by direct phosphorylation and
55 modulation of the activity of key enzymes in nitrogen, carbon, or fatty acid metabolism (Kulma et al.,
56 2004; Sugden et al., 1999; Harthill et al., 2006), and by massive transcriptional reprogramming
57 (Baena-Gonzalez and Sheen, 2008; McGee and Hargreaves, 2008; Polge and Thomas, 2007).
58 Especially in plants, the latter aspect, the regulation of transcription, is still poorly understood. In
59 Arabidopsis protoplasts, transient overexpression of AKIN10, a catalytic subunit of the SnRK1
60 complex, resulted in a transcriptional profile reminiscent of various starvation conditions and led to
61 the identification of 1021 putative SnRK1 target genes (Baena-Gonzalez et al., 2007). However, the
62 transcription factors mediating the transcriptional response of SnRK1 to energy starvation are still
63 unknown. Based on reporter gene activation assays in protoplasts (Baena-Gonzalez et al., 2007) and
64 modelling of microarray data (Usadel et al., 2008), some members of the C/S1 group of basic leucine
65 zipper (bZIP) transcription factors (TFs) – foremost bZIP11 and bZIP1 from the S1 group - were

66 speculated to be involved in this process. Yet, a direct regulation of these bZIPs by SnRK1 has never
67 been shown.

68 bZIP proteins form a large and highly conserved group of eukaryotic TFs. They bind the DNA as
69 dimers and are characterized by a basic region for specific DNA binding and a leucine zipper for
70 dimerization (Deppmann et al., 2006; Reinke et al., 2013). They are involved in a multitude of cellular
71 processes, including cell proliferation and differentiation, metabolism, stress response, and apoptosis
72 (Jakoby et al., 2002; Mayr and Montminy, 2001; Motohashi et al., 2002; Rodrigues-Pousada et al.,
73 2010; Tsukada et al., 2011). The diversity and flexibility of transcriptional regulation by bZIP TFs can
74 at least partially be attributed to their potential to form variable dimer combinations, which bind to
75 different consensus target sites (Deppmann et al., 2006; Tsukada et al., 2011). While the leucine
76 zipper determines the possible dimer combinations (Deppmann et al., 2006; Reinke et al., 2013), the
77 actual *in vivo* dimer composition is further influenced by factors such as protein availability, binding
78 of regulatory proteins, or post-translational modifications (Kim et al., 2007; Lee et al., 2010; Schuetze
79 et al., 2008). Since the initial discovery that the mammalian bZIP cAMP response element binding
80 protein (CREB) is regulated by reversible phosphorylation, many bZIP TFs were reported to be
81 phosphorylated (Holmberg et al., 2002; Schuetze et al., 2008; Tsukada et al., 2011). However,
82 particularly in plants, the functional consequences of these phosphorylation events often remained
83 unclear. For example, it has been known for several years that abscisic acid (ABA)-dependent
84 phosphorylation of some ABA-responsive element binding proteins (AREBs) by SnRK2 kinases
85 increases their transcriptional activity (Furihata et al., 2006), yet the underlying mechanism of this
86 activation is still unknown. It is also surprising that, while many examples for phosphorylation-
87 dependent regulation of bZIP activity, DNA-binding, subcellular localization, stability, and interaction
88 with regulatory proteins are known (Schuetze et al., 2008; Tsukada et al., 2011), reports on the
89 regulation of dimerization are scarce. So far, only three publications (Guo et al., 2010; Kim et al.,
90 2007; Lee et al., 2010) showed compelling evidence for phosphorylation-dependent changes in bZIP

91 dimerization in animals. Still, even in these cases it is often not entirely clear whether bZIP
92 phosphorylation affects dimerization directly or indirectly by enhancing DNA binding.

93 bZIP63 is a member of the C-group of *Arabidopsis* bZIPs, which was proposed to play a role in energy
94 metabolism, seed maturation, and germination under osmotic stress (Correa et al., 2008; Jakoby et
95 al., 2002; Veerabagu et al., 2014). Its transcriptional profile indicates that bZIP63 could be involved in
96 the (energy) starvation response, as transcription and mRNA stability are repressed by sugars and
97 ABA and mRNA levels increase in the night and even more during extended night treatments (Kunz et
98 al., 2014; Matioli et al., 2011). A small set of potential target genes for bZIP63 has been identified,
99 including genes involved in amino acid metabolism (*ASN1/DIN6* = ASPARAGINE SYNTHETASE 1, *ProDH*
100 = PROLINE DEHYDROGENASE), energy starvation response (*DIN10* = RAFFINOSE SYNTHASE 6), and
101 senescence (*SEN1* = SENESCENCE 1) (Baena-Gonzalez et al., 2007; Dietrich et al., 2011; Matioli et al.,
102 2011; Veerabagu et al., 2014). The C-group bZIPs form a dimerization network with the S1-group in
103 plants, in which bZIP63 can interact with all members (Ehlert et al., 2006; Kang et al., 2010). Three of
104 its dimerization partners from the S1-group – bZIP1, bZIP11, and bZIP53 – were shown to be
105 important metabolic regulators, especially under energy starvation conditions, and to regulate the
106 expression of *ASN1* and *ProDH* as well (Dietrich et al., 2011; Hanson et al., 2008; Ma et al., 2011).
107 Furthermore, bZIP1 was recently confirmed as a transcriptional master regulator of the rapid
108 response to nutrient signals controlling mainly genes involved in amino acid metabolism and cell
109 death/phosphorus metabolism as primary targets (Para et al., 2014). In that study the authors also
110 speculate about a posttranslational modification of bZIP1 or its binding partners.

111 Here we show that bZIP63 is an important metabolic regulator, especially under stress/starvation
112 conditions, and that bZIP63 is phosphorylated at multiple sites in vivo in a sugar and energy-
113 dependent manner. In an unbiased approach, we identified SnRK1 as one of the kinases responsible
114 for bZIP63 phosphorylation and found that it targets three highly conserved serine residues in the N-
115 and C-terminus of bZIP63. Moreover, we demonstrate that the phosphorylation of these sites is
116 crucial for bZIP63's dimerization and activity in planta and propose a molecular model for a

117 phosphorylation-triggered switch of bZIP63 dimerization partners, which ultimately regulates
118 metabolic reprogramming.

119

120 **Results**

121

122 **bZIP63 controls dark-induced senescence and primary metabolism**

123 To better understand the role of bZIP63 in the plant we first tested whether bZIP63 has a similar
124 phenotype as its dimerization partners bZIP1 and bZIP11. Prolonged darkness was shown to induce
125 increased chlorophyll loss in plants overexpressing bZIP1 (Dietrich et al., 2011). Therefore, we
126 incubated a bZIP63 knock-out (ko), two independent overexpressor (ox) lines (Figure 1 – figure
127 supplement 1), and their respective wild types (wt) in the dark and determined the percentage of the
128 green leaf area as a measure for chlorophyll content (Figure 1; Figure 1 – figure supplement 2A). This
129 method was preferred over direct chlorophyll measurements (Figure 1 – figure supplement 2B) as it
130 is not affected by the water loss in senescing leaves. While no differences were observed before dark
131 treatment, significant differences were visible after 9 days in darkness (Figure 1 – figure supplement
132 2C-E). Similar to the bZIP1 ox, the bZIP63 ox lines (ox#2 and ox#3) had a significantly higher
133 percentage of yellow leaf area than the wt. In contrast, *bzip63* plants displayed a stay-green
134 phenotype (Figure 1A and 1B; Figure 1 – figure supplement 2F). RT-qPCRs of different senescence
135 marker genes confirmed that the phenotype is due to dark-induced and not to natural senescence
136 (Figure 1 – figure supplement 3). Transcriptional responses in dark-induced senescence show clear
137 similarities to starvation-induced senescence in cell suspension culture, which likely results from
138 carbon depletion in both systems (Buchanan-Wollaston et al., 2005). We therefore tested whether
139 addition of sugar could rescue this phenotype by performing the dark-induced senescence
140 experiment with seedlings grown on agar plates with and without addition of sugar. Indeed, we
141 found that the phenotype could be rescued by the addition of glucose (Figure 1C and 1D – figure
142 supplement 4), supporting the suggested role of bZIP63 in energy/carbon starvation response.

143 The notion that several hetero-dimerization partners of bZIP63, including bZIP1 and bZIP11, are
144 important metabolic regulators under starvation conditions (Dietrich et al., 2011; Ma et al., 2011)
145 prompted us to perform an unbiased metabolomics analysis of *bzip63* and ox#3 plants and their
146 respective wt lines. Leaves of five week-old plants were harvested after 6h of light and extended
147 night and analyzed for changes in the primary carbon and nitrogen metabolism using gas
148 chromatography coupled to mass spectrometry (Figure 2; Figure 2 – figure supplement 1 and source
149 data 1). Intriguingly, almost all amino acid levels were increased in the bZIP63 ko and decreased in
150 the ox plants. This effect was even more pronounced after the extended night treatment. The biggest
151 differences were observed for proline and the entire glutamate family. This accumulation of amino
152 acids, particularly of proline, is striking in view of the observed senescence phenotype as it has been
153 suggested that proline serves as an alternative energy source, especially under low carbon conditions
154 (Szabados and Savouré, 2010; Szal and Podgórska, 2012).

155

156 **bZIP63 is phosphorylated at multiple sites in an energy-dependent manner**

157 Kirchler et al. (2010) showed that bZIP63 can be phosphorylated in vitro by crude *Arabidopsis*
158 extracts. To test whether bZIP63 is also phosphorylated in vivo, we treated total leaf protein extracts
159 of ox#3 plants, expressing GFP-tagged bZIP63, with lambda protein phosphatase (λ PP) and separated
160 treated and untreated extracts on 2D gels by isoelectric focusing (IEF) in the first, and SDS-PAGE in
161 the second dimension (Figure 3A). λ PP treatment induced a clear shift of bZIP63 towards the basic
162 region of the IEF strip, thus indicating dephosphorylation of the protein.

163 As bZIP63 expression is strongly regulated by the day/night cycle and by sugars (Kunz et al., 2014;
164 Matioli et al., 2011), we investigated its phosphorylation status under these conditions, applying the
165 Phos-tag technique to enhance phosphorylation-induced mobility shifts in 1D SDS-PAGE (Kinoshita et
166 al., 2006). Comparison of protein extracts from seedling cultures after 6h extended night in the
167 presence or absence of sucrose or leaves harvested after 6h of light or extended night revealed
168 strong differences in the phosphorylation patterns of bZIP63 (Figure 3B; Figure 3 - figure supplement

169 1). Compared to the recombinantly expressed (not phosphorylated) bZIP63-YFP, the majority of
170 plant-expressed bZIP63-GFP appeared in several slower migrating forms, thus indicating multiple and
171 differentially phosphorylated forms. In total, we were able to distinguish eight different forms on the
172 Phos-tag gels, depending on the conditions (Figure 3B; Figure 3 – supplement 1). However, it is
173 important to note, that not every phosphorylation event results in an equal shift as can be seen in
174 Figure 6 – figure supplement 2. In the light, two strong bands were visible, possibly reflecting the two
175 spots on the 2D gel (Figure 3B, labelled as band 6 and band 7, respectively). Under extended night
176 conditions, an additional band appeared (labelled as band 8), indicating increased phosphorylation of
177 bZIP63. Notably, the ratio of the most phosphorylated form of bZIP63 (band 8) to the two less
178 phosphorylated forms (band 6 and 7) was different between the ox (ox#3) and a genomic
179 complementation line of *bzip63* (GY11, detailed description follows later in the text and in Figure 6).
180 In the genomic complementation line, the most phosphorylated form of bZIP63 was the strongest
181 band under extended night conditions, which might be a result of the different bZIP63 amounts in
182 relation to the endogenous kinase(s), and likely better reflects the phosphorylation state of the
183 endogenous protein. Interestingly, in seedlings grown in liquid culture, the extended night-triggered
184 phosphorylation of bZIP63 could be abolished by the addition of 1% of sucrose (Figure 3B). In fact,
185 phosphorylation was even lower here than in the light. These data indicate that bZIP63 has a basal
186 level of phosphorylation in the plant and undergoes hyper-phosphorylation under starvation
187 conditions. In contrast, addition of external sugars leads to a reduced phosphorylation status of
188 bZIP63.
189 In order to identify the *in vivo* phosphorylated residues, bZIP63-GFP was immunoprecipitated from
190 total leaf extracts using bead-coupled anti-GFP antibodies, subjected to proteolytic digest and
191 analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) (Figure 3C).
192 To achieve maximum sequence coverage of the protein we combined proteolytic digests from four
193 proteolytic enzymes (trypsin, chymotrypsin, LysC, and subtilisin). This approach resulted in a total
194 sequence coverage of 93.6% and the identification of several phospho-peptides, indicating that

195 bZIP63 is phosphorylated at up to seven serines (S29, S59, S102, S160, S261, S294, and S300) in vivo
196 (Figure 3C; Figure 3 – figure supplement 2). Two of these sites – S29 and S300 – were also found in a
197 recent phospho-proteomics study (Umezawa et al., 2013). Notably, only three of the seven sites –
198 S29, S294, and S300 – were found by tryptic protein digest, underpinning the advantage of
199 alternative proteolytic digests for phospho-peptide identification in targeted proteomics.

200

201 **SnRK1, CDPKs and CKII are potential upstream kinases of bZIP63**

202 To identify potential upstream kinases of bZIP63, we performed in-gel kinase assays with plant
203 protein extracts from roots of hydroponically grown *Arabidopsis* plants or root cell culture using
204 recombinantly expressed bZIP63 as substrate. Root material was chosen because in leaf extracts the
205 large amount of Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) interfered with some
206 of the kinase signals and poses a considerable problem during MS-based protein identification. Three
207 strong bands of about 40, 50, and 55kDa, respectively, were visible on the autoradiogram (Figure 4A),
208 indicating that at least three kinases can phosphorylate bZIP63 in vitro. These bands were not visible
209 on a gel without substrate, excluding the possibility that they originate from kinase auto-
210 phosphorylation (Figure 4 – figure supplement 1). To reduce the sample complexity and to enrich low
211 abundant bZIP63-binding proteins before kinase identification, we affinity purified plant protein
212 extracts on immobilized bZIP63. The eluted fractions were tested in an in-gel kinase assay for kinase
213 activity towards bZIP63 and loaded on a normal SDS-PAGE gel without substrate for kinase
214 identification. Bands corresponding in molecular weight (MW) to the signal from the in-gel kinase
215 assay were excised from the gel, digested with trypsin and analyzed by LC-MS/MS (Figure 4B and 4C).
216 In total, 27 protein kinases and kinase complex subunits were identified in four independent
217 experiments (Figure 4 – figure supplement 2; Figure 4 – source data 1). From those, proteins which
218 did not match the expected MW or for which it had been shown experimentally that they are not
219 localized in the nucleus were excluded. Only proteins which were identified in more than one sample
220 with at least one proteotypic peptide were considered to be high confidence candidates, resulting in

221 six protein kinases and two kinase regulatory subunits (Figure 4C; Figure 4 – figure supplement 2;
222 Figure 4 – source data 1). We identified the two main catalytic subunits of SnRK1, AKIN10 and
223 AKIN11, as well as the regulatory subunit SNF4. Several members of the calcium dependent protein
224 kinase (CDPK) family were found, but only CPK3 was identified with high confidence. In addition, two
225 catalytic (CKA1 and CKA2) and one regulatory subunit (CKB1) of casein kinase II (CKII) were found, as
226 well as Casein kinase like 2 (CKL2). The SnRK1 kinases, CDPKs, and CKL2, correspond in MW to the
227 two upper bands, while the lower band corresponds to the CKII kinase subunits. As SnRK1 was
228 previously reported to enhance the activity of several C/S1 group bZIPs (Baena-Gonzalez et al., 2007)
229 and was suggested to be activated under energy starvation conditions (Baena-Gonzalez and Sheen,
230 2008) – which could explain the observed hyper-phosphorylation of bZIP63 in extended night – we
231 focused our further analysis on AKIN10 and AKIN11.

232

233 **The SnRK1 kinase AKIN10 interacts with and phosphorylates bZIP63 in vivo**

234 To confirm that AKIN10 and AKIN11 phosphorylate bZIP63, we first performed an in-gel kinase assay
235 with protein extracts of wt and *akin10* seedlings in the presence of EGTA, to reduce the signal from
236 CDPKs of the same MW (Figure 5A). In both root and leaf extracts of *akin10* plants one band at the
237 expected MW of AKIN10 nearly disappeared (see Figure 5 – figure supplement 1-3 for
238 characterization of the *akin10* line). As AKIN11 has approximately the same MW as AKIN10, the
239 remaining signal likely originates from AKIN11. In vitro kinase assays, with equal amounts of both
240 kinases, showed that both kinases can phosphorylate bZIP63. However, AKIN10 phosphorylates
241 bZIP63 much stronger than AKIN11 does (Figure 5B). Addition of the SnRK1 upstream kinase SnAK2
242 increased the activity of AKIN10 and AKIN11 about seven-fold (see also Crozet et al., 2010), but had
243 no effect on the ratio between the signal intensities (Figure 5 – figure supplement 4). In vivo
244 interaction assays with the identified SnRK1 complex subunits supported the findings of the kinase
245 assays. In both yeast two-hybrid (Y2H) (Figure 5C) and bimolecular fluorescence complementation
246 (BiFC) assays (Figure 5D) AKIN10 and the regulatory subunit SNF4 interacted strongly with bZIP63, to

247 a comparable level as measured for the bZIP63 homo-dimer, which was used as positive control
248 (Walter et al., 2004). In contrast, AKIN11 and the two regulatory subunits AKIN β 1 and AKIN β 2
249 showed almost no interaction with bZIP63 (Figure 5C and 5D; Figure 5 – figure supplement 5).
250 However, it has to be considered that AKIN10 and AKIN11 are part of a trimeric complex including
251 SNF4 (Emanuelle et al., 2015), which is neglected in these two assays. It is therefore still possible that
252 AKIN11 interacts indirectly with bZIP63 via the regulatory subunit of the SnRK1 complex and plays a
253 minor role in bZIP63 phosphorylation in the plant.

254 To verify that SnRK1 plays an important role in the in vivo phosphorylation of bZIP63 we
255 compared the phosphorylation state of bZIP63 in plants overexpressing bZIP63-GFP or -YFP in the wt
256 and *akin10* background, respectively. As SnRK1 has been suggested to act as a major regulator in the
257 energy deprivation response, we again compared leaf protein extracts after 6h light and extended
258 night and found that the hyper-phosphorylated form (band 8) of bZIP63, observed in the wt in
259 extended night, was much weaker in the *akin10* background (Figure 5E). The same effect was
260 observed in seedling cultures after 6h of extended night (Figure 5 – figure supplement 6). To see
261 whether the weak phosphorylation remaining in the *akin10* mutant would be further reduced in an
262 *akin10/11* double mutant, we employed virus-induced gene silencing (VIGS) to knock down AKIN10
263 and AKIN11 in a genomic *bzip63* complementation line (GY9). Resulting plants showed strongly
264 reduced growth and accumulation of anthocyanins (Figure 5 – figure supplement 7), as previously
265 described in Baena-Gonzalez et al. (2007). Like in the *akin10* line, there was no difference in bZIP63
266 phosphorylation between *akin10/11* and control plants in light, but the hyper-phosphorylated form
267 of bZIP63 (band 8) in the extended night was now almost completely gone (Figure 5E). This shows
268 clearly, that AKIN10 and - to a lower extent - AKIN11 are the major kinases responsible for bZIP63
269 hyper-phosphorylation under starvation conditions.

270 Additional evidence for in vivo phosphorylation of bZIP63 by SnRK1 emerges from a recent
271 phosphoproteomics study in which one of the in vivo phosphorylation sites in bZIP63 (S300) was

272 found to be more abundant in an AKIN10 ox line and less abundant in the ko line after extended
273 night treatment, respectively (Nukarinen et al., submitted).

274

275 **AKIN10 phosphorylates three conserved and functionally important serine residues in bZIP63**

276 Next, to elucidate which of the seven *in vivo* phosphorylation sites can be phosphorylated by AKIN10,
277 we performed *in vitro* kinase assays using the wt version of bZIP63 and different serine to alanine
278 (S/A) mutants as substrates (Figure 6A; Figure 6 – figure supplement 1 and 2). Differences in
279 phosphorylation were observed for proteins with mutations in S29, S294, and S300. In detail, the
280 signal from S29A was strongly decreased in full length bZIP63 and completely gone in the N-terminal
281 peptides that appeared as lower MW degradation products in these assays. The S300A mutation led
282 to an even stronger decrease of the signal, comparable to the S294/300A double mutant. Even
283 though the S294A single mutant showed a similar signal as the wt, all three serines had to be
284 mutated to completely abolish phosphorylation, suggesting that all of them are *in vitro* targets for
285 AKIN10, with S294 being the weakest. Importantly, all three sites match the SnRK1 consensus
286 sequence (Huang and Huber, 2001) (Figure 6B).

287 A comparison of *Arabidopsis* bZIP63 with orthologs from eight other plant species, ranging from
288 mosses to higher plants, showed that the three putative AKIN10 target sites are highly conserved
289 throughout evolution (Figure 6B; Figure 6 – figure supplement 3 and source data 1). As the origin of
290 SnRK1 dates back even further, to the common ancestor of plants and animals (Bayer et al., 2014), it
291 is likely that phosphorylation of bZIP63 by AKIN10 poses an ancient and important regulatory
292 mechanism. We therefore set out to test the functional relevance of AKIN10-mediated
293 phosphorylation of bZIP63. To this end, we tested the transcriptional activity of bZIP63 in protoplast-
294 based promoter activation assays using the *ASN1* or *ProDH* promoter fused to the beta galactosidase
295 (GUS) reporter (Figures 6C; Figure 6 – figure supplement 4). In both cases, co-transformation of wt
296 bZIP63 and AKIN10 strongly induced reporter gene expression, while transformation of bZIP63 alone
297 was not sufficient for significant induction. Transformation of AKIN10 alone also led to a weak

298 induction of the reporters, which could be explained by the action of endogenous bZIPs. Mutation of
299 S29 or all three AKIN10 target sites on bZIP63 to alanine reduced the reporter activation almost to
300 background level. In contrast, mutation of the two C-terminal serines, S294 and S300, had only a
301 weak negative effect on *ASN1* and no significant effect on *ProDH* activation. Taken together, our data
302 suggest that AKIN10 phosphorylates bZIP63 at up to three conserved sites, namely S29, S294, and
303 S300 and phosphorylation by AKIN10, especially at S29, is crucial for bZIP63 TF activity.

304

305 **The AKIN10 target sites play an important role for bZIP63 function in planta**

306 To determine the impact of bZIP63 phosphorylation in planta, we transformed the *bzip63* mutant
307 with genomic constructs of bZIP63 containing either the wt sequence (GY lines), or a S/A mutation of
308 S29, S294, and S300, respectively (GAY lines) with a C-terminal YFP tag (Figure 7A; Figure 7 – figure
309 supplement 1 A-C). The wt construct showed strong phosphorylation in the light (bands 6 and 7) and
310 an even stronger phosphorylation in extended night (band 8), as well as reduced phosphorylation in
311 the presence of sucrose (bands 1, 2, and 4) (Figure 7B; Figure 7 – figure supplement 1D). In contrast,
312 the S/A construct showed only weak phosphorylation (only bands 1 and 3 visible) and most
313 importantly no difference between all tested conditions. This indicates that S29, S294 and S300 are
314 the major *in vivo* phosphorylation sites on bZIP63, which are also responsible for the observed
315 condition-dependent shift in bZIP63 phosphorylation.

316 Next, we tested whether complementation of the observed *bzip63* phenotypes depends on the
317 bZIP63 phosphorylation status, using two independent GY and GAY lines. The dark-induced
318 senescence phenotype of *bzip63* was complemented in the GY lines, but not in the GAY lines (Figure
319 7C and D; Figure 7 – figure supplement 2). After 9 days in darkness, the ko and GAY lines showed
320 visibly less chlorosis and had a higher percentage of green leaf area as compared to the wt and GY
321 lines. Metabolite profiling of leaves harvested after 6h of light also revealed marked differences
322 between the GY and GAY lines (Figures 7E and F; Figure 7 – source data 1). The metabolite profile of
323 the GAY lines was similar to that of *bzip63* plants. In contrast, in the GY lines the metabolic changes

324 between mutant and wt were mostly weaker than in *bzip63* or even resembled those observed for
325 ox#3 (Figure 7E). In a principal component analysis the GAY lines grouped together with *bzip63*, while
326 the GY lines were closer to the two wt lines and the ox (Figure 7F).

327 To test the effect of the S/A mutation on the expression of bZIP63 target genes, we performed RT-
328 qPCR of *ASN1*, *DIN10*, and *ProDH* (Figure 7G) - three suggested AKIN10 target genes (Baena-Gonzalez
329 et al., 2007). The expression of all three genes increased steadily during a 4h extended night
330 treatment, but the increase was delayed in the *bzip63* mutant as compared to the wt. At the 4h time
331 point we could observe a clear difference between wt and ko. We therefore chose this time point to
332 quantify *ASN1*, *DIN10*, and *ProDH* transcripts in one GY and GAY line. As expected, the GY line had
333 the same or even more transcript than the wt for all three genes, while the GAY line had significantly
334 lower expression levels, similar to *bzip63*.

335 In summary, expression of wt bZIP63 but not of the S/A mutant - which cannot be phosphorylated by
336 AKIN10 - in the *bzip63* background led to complementation of the *bzip63* phenotypes. Together,
337 these experiments demonstrate that phosphorylation of bZIP63 at the AKIN10 target sites is essential
338 for the function of bZIP63 in the plant.

339

340 **AKIN10-mediated phosphorylation affects bZIP63 dimerization**

341 Our findings show that bZIP63 phosphorylation, at residues distant from the central bZIP domain,
342 strongly regulates its activity. As we did not observe any changes in localization in the bZIP63
343 mutants and also no change in DNA-binding activity (of the bZIP63 homodimer) towards a C-box
344 motif (GACGTC) as canonical bZIP target site (data not shown), we suspected that the observed effect
345 on transcription would be due to changes in dimerization preferences of bZIP63. Therefore, we
346 tested the effect of AKIN10-mediated phosphorylation on bZIP63 homo- and hetero-dimerization
347 with bZIP1 and bZIP11. Both bZIP1 and bZIP11 are metabolic regulators and mediate transcription of
348 *ASN1* and *ProDH* (Dietrich et al., 2011; Hanson et al., 2008). In protoplast two-hybrid (P2H) assays,
349 the addition of exogenous AKIN10 resulted in a clear enhancement of dimerization in all cases -

350 homo-dimerization as well as hetero-dimerization with bZIP1 and bZIP11 (Figure 8A; Figure 8 – figure
351 supplement 1A). Note, that the very strong effect observed with bZIP11 in these assays is misleading
352 because bZIP11 is a much stronger activator of transcription as compared to bZIP1 and 63 (see also
353 discussion). From that we concluded that the phosphorylation of bZIP63 by AKIN10 is required for
354 dimerization and set out to test the effect of S/A mutations of the AKIN10 target sites on bZIP63
355 homo- and hetero-dimerization with bZIP11 where we had observed the strongest effect before
356 (Figure 8B; Figure 8 – figure supplement 1B). In both cases, the signal was reduced to about 30-40%
357 of the signal obtained from dimerization with wt bZIP63 when S29 or all three serines were mutated
358 to alanine. Mutation of one or two of the C-terminal sites decreased bZIP63 homo-dimerization
359 weakly but had no visible effect on bZIP63-11 dimerization, indicating that these sites play, at most, a
360 minor role in regulation of dimer formation.

361 To exclude the possibility that the observed effects on dimerization are due to phosphorylation of
362 the hetero-dimerization partner rather than bZIP63 itself, we tested whether AKIN10 is able to
363 phosphorylate any of the S1 group bZIPs. To increase the phosphorylation efficiency of AKIN10 we
364 included SnAK2 in the reactions. In contrast to bZIP63, none of the S1 group bZIPs were
365 phosphorylated by AKIN10 (Figure 8C; Figure 8 – figure supplement 2). Together, these data indicate
366 that AKIN10-mediated phosphorylation of bZIP63 – especially at S29 – strongly enhances its ability to
367 form homo- as well as hetero-dimers.

368 To further substantiate the relevance of S29 phosphorylation *in vivo*, we compared the
369 phosphorylation patterns of the S29/S294/S300 mutant with a S294/S300 mutant in the light and
370 after extended night treatments in the genomic complementation lines (Figure 8D). Compared to the
371 triple mutant, that did not show any change in the phosphorylation pattern in response to starvation,
372 bZIP63 phosphorylation was clearly increased in the S294/S300 double mutant in the extended night.
373 As S29 is the only AKIN10 target site left in this version, it must indeed be S29 that is phosphorylated
374 by AKIN10 under starvation conditions.

375 As we saw that AKIN10-dependent phosphorylation promotes dimerization of bZIP63 with all tested
376 partners we wanted to analyze whether phosphorylation has an effect on the dimerization partner
377 preference. Because protoplast two-hybrid assays only allow to analyze the effect of AKIN10 on a
378 single dimer we set up a multicolor BiFC approach (Waadt et al., 2008) in *N. tabacum* leaves with
379 bZIP1 and 11 as alternative interaction partners for bZIP63. For this, we expressed all three bZIPs (1,
380 11, and 63) from the same plasmid and co-transformed AKIN10 (Figure 9A). bZIP11 was fused to
381 CFP_N, bZIP1 to VENUS_N, and bZIP63 to CFP_C. Accordingly, the bZIP63-11 hetero-dimer generates a
382 blue (cyan) signal and the bZIP63-1 hetero-dimer a yellow signal, whereas the bZIP63 homo-dimer
383 cannot be detected. To compare the dimerization preference of phosphorylated and non-
384 phosphorylated bZIP63 we used wt and a S29/294/300A mutant of bZIP63. Quantification of the ratio
385 of the VENUS/CFP signal in more than 100 nuclei clearly showed a shift towards the VENUS emission
386 when wt bZIP63 was compared to the S/A mutant. This demonstrates that phosphorylation by
387 AKIN10 triggers the preferential formation of bZIP63-1 over bZIP63-11 dimers in a competitive *in vivo*
388 assay.

389

390

391 **Discussion**

392

393 **bZIP63 is an important metabolic regulator in the starvation response**

394 Here we show that bZIP63 plays an important role in the energy starvation response and metabolic
395 regulation. This is in accordance with the sugar/energy-dependent expression of bZIP63 (Kunz et al.,
396 2014; Matiolli et al., 2011), as well as with the fact that several of its proposed target genes are
397 involved in the low-energy response and metabolism (Matiolli et al., 2011; Veerabagu et al., 2014).
398 Furthermore, three members of the S1-group of plant bZIPs – hetero-dimerization partners of bZIP63
399 (Ehlert et al., 2006; Kang et al., 2010) – have also been linked to energy starvation response and
400 metabolism. Inducible bZIP11 ox lines exhibit a severe dwarf phenotype (Hanson et al., 2008) and a

401 metabolic profile resembling that of carbon starved plants (Ma et al., 2011), while overexpression of
402 bZIP1 and bZIP53 results in enhanced dark-induced senescence and reduced levels of proline and
403 branched-chain amino acids (Dietrich et al., 2011).

404 Similar to the bZIP1 ox, bZIP63 ox plants showed increased chlorosis after 9 days of darkness, while
405 the bZIP63 ko displayed a clear stay-green phenotype under these conditions. In contrast, neither the
406 single, nor the double ko of bZIP1 and 53 showed reduced dark-induced senescence (Dietrich et al.,
407 2011). This suggests that other bZIPs can take over the function of bZIP1 - in starvation-induced leaf
408 yellowing, while bZIP63 plays a more unique role.

409 Looking at primary metabolism, we found that misregulation of bZIP63 expression has a strong
410 effect, especially on amino acids, which was further enhanced under starvation conditions. In line
411 with the finding that bZIP63 is a positive regulator of *ProDH* and *ASN1* (Matiolli et al., 2011;
412 Veerabagu et al., 2014, and this work: Figures 6C and 7G) and the changes in proline levels in *bZIP63*
413 mutants reported by Veerabagu et al. (2014), we measured the strongest differences in proline and
414 the entire glutamate family as well as in aspartate and asparagine levels in the *bZIP63* ko and ox.
415 Notably, there is a strong correlation between the amino acid profiles of the *bZIP63* and the *bZIP1* ox
416 lines (Dietrich et al., 2011). A similar accumulation of amino acids during dark-induced senescence
417 has frequently been observed and was attributed to enhanced protein degradation (reviewed in
418 Araújo et al., 2011). Particularly under low carbon conditions or during senescence, alternative
419 energy sources need to be used in plant cells, and the important role of proline and branched-chain
420 amino acids in this process has been highlighted in a number of studies (reviewed in: Szabados and
421 Savouré, 2010; Szal and Podgórska, 2012). Thus also the altered amino acid levels could contribute to
422 the observed dark-induced senescence phenotype of the *bZIP63* mutants.

423

424 **bZIP63 function is regulated by SnRK1-dependent phosphorylation**

425 We found that *bZIP63* is highly phosphorylated in *Arabidopsis*. By applying different proteolytic
426 digests we were able to identify seven *in vivo* phosphorylated serine residues, distributed all over the

427 protein. While exogenous sucrose decreased the global phosphorylation level of bZIP63, extended
428 night treatment further increased its phosphorylation, thus supporting the idea that bZIP63 plays a
429 role in energy signaling. Moreover, we found that the SnRK1 kinase AKIN10, which was proposed to
430 be a central regulator of transcription in starvation response (Baena-Gonzalez and Sheen, 2008), is
431 the major kinase responsible for the starvation-induced hyper-phosphorylation of bZIP63. Therefore,
432 bZIP63 presents the first TF acting as direct target of SnRK1 in the transcriptional energy deprivation
433 response. In vitro, AKIN10 phosphorylated three highly conserved and functionally important
434 residues in the N- and C-terminus of bZIP63 - S29, S294, and S300, respectively. Reporter activation
435 assays in protoplasts revealed that these sites – especially S29 – are essential for AKIN10-dependent
436 induction of *ASN1* and *ProDH* by bZIP63. Remarkably, the phosphorylation patterns of different
437 bZIP63 mutants on Phos-tag gels pointed towards S29 as the main target site for AKIN10 under
438 extended night conditions. The importance of bZIP63 phosphorylation at the SnRK1 target sites for its
439 in planta function was further underlined by complementation of the *bzip63* mutant with genomic
440 bZIP63 constructs. Wt, but not a S29/S294/S300A mutant of bZIP63, could complement the
441 metabolic and senescence phenotypes. Likewise, also the strong delay in extended night-triggered
442 induction of *ASN1*, *DIN10*, and *ProDH* in *bzip63* plants was complemented with wt bZIP63, but not
443 the (triple) S/A mutant. The relatively small difference in *ProDH* expression in plants, as compared to
444 the protoplast assay, is probably due to redundancy within the C/S1 group bZIPs, as it was shown by
445 Dietrich et al. (2011), that only ko of multiple members of the C/S1 group leads to a strong reduction
446 in *ProDH* and *ASN1* expression.

447 Since the discovery that AKIN10 can activate several members of the C/S1 network (Baena-Gonzalez
448 et al., 2007), it has been speculated (Baena-Gonzalez and Sheen, 2008; Usadel et al., 2008), but never
449 shown experimentally, that they are downstream targets of SnRK1. Our data provide compelling
450 evidence that bZIP63, but none of the S1 group bZIPs, is a bona fide *in vivo* target of SnRK1 in low-
451 energy signaling.

452

453 **Phosphorylation of bZIP63 alters its dimerization preferences**

454 Differential dimerization is a well-known mechanism for changing the target recognition site, and
455 thereby the target genes of bZIP TFs (Tsukada et al., 2011). For the S1-group bZIP1 is has been shown
456 that dimerization with C-group bZIP10 or bZIP63 affects its in vitro binding to ACGT-based motifs
457 differently (Kang et al., 2010). The notion that different C/S1 dimers have different target genes is
458 further supported by a recent transcriptomics study in protoplasts. Overexpression of four C/S1
459 group bZIPs (bZIP1, bZIP10, bZIP11, and bZIP63), individually or in combination of two, revealed
460 overlapping but distinct gene expression patterns (Ma, 2012). This means, that although they
461 regulate a core set of common genes, such as *ASN1* and *ProDH* (Baena-Gonzalez et al., 2007; Dietrich
462 et al., 2011; Ma et al., 2011), different dimers also have distinct functions, and switching of
463 dimerization partners can have a considerable impact on gene expression.

464 Our data indicate that dimerization and activity of bZIP63 strongly depend on its phosphorylation
465 status. In general, the dimerization of bZIP63 with bZIP1, bZIP11, and bZIP63, was boosted by
466 AKIN10-mediated phosphorylation. Like in the promoter activation assays, the main influence on
467 dimerization came from S29 phosphorylation, while phosphorylation of S294 and S300 showed a
468 mild effect at most. Incidentally, this enhanced dimerization with bZIP63 would explain why AKIN10
469 was found to activate the S1 group bZIPs (bZIP1, 2, 11, and 53) in protoplast assays (Baena-Gonzalez
470 et al., 2007), although they do not present direct targets of AKIN10.

471 At first sight, the phosphorylation triggered boost of dimerization seemed to be strongest for hetero-
472 dimerization with bZIP11. However, it has to be considered that bZIP11 is a very strong activator of
473 transcription as it harbors an activation domain (Ehlert et al., 2006) and was recently also shown to
474 recruit the histone acetylation machinery (Weiste and Dröge-Laser, 2014). The same is not the case
475 for bZIP1 and bZIP63. As the readout of the protoplast two-hybrid interaction assay is transcription-
476 based it is therefore not possible to quantitatively compare the effect of phosphorylation on the
477 formation of different dimers and to draw conclusions about the in vivo dimerization preference.
478 Therefore we used a multi-color BiFC assay with bZIP1 and bZIP11 as alternative partners for bZIP63

479 to test the effect of bZIP63 phosphorylation by AKIN10 on its dimerization preference. The three
480 bZIPs were co-expressed with AKIN10 in *N. tabacum* leaves and the formation of bZIP63-1 and
481 bZIP63-11 dimers was quantified. Comparison of wt and S/A mutated bZIP63 revealed that,
482 phosphorylation of bZIP63 shifts the dimerization preference from bZIP11 towards bZIP1. This trend
483 fits well to the observation that both TFs are strongly upregulated in the night and extended night,
484 while bZIP11 is downregulated under these conditions (see Figure 5 – figure supplement 3).
485 Furthermore, increased expression of bZIP63 and bZIP1 under conditions when bZIP63 is
486 phosphorylated might further enhance the observed shift in the dimerization towards bZIP63-1
487 dimers.

488 Based on the data presented in this study, we propose a simplified model for the regulation of
489 bZIP63 dimerization by AKIN10 (Figure 8B). When bZIP63 is not phosphorylated, its capacity to
490 dimerize with other bZIPs is rather low. Under starvation conditions, bZIP63 is phosphorylated at S29
491 by AKIN10, favoring the formation of bZIP63 homo- and specific hetero-dimers, particularly of
492 bZIP63-1 dimers. This ultimately results in the induction of a different set of target genes and thereby
493 mediates the transcriptional reprogramming of metabolism. However, it is clear that in the plant
494 additional factors like bZIP expression, stability and interaction with other components add more
495 complexity to the situation.

496 Surprisingly, to date only a small number of papers have reported an influence of phosphorylation on
497 bZIP dimerization (Guo et al., 2010; Kim et al., 2007; Lee et al., 2010). Moreover, to our knowledge
498 this is the first time that phosphorylation outside the bZIP domain was shown to affect dimerization
499 with different partners in a distinct way. While there are numerous reports on phosphorylation-
500 mediated changes in bZIP activity in animals, plants, and yeast, in many cases the underlying
501 mechanism is still unknown. We therefore believe that this novel mechanism of phosphorylation-
502 triggered switch of bZIP dimerization partners could play a substantial role in the regulation of bZIP
503 TF activity in all higher organisms, and should be further addressed in future studies.

504

505 **Experimental Procedures:**

506

507 **Plant lines**

508 The lines ox#2 and ox#3 are bZIP63 overexpressor lines in the Col-0 background, expressing bZIP63.2
509 with a C-terminal GFP tag under the control of the 35S promoter. Generation of these plant lines was
510 previously described in Veerabgu et al. (2014). Overexpression was confirmed by RT-qPCR of *bZIP63*
511 mRNA (Figure 1 – figure supplement 1B and 1C).

512 The bZIP63 knock-out line (*bzip63*) in the Ws-2 ecotype is a T-DNA insertion line. Pool number CSJ1
513 (NASC ID: N700001) from the Arabidopsis Knockout Facility (AKF) (Sussman et al., 2000) was
514 screened for a T-DNA insertion in *bZIP63* and homozygous plants were selected using Kanamycin.
515 Sequencing of the flanking regions revealed that the T-DNA is inserted in the first exon at position 76
516 (Figure 1 – figure supplement 1A). The knock-out was confirmed by PCR and RT-qPCR of *bZIP63*
517 (Figure 1 – figure supplement 1B-D). The same line was used by Veerabgu et al (2014).

518 For the complementation lines (GY9 + GY11 = wt, GAY4 + GAY14 = S29/294/300A, S294/300A), a
519 genomic fragment containing *bZIP63* and 2kb of upstream sequence was obtained by PCR on Col-0
520 genomic DNA and ligated into pCRBlunt (Invitrogen, Austria). For the S/A constructs, first S294 and
521 S300 were mutated to alanine by mutagenesis PCR and the plasmid was subsequently used to
522 mutate S29 to alanine (see table for primers). Correct sequences were confirmed by restriction
523 digests and sequencing. The genomic fragments were then cloned KpnI/NotI into modified pBIN19,
524 containing a BASTA resistance for plant selection and a C-terminal YFP tag, before transformation
525 into the Agrobacterium tumefaciens strain GV3101 (pMP90). Homozygous *bzip63* plants were
526 transformed with the floral dip method and selected for positive transformation events by spraying
527 seedlings with 200mg/l BASTA solution (Bayer, Germany). Transgene expression in GY and GAY lines
528 was tested using RT-qPCR, western blots with an antibody against GFP, and epifluorescence
529 microscopy (Figure 7 – figure supplement 1A-C). The S294/300A shown in Figure 8D was at the time
530 of submission still heterozygous and in the T2 generation. Therefore, expression of the transgene

531 was checked by epifluorescence microscopy (not shown), but no quantification by RT-qPCR or
532 western blotting was done.

533 The *AKIN10* knock-out line (*akin10*, GABI_579E09) in the Col-0 ecotype is a T-DNA insertion line from
534 the GABI KAT collection (Kleinboelting et al., 2012). For this line two T-DNA insertions were
535 suggested, one in *AKIN10* and another one in *IMS2* (2-ISOPROPYLMALATE SYNTHASE 2, At5g23020).
536 The insertion in *AKIN10* in front of the last exon was confirmed by PCR, but the second insertion in
537 *IMS2* could not be detected and was thus assumed not to be present (Figure 5 – figure supplement
538 1A-C). The knock-out of *AKIN10* was further confirmed by RT-qPCR and western blotting,
539 respectively. No significant amount of transcript or protein could be detected (Figure 5 – figure
540 supplement 1D and 1E). The *akin10* line was further tested for obvious growth and developmental
541 phenotypes by comparing leaf number, fresh and dry weight, water content, and flowering time in
542 soil-grown wt and mutant. Only a slight delay in flowering was observed (Figure 5 – figure
543 supplement 2A and 2B). Expression of selected *AKIN10* target genes after 6h of light or extended
544 night was tested by RT-qPCR. Some genes showed a slight, but not dramatic reduction in expression
545 (Figure 5 – figure supplement 2C).

546 For the line expressing bZIP63-GFP in *akin10*, *bZIP63.2* was amplified from Col-0 cDNA (see table for
547 primers) and cloned Apal/NotI into modified pBIN19 containing the UBI10 promoter, a BASTA
548 resistance for plant selection, and a C-terminal YFP tag. Homozygous *akin10* plants were transformed
549 and selected like the GY and GAY lines.

550

551 **Plant growth**

552 Arabidopsis seeds were surface sterilized with chlorine gas before sowing on soil or growth medium
553 and then vernalized at 4°C for two days. Plants were grown in a growth chamber in a 12h light/12h
554 dark regime with day temperatures between 20 and 22°C and night temperatures between 18 and
555 20°C and a light intensity of 60 – 150 µmol/m²s unless specified otherwise. Plants grown under short
556 or long day conditions were cultivated with 8h or 16h of light per day, respectively. The soil mixture

557 consisted of 4 parts Huminsubstrat N3 (Neuhaus, Germany), 1 part perlite (Gramoflor, Germany),
558 and the fertilizer Osmocote (Substral/Scotts, Germany) according to manufacturer's instructions. For
559 hydroponic cultures, plants were grown with their roots in light-tight box filled with liquid ½
560 Hoagland medium (2mM Ca(NO₃)₂, 0.25mM K₃PO₄, 3mM KNO₃, 1mM MgSO₄, 45µM NaFeIII EDTA,
561 5µM H₃BO₃, 1µM MnCl₂, 0.15µM ZnSO₄, 0.1µM CuSO₄, 7nM MoO₃, 4.5nM Co(NO₃)₂). Seedling cultures
562 in liquid medium were grown in ½ Gamborg medium (Duchefa, Harlem, The Netherlands) with or
563 without 0.5% sucrose and the medium was exchanged after 7 days. Seedlings on plates were grown
564 on ½ MS (Duchefa, Harlem, The Netherlands) with 0.7g/l plant agar (Duchefa, Harlem, The
565 Netherlands) and a pH of 5.8. The root cell suspension culture was grown in MS medium containing
566 30g/l sucrose and 2.5µM 2,4D at 22°C in the dark under constant shaking. The medium was
567 exchanged every seven days by transferring ½ to ½ of the culture to a fresh flask and addition of
568 fresh medium.

569

570 **Dark-induced senescence**

571 4.5 week-old soil-grown plants were incubated in the dark - in a box with tubes allowing for gas
572 exchange - for 9 days. Before and after incubation the true leaves of 4-8 representative plants were
573 harvested, stuck on white paper with double sided tape, scanned with a flatbed scanner without
574 color correction at a resolution of 600dpi, and saved as TIFF files. Images were then imported in
575 ImageJ (FIJI) (Schindelin et al., 2012) and the total and green leaf area of each leaf were quantified
576 using the built-in threshold and color threshold function, respectively. The green leaf area in % was
577 then calculated by dividing the green area of a leaf or the whole plant by the respective total area.
578 See Figure 1 – source data 1 for the ImageJ macro for semi-automatic image processing. A scheme of
579 this method can be found in Figure 1 – figure supplement 2A. Alternatively, chlorophyll content was
580 determined according to Porra et al (1989). Total rosettes or seedlings were weighed and frozen in
581 liquid nitrogen. Rosettes were crushed crudely with a spatula to increase extraction efficiency.
582 Chlorophyll was extracted by adding 1-5ml of a mixture of 80% Acetone and 20% 12.5mM Hepes

583 KOH pH 8.2 and incubation in the dark for at least 12h. Absorbance at 646.6nm, 663.6nm, and
584 750nm was measured in a quartz cuvette and the chlorophyll content in μg chlorophyll/mg fresh
585 weight was determined as follows: $(12.5*(\text{A}663.6 - \text{A}750) - 2.55*(\text{A}646.6 - \text{A}750) + 20.31*(\text{A}646.6 -$
586 $\text{A}750) - 4.91 (\text{A}663.5 - \text{A}750))/\text{FW}$. For sugar rescue assays seeds were germinated on $\frac{1}{2}$ MS agar
587 plates containing 0.5% sucrose and grown in a 12h light/12h dark cycle for 12 days before transfer to
588 $\frac{1}{2}$ MS agar plates containing 0% or 2% glucose. After 6 additional days seedlings were either
589 harvested or put in a dark box for 7 days. The chlorophyll content in $\mu\text{g}/\text{mg}$ FW of individual
590 seedlings was determined as described above.

591

592 **Metabolic profiling**

593 Metabolites were extracted from leaves of 5 week-old plants, derivatized and measured as described
594 in Naegele et al. (2014) with minor variations. Approximately 80mg frozen and ground plant material
595 were extracted with 1ml -20°C cold MeOH:chloroform:H₂O (2.5:1:0.5) by mixing and incubation on
596 ice. The supernatant after centrifugation was mixed with 400 – 500 μl H₂O and centrifuged. For the
597 experiment shown in Figure 1 (1) the polar phase was split into 2 aliquots, spiked with 1 μg C13
598 labeled Sorbitol (Campro Scientific, Berlin, Germany) and dried. For the experiment shown in Figure 6
599 (6) the polar phase was not split and 2 μg of Sorbitol were added. For derivatization, metabolites
600 were first dissolved in 10 μl (1) or 30 μl (6) pyridine containing 40mg/ml methoxyamine hydrochloride
601 by 90min incubation at 30°C. Then, 40 μl (1) or 120 μl (6) of N-methyl-N-
602 trimethylsilyltrifluoroacetamid (MSTFA; Macherey-Nagel, Düren, Germany), spiked with 60 $\mu\text{l}/\text{ml}$ of
603 an Alkane Standard Mixture C₁₀-C₄₀ (Fluka, Vienna, Austria), were added and the samples were
604 incubated for 30min at 37°C. GC-MS measurements were carried out on an Agilent 6890 gas
605 chromatograph coupled to a LECO Pegasus 4D GCxGC-TOF mass spectrometer (LECO, USA). Injection
606 volume was 1 μl . In the GC step, the initial oven temperature was 70°C, which was held for 1min,
607 followed by a 9°C/min temperature increase until the final temperature of 350°C was reached, which
608 was held again for 8min. Metabolites were measured in splitless mode (1 and 6) and alternatively

609 also in split mode with a split ratio of 5 (6). In the MS step the data acquisition rate was set to 20
610 spectra/sec, the detector voltage to 1550V and the mass range to 40-600 m/z. Raw data were
611 processed with the LECO Chroma-TOF software (LECO, USA). Peak areas were normalized to the area
612 of the internal standard and to the fresh weight before statistical analysis. Outliers, as determined by
613 Grubb's test, were removed from the dataset. For Hierarchical clustering, log-2 transformed fold
614 change values were imported into MeV (MultiExperimentViewer, version 4.9.0, Saeed et al., 2003)
615 and clustering was done using the standard settings with gene tree optimization, Pearson
616 correlation, and average linkage clustering. For the PCA plot, normalized data were imported into R
617 (RStudio, version 0.98.507), missing values were replaced with the k nearest neighbor (knn) method
618 using the "impute.knn()" function and data were Z-transformed. PCA analysis was done using the
619 "prcomp()" function and scores for PC1 and PC2 were plotted against each other.

620

621 **Electrophoresis and Western blotting**

622 For 2D gels, proteins were extracted from 5-7 week-old soil-grown ox#3 plants which were grown in
623 short day. 4ml of 1x lambda phosphatase (λ PP) buffer (NEB, Frankfurt am Main, Germany), including
624 cComplete protease inhibitor (Roche, Vienna, Austria), were added to 2ml frozen and ground plant
625 material, followed by vortexing and centrifugation. 0, 30 or 50 μ g of λ PP were added to 1.5ml of the
626 supernatant, followed by 15min incubation at 30°C. Proteins were extracted with phenol (Carl Roth,
627 Karlsruhe, Germany), precipitated with ammonium acetate and resuspended in 1x rehydration stock
628 solution (7M urea, 2M thiourea, 2% (w/v) CHAPS, 2% IPG buffer (GE Healthcare, Vienna, Austria),
629 2.8mg/ml DTT, Bromphenol blue). Protein extracts were then applied to 7cm Immobiline™ DryStrips
630 (GE Healthcare, Vienna, Austria) over night and separated by isoelectric focusing on an IPGphor (GE
631 Healthcare, Vienna, Austria) according to the manufacturer's instructions. For second dimension
632 separation, the strip was incubated in SDS equilibration buffer (6M urea, 75mM TrisCl, 29.3%
633 glycerol, 2% SDS, Bromphenol blue, pH 8.8) with 10mg/ml DTT and then without DTT for 15min each,
634 followed by standard SDS PAGE and western blotting.

635 Phos-tag gel electrophoresis was done according to the manufacturer's instructions. Proteins were
636 separated on SDS PAGE gels containing 8% SDS, 25µM Phos-tag (WAKO, Neuss, Germany) and 50µM
637 MnCl₂ with an amperage of 15mA/gel for 1.25h. Before semi dry blotting, the gels were incubated in
638 transfer buffer containing 1mM EDTA, followed by washing with transfer buffer without EDTA.
639 Recombinantly expressed bZIP63-YFP was used as a size marker for the nonphosphorylated fusion
640 protein. For the expression, bZIP63 was amplified from cDNA (see table for primers) and cloned
641 Ncol/NotI into pTWIN (NEB, Frankfurt am Main, Germany) containing YFP, to create a c-terminal YFP
642 fusion. The protein was expressed in E. coli (ER2566 strain) and purified according to the
643 manufacturer's instructions. Total plant proteins were extracted with phenol. For light/extended
644 night comparison, rosettes of 5 week old plants were collected after 6h of light or extended night.
645 For +/- sucrose comparison, seedlings were first germinated and grown for one week in liquid ½
646 Gamborg medium containing 0.5% sucrose, followed by 1 week in medium without sucrose. For
647 treatment, at the onset of light 1% suc was added to half of the cultures and all cultures were kept in
648 the dark for 6 additional hours. For Phos-tag gels from kinase assays, the reactions were mixed with
649 2x Laemmli sample buffer and loaded on the gel.

650 Western blotting was done by semi dry transfer onto a PVDF membrane, antibody incubation, and
651 detection with an ECL kit following standard procedures. The following primary antibodies were
652 used: Anti-GFP (Roche, Vienna, Austria; or ChromoTek, Munich, Germany), Anti-AKIN10 (Agrisera,
653 Sweden), Anti-AMPKalpha-pT172 (Cell Signaling, Leiden, The Netherlands), Anti-Flag (Sigma-Aldrich,
654 Vienna, Austria), Anti-HA High Affinity (Roche, Vienna, Austria), Anti-HA (SantaCruz, Heidelberg,
655 Germany), Anti-GAL4 DNA BD (Sigma-Aldrich, Vienna, Austria), polyclonal peptide antibodies against
656 bZIP63: peptide antibodies against an N-terminal (EKVFSDEEISGNHHWSVNGM) and a C-terminal
657 (SLEHLQKRIRSVGDQ) peptide were raised in rabbit and affinity purified (Davis biotechnology,
658 Regensburg, Germany). The bZIP63 antibodies were tested on protein extracts from wt, bZIP63 ko
659 and ox plants. While the antibodies recognized recombinant protein and bZIP63 in the ox extracts
660 well, they failed to detect endogenous levels of bZIP63, possibly due to the low abundance of the

661 protein (not shown). The following HRP-coupled secondary antibodies were used: Anti-mouse IgG,
662 Anti-rabbit IgG, Anti-rat IgG (GE Healthcare, Vienna, Austria).

663

664 **Immunoprecipitation of bZIP63-GFP**

665 To identify *in vivo* phosphorylation sites on bZIP63, bZIP63-GFP was immunoprecipitated from ox#3
666 seedlings grown on $\frac{1}{2}$ MS agar plates or leaves of mature soil-grown ox#3 plants, harvested at
667 different time points in the light cycle and in extended night (see Figure 3 – figure supplement 2A for
668 growth and harvesting conditions). In one experiment, leaves were infiltrated with H_2O containing
669 100 μM of the proteasome inhibitor MG-132 (Calbiochem/Merck Millipore, Vienna, Austria) 6h
670 before harvesting. Protein extracts were prepared by mixing frozen and ground plant material with
671 an equal volume of cold extraction buffer (25mM TrisCl, 10mM MgCl₂, 15mM EDTA, 150mM NaCl,
672 1mM DTT, 1mM NaF, 0.5mM Na₃VO₄, 15mM β -glycerophosphate, 0.1% Tween20, Complete protease
673 inhibitor, pH 7.5), followed by centrifugation. The supernatant was then incubated with protein A
674 Sepharose CL-4B (GE Healthcare, Vienna, Austria), which had been pre-incubated for 2.5h in
675 extraction buffer with Anti-GFP antibody (Roche, Vienna, Austria), or with GFP-Trap_A beads
676 (ChromoTek, Munich, Germany) for 1h at 4°C. The beads were washed 2 – 3 times with extraction
677 buffer and alternatively twice with wash buffer (50mM TrisCl, 250mM NaCl, 0.1% NP-40, 0.05%
678 sodium deoxycholate, pH 7.5). Finally, the beads were resuspended in 1x Laemmli sample buffer,
679 boiled for 5min at 95°C, and centrifuged. The supernatant was separated by SDS PAGE and bands
680 were excised for LC-MS/MS analysis.

681

682 **Identification of proteins and *in vivo* phosphorylation sites by LC-MS/MS**

683 For the identification of phosphorylation sites, bZIP63-GFP was immunoprecipitated from leaves of
684 ox#3 plants (see “Immunoprecipitation of bZIP63-GFP”). For the identification of kinases, root
685 protein extracts were affinity purified with recombinant GST-bZIP63 (see Figure 3B for a scheme and
686 the methods section “Kinase assays” for detailed description of the affinity purification).

687 Proteins were first separated by SDS PAGE. Bands of interest were then excised from Coomassie-
688 stained gels and gel sections were chopped, washed with 50mM ammonium bicarbonate (ABC, pH
689 8.5), and dried with acetonitrile (ACN). Disulfide bonds were reduced by incubating in 200 μ l of 10mM
690 DTT for 30min at 56°C. DTT was washed off and cysteines were alkylated by incubation with 100 μ l of
691 54mM iodoacetamide for 20min at RT in the dark. Gel pieces were dried with ACN, then swollen in
692 10ng/ μ l trypsin (recombinant, proteomics grade, Roche, Vienna, Austria) in 50mM ABC and
693 incubated over night at 37°C. For higher sequence coverage of bZIP63 alternative proteases were
694 used: LysC (MS grade, WAKO, Neuss, Germany) at 37°C overnight, subtilisin (Sigma-Aldrich, Vienna,
695 Austria) at 37°C for 0.5 – 2h, chymotrypsin (sequencing grade, Roche, Vienna, Austria) at 25°C for 4
696 hours. Digestion was stopped by adding formic acid to a final concentration of approximately 1% and
697 peptides were extracted by sonication. Peptides were separated on an UltiMate 3000 HPLC system or
698 on a U3000 nano HPLC (both Dionex, Thermo Fisher Scientific). Digests were loaded on a trapping
699 column (PepMap C18, 5 μ m particle size, 300 μ m i.d. x 5mm, Thermo Fisher Scientific), equilibrated
700 with 0.1% trifluoroacetic acid (TFA), and separated on an analytical column (PepMap C18, 3 μ m,
701 75 μ m i.d. x 150mm, Thermo Fisher Scientific) by applying a 60 minutes linear gradient from 2.5% up
702 to 40% ACN with 0.1% formic acid, followed by a washing step with 80% ACN and 10%
703 trifluoroethanol (TFE) on the U3000 HPLC. The UltiMate 3000 HPLC was directly coupled to a linear
704 ion trap (LTQ, Thermo Fisher Scientific), which was operated in a data-dependent MS3 method for
705 the phosphorylation analysis. One full scan (m/z: 450-1600) was followed by maximal 4 MS/MS
706 scans. If in the MS/MS scan a fragment corresponding to a neutral loss from the precursor of 98, 49,
707 or 32 Th was observed among the top 8 peaks, a MS3 scan was triggered. Fragmentation energy was
708 set at 35%, Q-value at 0.25, and the activation time at 30ms. High resolution measurements were
709 acquired on an LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher Scientific), equipped with a
710 nanoelectrospray ionization source (Proxeon, Thermo Fisher Scientific). The electrospray voltage was
711 set to 1500V. The mass spectrometer was operated in the data-dependent mode: 1 full scan (m/z:
712 350-1800, resolution 60000) with lock mass enabled was followed by maximal 12 MS/MS scans. The

713 lock mass was set at the signal of polydimethylcyclosiloxane at m/z 445.120025. Monoisotopic
714 precursor selection was on, precursors with charge state 1 were excluded from fragmentation. The
715 collision energy was set at 35%, Q-value at 0.25, and the activation time at 10ms. Fragmented ions
716 were set onto an exclusion list for 60s. When ETD (electron transfer dissociation) was applied, the
717 top 6 peaks from the full scan were fragmented with CID (collision-induced dissociation) and
718 subsequently with ETD. For ETD, the energy parameters were as for the CID except the activation
719 time was set to 80 or 120ms.

720 Data interpretation: Raw spectra for the kinase identification were interpreted by Mascot 2.2.04
721 (Matrix Science) using Mascot Daemon 2.2.2. Spectra were searched against the *Arabidopsis thaliana*
722 entries in the nr-database with the following parameters: the peptide tolerance was set to 2Da,
723 MS/MS tolerance was set to 0.8Da, carbamidomethylcysteine was set as a static modification,
724 oxidation of Met as variable modification. Trypsin was selected as the protease allowing two missed
725 cleavages. Mascot score cut-off was set to 30, except for the low abundance sample 1, where the
726 cut-off was set to 20. For the phosphorylation analysis of purified bZIP63, either Mascot or Sequest
727 (Proteome Discoverer 1.2; Thermo Scientific) were used. The search was extended to the
728 phosphorylation of Ser, Thr, and Tyr. High resolution data were searched with 3ppm precursor mass
729 tolerance. Proteolytic specificity was defined according to the digest. Results were manually
730 validated including comparison of the fragmentation pattern and the relative retention of the
731 nonphosphorylated counterpart. Site localization was checked by manual inspection at the spectrum
732 level in the first place and was confirmed by the site-localization algorithm PhosphoRS (Taus et al.,
733 2011).

734

735 **Kinase assays**

736 In vitro kinase assays were performed with GST-tagged recombinant proteins. The cDNA of *bZIP63.2*,
737 *bZIP1*, *bZIP2*, *bZIP11*, *bZIP44.1*, *bZIP55*, *AKIN10.1/3*, and *AKIN11.1/2* was obtained by PCR (see table
738 for primers) and cloned Apal/NotI or Ncol/NotI into pGEX-4T. *SnAK2* was in pDEST15 (Crozet et al.,

739 2010). An inactive version (K/M) of *AKIN10* and non-phosphorylatable (S/A) versions of *bZIP63* were
740 created by mutagenesis PCR using the primers listed in the primer table. The proteins were
741 expressed in *E. coli* (ER2566 or BL21 strain), purified using Glutathione Sepharose 4B (GE Healthcare,
742 Vienna, Austria) according to the manufacturer's instructions, and stored at -80°C in GST elution
743 buffer containing 10 – 25% glycerol.

744 Kinase assays were performed by incubating the kinase and substrate for 20 – 30min in kinase
745 reaction buffer (20mM Hepes, 20mM MgCl₂, 100μM EGTA, 1mM DTT, 50μM ATP, pH 7.5) at room
746 temperature. For radioactive assays, 1μCi γ -³²P-labeled ATP (NEN/PerkinElmer, Waltham, MA, USA)
747 was added in each reaction. The reactions were then separated by SDS PAGE and exposure on a
748 Storage Phosphor Screen (GE Healthcare, Vienna, Austria) or Phos-tag gel electrophoresis and
749 Western blotting, respectively.

750 For in-gel kinase assays, *bZIP63* with an N-terminal 6xHis tag was used as a substrate. To construct
751 the expression vector, *bZIP63.2* was amplified from cDNA (see table of primers) and first cloned
752 Apal/NotI into pRSETa-QM (Invitrogen, Germany). From there the expression cassette was excised by
753 Sall digest, followed by a fill in with DNA Polymerase I (Klenow fragment, NEB, Frankfurt am Main,
754 Germany) and XbaI digest. The cassette was ligated with pTXB3 (NEB, Frankfurt am Main, Germany),
755 which was first digested with BamHI, followed by a fill in and XbaI digest. The protein was expressed
756 in *E. coli* (ER2566 strain) and purified over a HiTrap column (GE Healthcare, Vienna, Austria)
757 according to the manufacturer's instructions. Plant protein extracts for the in-gel kinase assays were
758 made from different plant material. For the identification of *bZIP63* kinases, proteins were extracted
759 either from roots of 8 week-old plants that were grown in hydroponic culture in short day and
760 collected in the light phase (shown in Figure 4A and 4C), from root cell suspension culture, or from
761 seedlings grown on ½ MS agar plates, which were harvested in the dark phase. 4 independent
762 experiments were conducted. For specifications on the plant material used in each of the
763 experiments and the kinases identified please refer to Figure 4 – source data 1. For the comparison
764 of *bZIP63* phosphorylation with wt and *akin10* plant extracts, roots and leaves of 2 week-old

765 seedlings grown in liquid culture in a 12hlight/12h dark cycle and collected after 4h of extended night
766 were used. Extraction was done by mixing the frozen and ground plant material with an equal
767 volume of cold protein extraction buffer (25mM TrisCl, 15mM EGTA, 10mM MgCl₂, 75mM NaCl, 1mM
768 NaF, 0.5mM NaVO₃, 15mM beta-glycerophosphate, 0.1% Tween20, 1mM DTT, Complete protease
769 inhibitor, pH 7.5), followed by centrifugation. Protein amounts were determined by Bradford assay.
770 For affinity purification of bZIP63-binding proteins, GST-tagged bZIP63 was expressed in E. coli and
771 the cell lysate of up to 1l culture in GST binding buffer (50mM TrisCl, 20mM MgSO₄, 2mM DTT, 5mM
772 EDTA, 0.5% Tween20, pH 8) was loaded on an equilibrated GTrap FF column (GE Healthcare, Vienna,
773 Austria). The column was then washed with 5ml cold GST binding buffer and protein extraction
774 buffer, respectively, and 2 – 5ml of total root protein in cold protein extraction buffer were loaded.
775 Subsequently, proteins were eluted from the column by repeated washing with 5ml cold protein
776 extraction buffer with increasing salt concentrations, and concentrated with Amicon Ultra Centrifugal
777 Filter Units (Millipore). 8 – 20 μ g total protein extracts and up to 40 μ g affinity purified proteins were
778 loaded on standard SDS PAGE gels containing 1mg/ml substrate (6x His-bZIP63) in the separating gel
779 and run at 4°C with 20mA per gel. The gel was then incubated three times for 20min, respectively, at
780 room temperature in each of the following buffers: wash buffer I (50mM TrisCl, 20% isopropanol, pH
781 8), wash buffer II (50mM TrisCl, 1mM DTT, pH 8), and denaturation buffer (50mM TrisCl, 1mM DTT,
782 6M guanidinium HCl, pH 8). Subsequently, the gel was incubated in renaturation buffer (50mM
783 TrisCl, 0.05% Tween 20, pH 8) at 4°C for 12 – 18h. In this period, the buffer was exchanged 10 times
784 after at least 30min. After renaturation, the gel was incubated two times for 30min, respectively, in
785 kinase buffer (20mM HEPES, 20mM MgCl₂, 50 μ M CaCl₂ or 500 μ M EGTA, 1mM DTT, 0.05% Tween 20,
786 pH 7.5), followed by 30min incubation in kinase reaction solution (kinase buffer containing 50 μ M ATP
787 and 100 μ Ci γ -³²P-labeled ATP). Finally, the gel was washed two times for 15min, respectively, in 5%
788 TCA and several times in 5% TCA containing 1% sodium pyrophosphate, until the wash solution was
789 only weakly radioactive. The dried gels were exposed on a Storage Phosphor Screen and the signal
790 was recorded on a Typhoon 8600 (GE Healthcare, Vienna, Austria).

791 **Y2H assay**

792 *AKIN10.1/3, AKIN11.1/2, AKIN β 1, AKIN β 2, SNF4, and bZIP63.2* were amplified from cDNA (see table
793 for primers) and cloned Apal/NotI or Ncol/NotI into pBTM117 and *bZIP63.2* was cloned into pACTIIJ
794 to generate N-terminal fusions with the LexA-BD and the GAL4-AD, respectively. The yeast strain L40
795 (*MAT α his Δ 200 trp1-900 leu2-3.112 ade2 LYS2::(lexA op) $_4$ HIS3 URA3::(lexA op) $_8$ lacZ Gal4 gal80*) was
796 transformed with empty pACTIIJ or *bZIP63.2*-containing pACTIIJ in combination with different
797 pBTM117 vectors. Freshly grown L40 was mixed gently with 1ml transformation mix (800 μ l 50% PEG
798 3600, 100 μ l 2M LiAc, 100 μ l 1M DTT, 10 μ l bacterial RNA (10 μ g/ μ l)), to get a cloudy suspension. 2.5 μ g
799 of each plasmid were added to 125 μ l transformation mix, followed by 20min incubation at 30°C and
800 44°C, respectively, addition of 1ml H₂O, and 1min centrifugation at 3500g. The cells were
801 resuspended in a small volume and plated on SD medium without Leu and Trp to select for successful
802 transformation. Single colonies were inoculated in SD medium without Leu and Trp and proteins
803 were extracted from 2ml of an over-night culture. The yeast cells were resuspended in 200 μ l enzyme
804 lysis buffer (25mM TrisCl, 20mM NaCl, 8mM MgCl₂, 5mM DTT, 0.1% NP-40, pH 7.5), 200 μ l glass
805 beads (0.4 – 0.6mm diameter) were added, the cells were frozen in N₂, thawed, and broken by
806 vigorous shaking on a Vibrax at 4°C for 20min. The supernatant after 10min centrifugation was
807 transferred to a fresh tube and kept on ice. The protein concentration of the extract was determined
808 by Bradford assay. The GUS activity was determined by mixing 50 μ l of the extract with 650 μ l Z-buffer
809 (60mM Na₂HPO₄, 40mM NaH₂PO₄, 10mM KCl, 10mM MgSO₄, 0.25% beta mercaptoethanol) and
810 100 μ l ONPG (4mg/ml), and incubating for up to 10min at room temperature. The reaction was
811 stopped by adding 400 μ l 1M Na₂CO₃ and the extinction at 420nm was measured on a photometer.
812 The GUS activity in U/mg protein was calculated as follows: (A420 x 24 x 1000)/(45 x incubation time
813 [min] x protein concentration [mg/ml])

814

815

816 **Bimolecular fluorescence complementation (BiFC) and multi-color BiFC**

817 For BiFC and multi-color BiFC interaction studies in *Nicotiana tabacum*, *bZIP63.2*, *AKIN10.1/3*,
818 *AKIN11.1/2* and *SNF4* were cloned into modified pBIN19 vectors, containing either the N- or C-
819 terminal moieties of the split CFP system as N-terminal fusions as described in Waadt et al. (2008)
820 (see Figure 4D for scheme). To generate BiFC plasmids for Apal/NotI and Ncol/NotI cloning, CPK3,
821 harboring XbaI, Ncol, and Apal (for plasmids with MCS (multi cloning site) 1) or Apal and Ncol (for
822 plasmids with MCS 2) in the terminus and NotI and SmaI in the C-terminus was generated by PCR
823 from cDNA (see table for primers). It was then cloned XbaI/SmaI or Apal/SmaI into the different BiFC
824 cassettes in pUC19 from Waadt et al. (2008). The cassettes were then cloned into pBIN19 with
825 HindIII/EcoRI and CPK3 was exchanged for other genes using Apal and NotI. Agrobacterium
826 *tumefaciens* (AGL1 strain) was transformed with the resulting plasmids by electroporation and
827 further used for transient transformation of tobacco leaf epidermis. For transformation, 5ml
828 agrobacterium overnight cultures were filled to 50ml with fresh LB medium containing 50µg/ml
829 Kanamycin and 10µg/ml Gentamicin and grown for 4h at 30°C. The cells were pelleted by
830 centrifugation at 3500g, resuspended in LB containing 150µM acetosyringone, and grown for another
831 2h. The cultures were then pelleted again and resuspended in 5% sucrose solution to reach a final
832 OD600 of 2. For co-infiltration, equal volumes of agrobacteria suspensions, containing the respective
833 constructs, were mixed and infiltrated into the leaves of 5 week-old plants. 48h after infiltration
834 equally sized leaf sections were analyzed for their CFP fluorescence signal with an LSM510 confocal
835 laser scanning microscope (Zeiss) and the corresponding ZEN software (Zeiss). The same settings
836 were used for each construct to allow comparison of the signal intensities. To verify that the fusion
837 proteins were expressed and to determine the relative amount of each interaction partner, proteins
838 were extracted from the leaf sections used for microscopy and subjected to Western blot analysis
839 with antibodies against the Flag (N-terminal CFP moiety) and HA (C-terminal CFP moiety) epitopes.
840 Multi-color BiFC was done as described in Waadt et al. (2008) with some modifications. bZIP11 fused
841 to the N-terminal moiety of CFP (CFP-N), bZIP1 fused to the N-terminal moiety of VENUS (VENUS-N),

842 and bZIP63 (wt or S29/294/300A) fused to the C-terminal moiety of CFP (CFP-C) were expressed from
843 one plasmid to have co-expression at equal amounts in all transformed cells (for a scheme of the
844 construct see Figure 9A). To generate the construct, bZIP1 and bZIP11 were first amplified from cDNA
845 by PCR (see table for primers) and cloned Apal/NotI into pBIN19 containing a c-terminal fusion of
846 CFP-C and CFP-N, respectively (plasmids described above). From there, 35S::bZIP1 was cloned
847 HindIII/NotI into pUC19 containing CPK3 with a c-terminal VENUS-N fusion (described above) to
848 exchange the shorter 35S primer in the VENUS construct. Then, the two cassettes including the 35S
849 promoter, bZIP1 or 11 and the VENUS-N or CFP-N tag were amplified by PCR introducing KpnI/HindII
850 in the front and BamHI in the back of the bZIP1 cassette and BamHI in the front and HindIII in the
851 back of the bZIP11 cassette (see table for primers). The PCR products were ligated into pCRBlunt
852 (Invitrogen, Germany) and the bZIP1 cassette was then cloned KpnI/BamHI in front of the bZIP11
853 cassette. Finally, the combined cassette with bZIP1 and 11 was cloned HindII into pBIN19 containing
854 bZIP63 wt or S29/294/300A (mutated by PCR) with an n-terminal CFP-C fusion. AKIN10 was amplified
855 from cDNA by PCR (see table for primers) and cloned Apal/NotI into pBIN19 containing a c-terminal
856 mCherry tag. *Agrobacterium tumefaciens* (AGL1 strain) was transformed with the resulting plasmids
857 by electroporation and further used for transient transformation of tobacco (*Nicotiana tabacum*) leaf
858 epidermis as described above. 48h after infiltration equally sized leaf sections were analyzed for their
859 VENUS, CFP, and mCherry fluorescence signal with a TCS SP5 DM-6000 confocal laser scanning
860 microscope (Leica) and the corresponding Leica software. CFP, VENUS, and mCherry were excited
861 with 458nm (Ar laser), 514nm (Ar laser), and 574nm (white light laser), respectively. The fluorescence
862 was detected at 461-495nm, 520-550nm, and 600-615nm, respectively. To avoid bleed-through of
863 the CFP signal into the VENUS channel CFP and VENUS were excited and detected separately.
864 Pictures were taken with a 20x air objective and the same settings for both combinations (wt bZIP63
865 and S29/294/300A). The pinhole was set to 1.5. To determine the relative VENUS/CFP signal ratio,
866 images were processed in the LasX software from Leica. Nuclei showing a CFP/VENUS as well as
867 mCherry signal were selected and the signal intensity was determined with the histogram tool. For

868 each nucleus a ratio of the background corrected pixel sum from VENUS and CFP was built. All values
869 for one leaf were divided by the median of the ratio from the bZIP63 S29/294/300A construct to
870 allow comparison between experiments. In total, six leaves from two infiltrations were analyzed with
871 similar results.

872

873 **Virus-induced gene silencing (VIGS)**

874 Two week-old GY9 plants were infiltrated (*akin10/11*) or not (control) with an *AKIN10-AKIN11*
875 silencing construct according to the method described by Burch-Smith et al. (2006). For the *AKIN10-*
876 *AKIN11* construct two gene-specific fragments corresponding to *AKIN10* and *AKIN11* were cloned in
877 tandem into the TRV-based vector pYL156a. First, a 480 bp *AKIN10* fragment was amplified from
878 cDNA using the *AKIN10* VIGS primers (see table for primers) and cloned into the pYL156/pTRV2
879 vector using EcoRI/KpnI. A 503-bp *AKIN11* fragment (Baena-Gonzalez et al., 2007) was thereafter
880 amplified from cDNA using the *AKIN11* VIGS primers (see primer list) and cloned into the
881 pYL156/pTRV2 vector harboring the KIN10 fragment using Xhol/KpnI. Two weeks after infiltration the
882 *AKIN10-AKIN11* knock-down plants displayed visible growth defects and anthocyanin accumulation.
883 Silencing of *AKIN10* and *AKIN11* in these plants was confirmed by western blotting with an antibody
884 against phosphorylated AMPK alpha (Anti-AMPKalpha-pT172) before use in Phos-tag gels (see Figure
885 5 – figure supplement 7). The VIGS experiments were repeated 4 times and 3 biological replicates
886 were analyzed in each experiment with consistent results.

887

888 **Protoplast transformation for P2H and promoter activation assays**

889 Protoplast were obtained from 3 week-old soil-grown wt *Arabidopsis* plants and transformed
890 according to the guide method (Yoo et al., 2007) with small modifications. Leaves were harvested 1h
891 after onset of the light phase, cut into tiny stripes, and digested for 30min under vacuum and 3h at
892 atmospheric pressure, respectively, with enzyme solution (1.25% (w/v) Cellulase R-10, 0.3%
893 Macerozyme R-10, 400mM mannitol, 20mM KCl, 10mM CaCl₂, 20mM MES, pH 5.7). The protoplast

894 suspension was filtered on a metal net to remove leaf debris and washed twice with 10ml of W5
895 solution (2mM MES, 154mM NaCl, 125mM CaCl₂, 5mM KCl, pH 5.7). Protoplasts were resuspended in
896 10ml of W5, incubated on ice for at least 1h and subsequently resuspended to a final concentration
897 of 1 x 10⁵ cells/ml in MMg buffer (4mM MES, 400mM mannitol, 15mM MgCl₂, pH 5.7). Protoplasts
898 were then co-transformed with 10µg each of up to three effector plasmids, 7µg of a reporter
899 plasmid, and 3µg of a 35S::NAN transfection control reporter plasmid (Kirby and Kavanagh, 2002) for
900 normalization. For P2H assays, the effector plasmids were pHBT1 containing *bZIP63.2*, *bZIP1*, or
901 *bZIP11* with an N-terminal GAL4-AD or GAL4-BD fusion (described in detail in Ehlert et al., 2006) and
902 alternatively pHBT1 containing *AKIN10.1/3*. The reporter plasmid contained *GAL-UAS₄::GUS* (beta
903 galactosidase) (Ehlert et al., 2006). For promoter activation assays, effector plasmids were pHBT1
904 containing HA-tagged *bZIP63.2* or *AKIN10.1/3*. pBT10 containing *proASN1::GUS* or *proProDH::GUS*
905 (Dietrich et al., 2011) was used as a reporter plasmid. For transformation, 200µl of the protoplast
906 suspension were gently mixed with the DNA and 220µl of PEG (40% PEG 4000, 200mM mannitol,
907 100mM CaCl₂) were added, followed by gentle mixing, and 10min incubation at room temperature.
908 The protoplasts were then washed by addition of 800µl W5 and 1min centrifugation at 300g. The
909 supernatant was removed and the protoplasts were incubated for 16h in 200µl of WI solution (4mM
910 MES, 500mM mannitol, 20mM KCl, pH 5.7) in the growth chamber in order to not affect their diurnal
911 circle. GUS and NAN enzyme assays were performed according to Kirby and Kavanagh (2002) and the
912 relative activity of GUS and calculated as GUS/NAN. The expression of the effector constructs was
913 confirmed by Western blot analysis.

914

915 **Sequence alignment of bZIP63 homologues**

916 Homologues of bZIP63 in 8 plant species were identified by blasting the protein sequence of bZIP63.2
917 on the Phytozome webpage (<http://phytozome.net>). The protein sequences were aligned with
918 ClustalΩ (<http://www.ebi.ac.uk/Tools/msa/clustalo/>) using the default settings and the Clustal
919 output file was imported into GeneDoc (<http://www.psc.edu/biomed/genedoc>) for visualization and

920 minor adjustments of the alignment. The identity matrix for the alignment was calculated using the
921 PID3 method in the SIAS webmask (<http://imed.med.ucm.es/Tools/sias.html>).
922 Gene identifiers of the *bZIP63* homologues (numbers are the Phytozome10 references): *Medicago*
923 *truncatula* (Medtr7g115120), *Glycine max* (Glyma.10G162100), *Populus trichocarpa*
924 (Potri.013G040700), *Vitis vinifera* (GSVIVG0102179000), *Zea mays* (GRMZM2G007063), *Oryza sativa*
925 (LOC_Os03g58250), *Selaginella moellendorffii* (270282), *Physcomitrella patens* (Phpat.009G02690)

926

927 **RT-qPCR**

928 RNA was extracted with phenol from total rosettes of 4.5 week-old soil-grown plants at the indicated
929 time points. 500µl RNA extraction buffer (1% SDS, 10mM EDTA, 200mM NaAc, pH 5.2) and 500µl
930 acidic phenol (pH 4, Carl Roth, Karlsruhe, Germany) were added to 100mg frozen and ground plant
931 material, followed by 1min vortexing and 10min centrifugation. The aqueous phase was extracted
932 twice with an equal volume of PCI (Phenol:Chloroform:Isoamylalcohol (25:24:21), Carl Roth,
933 Karlsruhe, Germany) by vortexing for 30sec and 2min centrifugation, and twice with chloroform.
934 Then, the RNA was precipitated by adding ¼ volume 10M LiCl and incubating at 4°C for at least 2h,
935 followed by 15min centrifugation at 4°C. The pellet was washed once with 2.5M LiCl and then with
936 70% EtOH, dried and resuspended in 50µl RNase free H₂O. 6.5µg RNA were treated with 2u of RQ1
937 DNase (Promega, Mannheim, Germany), according to the manufacturer's instructions and
938 precipitated again for at least 2h with ¼ volume of 10M LiCl to remove the DNase from the solution.
939 The solution was then centrifuged for 15min, washed once with 70% EtOH, dried and resuspended in
940 RNase free H₂O. 1.5µg RNA were reverse transcribed using M-MLV RT [H-] Point Mutant (Promega,
941 Mannheim, Germany) according to the manufacturer's instructions and diluted 1:4 with RNase free
942 H₂O. 2µl of cDNA (15ng/µl) or H₂O (for the no template control) were added to 18µl of a PCR
943 reaction mix containing 0.25u DreamTaq polymerase (Thermo Scientific, Vienna, Austria), 1x Dream
944 Taq buffer, additional 3mM MgCl₂, 100µM dNTPs, 400nM of each primer, and 0.4x SYBR Green I
945 nucleic acid gel stain (Sigma-Aldrich, Vienna, Austria). The qPCR was performed on a Mastercycler ep

946 realplex2 (Eppendorf) in white 96-well twin.tec real-time PCR plates (Eppendorf, Vienna, Austria)
947 with the following program: 1 cycle with 3min at 95°C, followed by 40 cycles with 20sec at 95°C,
948 20sec at 59/60°C, and 12sec at 72°C. 2-3 technical replicates were used. A 20min melting curve was
949 added in the end. For data evaluation, raw data were imported into LinRegPCR (version 2014.02,
950 Ramakers et al., 2003), where the PCR efficiency was checked and the N0 (staring concentration of
951 cDNA) was calculated with a common baseline setting for each primer pair. Samples excluded by
952 LinRegPCR were not used. In case only two technical replicates were used, samples for which the dCq
953 between the two technical replicates was bigger than 0.5 were also excluded from the calculations.
954 The mean N0 of the technical replicates was calculated for each sample and primer pair. The
955 resulting mean N0 of the test genes was then normalized by dividing by the mean N0 of the
956 reference genes. For qPCR of *AKIN10*, *AKIN11* (Figure 5 – figure supplement 1D); *bZIP63*, *bZIP1*,
957 *bZIP11* (Figure 5 – figure supplement 3); *ASN1*, *DIN10*, and *ProDH* (Figure 7G) *TBP2* (Tata binding
958 protein 2) was used as a reference gene. For pPCR of *bZIP63*, (Figure 1 – figure supplement 1D and
959 1E, Figure 7 – figure supplement 1A); *CAB2*, *SEN1*, *SAG103*, and *YLS3* (Figure 1 – figure supplement
960 3B); *ASN1*, *ProDH*, *BCAT2*, *AA-TP family protein*, and *DIN10* (Figure 5 – figure supplement 2C) the
961 geometric mean of the values for *TBP2* and *MHF15* (Thioredoxin superfamily protein) were used. The
962 normalized N0 values were then used to calculate the mean and SD. Outliers were determined with
963 the Grubb's test and removed.

964

965 **Statistical tests**

966 Statistical tests were performed in excel or R. Equality of variances was tested with Levene's test.
967 This was followed by unpaired t-tests or multivariate statistics. In case of equal variance ANOVA
968 followed by Bonferroni or TukeyHSD corrected pairwise comparison was chosen. In case of unequal
969 variance Welch corrected ANOVA was applied, followed by Games Howell test of all samples or
970 pairwise comparison of samples with equal variance.

971

972 **Gene identifiers of *Arabidopsis thaliana* genes**

973 *bZIP63* (At5g28770), *bZIP1* (At5g49450), *bZIP11* (At4g34590), *bZIP2* (At2g18160), *bZIP44*
 974 (At1g75390), *bZIP53* (At3g62420), *AKIN10/SnRK1.1* (At3g01090), *AKIN11/SnRK1.2* (At3g29160),
 975 *AKIN81* (At5g21170), *AKIN82* (At4g16360), *SNF4/AKIN8γ* (At1g09020), *SnAK2/GRIK1* (At3g45240),
 976 *ASN1/DIN6* (At3g47340), *DIN10* (At5g20250), *ProDH/ERD5* (At3g30775), *BCAT2* (AT1G10070), *AA-TP*
 977 (amino acid transporter) *family protein* (AT2G40420), *TBP2* (At1g55520), *MHF15* (At5g06430), *CAB2*
 978 (At1g29920), *SEN1/DIN1* (At4g35770), *SAG103* (At1g10140), *YLS3* (At2g44290).

979

980 **Primer table**

Gene	forward primer	reverse primer
Primers for cloning		
genomic <i>bZIP63</i>	GGTACCAAAACTATAAATTCTTAGGACA GTG	TTGGCCGCCCTGATCCCCAACGCTTCGAA TACG
<i>bZIP63.2</i>	GGGCCATGGAAAAAGTTTCTCGACGAA GAAATCTCC	TTGGCCGCCCTGATCCCCAACGCTTCGAA TACG
<i>AKIN10.1+3</i>	GGGCCATGGATGGATCAGGCACAGGCAGT A	GCGGCCGAGAGGACTCGGAGCTGAGCAA
<i>AKIN11.1+2</i>	GGGCCATGGATCATTATCAAATAG	GCGGCCGAGATCACACGAAGCTCTGTAA
<i>SNF4</i>	GGGCCATGTTGGTTCTACATTGGA	GCGGCCGAAAGACCGAGCAGGAATTGGA A
<i>AKIN81.1</i>	GGGCCATGGAAATGCGAACGGCAA	GCGGCCGACCGTGTGAGCGGTTGTAG
<i>AKIN82.1+2</i>	GGGCCATGCTGCTCTGATGGT	GCGGCCGACCTCTGAGGGATTGTAG
<i>bZIP1</i>	CGATGGCCCCATGGCAAACGCCAGAGAAG	CGATGCCGCGCTGTCTAAAGGACG
<i>bZIP2</i>	AAAACCATGGCGTCATCTAGCAGCAC	TGCGGCCGTATACTATTGATATCATTAG
<i>bZIP11</i>	TAGGGCCATGGAATCGTCGTCGTCGGAA	TGGCGCCGCAATACATTAAAGCATCAGAA G
<i>bZIP44.1</i>	CAGGGCCATGAATAATAAAACTG	CTGCGCCGCAACAGTTGAAAACATC
<i>bZIP53</i>	AAAACCATGGGTCGTTGCAAATGCAAAC	TGCGCCGCTGCAATCAAACATATCAGCAG
<i>AKIN10 VIGS</i>	GGAATTCACTTTTCAGCTCAGAAAATTG	GGGGTACCCCCTCGAGCCACTCCTGATATT TCTGCTG
<i>AKIN11 VIGS</i>	CCTCGAGGTTCTGTATATTCTCGCTC	GGGGTACCCAGTACTCTACACCAAGATATTAT C
<i>BiFC MCS1</i>	TCTAGAGGGCCATGGCCACAGACACAG	CCCGGGGCGGCCGCACATTCTCGTC
<i>BiFC MCS2</i>	AAAAGGATCCGGGCCATGGCCACAGACA CAGCAAGTCAAATCCTCG	CCCGGGGCGGCCGCACATTCTCGTC
<i>multi-color BiFC</i> <i>bZIP1</i>	TCGGTACCAAGCTTAGCTGCATGCCAG G	CAGGATCCAGCTGGCGAAAGGGGGATGTG CTG
<i>multi-color BiFC</i> <i>bZIP11</i>	CAGGATCCTTAGCTGCATGCCAG G	CTAGGCCTAAGCTTCGCTATTACGCCAGCTG GCGAAAGG
Mutagenesis		
<i>bZIP63S29A</i>	CGTCGTTGAATCGCTGGCCGCCAATGGC ATTCAATC	ACGTCAATTCCATTAACCGACCAGTG
<i>bZIP63S59A</i>	GTGTGGTGTTCGGCTCCGCTCCCTAATG TTCCTG	CACACGCCGTCGTAGATTCTCCGTCGTC
<i>bZIP63S102A</i>	GATACTCTGGTAGAGCTGACAATGGTGA GC	GTATCCTGAGGTTGATGAAAGTTC

<i>bZIP63S160A</i>	CTGATTCTTATTAGCTAGCATCCTTTAACG	ATCAGCTAGACGGTCCAGAAGAAG
<i>bZIP63S261A</i>	CAGAGACATCAAATGCTCCAGACACTACAAG	CTTGTAGTGTCTGGAGCATTGATGTCTG
<i>bZIP63S294A</i>	GAACAGAACAGCTGCCATGCGTAGAGTTGA G	TGTTCATCTTGCACCCCTATCAAGGC
<i>bZIP63S294/300A</i>	GAACAGAACAGCTGCCATGCGTAGAGTTGA GGCCTTGAACATCGCAG	TGTTCATCTTGCACCCCTATCAAGGC
<i>AKIN10K48M</i>	GGTTGCTATCATGATCCTCAATCGTCG	GCAACCTTATGTCCGTCAATGC
qPCR		
<i>bZIP63</i>	GAAGAAATCTCCGTAACCATCAC	GATTCTCCGTCGTCAGC
<i>bZIP1</i>	AACCGGGTCTTAGATCGGAGAAG	TCAGCGTTAAACTCGTCGTAGCAA
<i>bZIP11</i>	TCGTCAGGATCGGAGGAGGT	GATCGTCTAGGAGCTTTGTTCTTC
<i>CAB2</i>	TCAATCTTGAATTGAGTGAGA	TCCACCAACACAAACCTAC
<i>SEN1</i>	CAGAGTCGGATCAGGAATGG	ATTATGATTTCATCGTGTTC
<i>SAG103</i>	AGCTCGAGTGCTGGATG	CGGATTACAGATCCTTC
<i>YLS3</i>	GACATCACTAAGTGCCCTGCT	ACTGTTCGTTAGACCTTAGC
<i>AKIN10</i>	ACTGGATTGAGAGTACAAGGTCC	TCAGAGGACTCGGAGCTGAGCA
<i>AKIN11</i>	GCTCGTAACCTTCCAGCAGA	TTCAGGTCTCTATGGACAACCA
<i>ASN1</i>	GTCGCAAGATCAAGGCTC	TGAAGTCTTGCAAGGAAAGG
<i>DIN10</i>	GCTTGATTGCCTGATGGA	ATCTTAGCAAGCTGACACC
<i>ProDH</i>	CGCCAGTCCACGACACAATTCA	CGAACATCAGCGTTATGTGTTGCG
<i>BCAT2</i>	AAGGTTATCAGGTAGTAGAGAAGG	TTCCTGATATGTGATAGTGC
<i>AA-TP protein family</i>	GTTCTGGGATCAACTCTACAG	AACCATTACATTCCGTAGGAC
<i>TBP2</i>	TGCAAGAAAGTATGCTCGG	ACATGAGCCTACAATGTTCTG
<i>MHF15</i>	GTTTCTGAGCTTCCAC	TGGTCGCTTCATCTGAG
characterization of plant lines (PCR)		
<i>bZIP63</i>	TTGCGGCCGCCCTGATCCCCAACGCTTCGAA TACG	AACCATGGATAATCACACAGCTAAAGACATT GG
<i>bzip63 RB</i>	TGGCGAATGAGACCTCAATTGCGAGCTT	
<i>bzip63 LB</i>	CATTTATAATAACGCTGCGGACATCTAC	
<i>AKIN10</i>	CCAGCATAATAGAGAACGAAGC	GTCCGGTTAGTATTAGG
<i>akin10 LB</i>	ATATTGACCATCATACTCATTGC	

981

982

983 **Author contributions**

984 AM, LP, BW, DA, AS, CW, TK, and CV performed experimental research and data analysis with
985 substantial input from TN, JVC, JH, EBG, CC, and WW. AM, LP, BW, WDL and MT designed the
986 experiments. AM and MT wrote the manuscript.

987

988 **Acknowledgements**

989 We thank Lena Fragner (University of Vienna) for help with the metabolomics measurements and
990 Klaus Harter (University of Tübingen) and Sjef Smeekens (Utrecht University) for critical comments
991 on the manuscript. We further thank the Core Facility Cell Imaging and Ultrastructure Research

992 (CIUS, University of Vienna) for providing access and support to the Leica confocal laser scanning
993 microscope. This work was funded by the FP7 Marie Curie ITN MERIT (GA 264474) (LP, AS, TN), the
994 Austrian Science Fund (FWF) projects AP19825 (AM, BW, MT) and AP23435 (AM, MT), the Deutsche
995 Forschungsgemeinschaft (DFG) project HA2146/8-2 (CC), and the Fundação para a Ciência e a
996 Tecnologia projects PTDC/BIA-PLA/3937/2012 and UID/Multi/04551/2013 (EBG).

997

998

999 **List of supporting material**

1000 **Figure 1 – figure supplement 1.** Molecular characterization of the *bzip63* line and expression of
1001 bZIP63 in the ko and ox lines

1002 **Figure 1 – figure supplement 2.** Phenotype of *bZIP63* mutants in dark-induced senescence

1003 **Figure 1 – figure supplement 3.** Expression of senescence marker genes during prolonged darkness

1004 **Figure 1 – figure supplement 4.** Effect of sugar on bZIP63 mutants in light

1005 **Figure 1 – source data 1.** ImageJ macro for determination of leaf area and green leaf area

1006 **Figure 2 – figure supplement 1.** Metabolic changes in *bZIP63* ko and ox plants

1007 **Figure 2 – source data 1.** Excel table of relative metabolite levels in *bZIP63* mutants and p-values
1008 from T-tests

1009 **Figure 3 – figure supplement 1.** Comparison of Phos-tag western blots from different figures.

1010 **Figure 3 – figure supplement 2.** Overview over identified phospho-peptides of bZIP63

1011 **Figure 4 – figure supplement 1.** Auto-phosphorylation from the protein extracts is negligible in in-gel
1012 kinase assays

1013 **Figure 4 – figure supplement 2.** Overview over the kinases identified by LC-MS/MS after affinity
1014 purification with bZIP63

1015 **Figure 4 – source data 1.** Excel table containing a detailed overview over the identified kinases and
1016 analyzed samples as well as all peptides found for the kinase subunit

1017 **Figure 5 – figure supplement 1.** Molecular characterization of the *akin10* line

1018 **Figure 5 – figure supplement 2.** Phenotype and gene expression of selected AKIN10 target genes in
1019 the *akin10* line

1020 **Figure 5 – figure supplement 3.** Expression of bZIPs in the *akin10* line

1021 **Figure 5 – figure supplement 4.** SnAK2 increases the kinase activity of AKIN10 and AKIN11 but does
1022 not phosphorylate bZIP63

1023 **Figure 5 – figure supplement 5.** AKIN β 1 and AKIN β 2 do not interact with bZIP63

1024 **Figure 5 – figure supplement 6.** Altered sugar-dependent *in vivo* phosphorylation of bZIP63 in
1025 seedlings

1026 **Figure 5 – figure supplement 7.** *AKIN10/AKIN11* VIGS plants

1027 **Figure 6 – figure supplement 1.** AKIN10 phosphorylates bZIP63 but not GST

1028 **Figure 6 – figure supplement 2.** AKIN10 phosphorylates S29, S294, and S300 on bZIP63

1029 **Figure 6 – figure supplement 3.** The AKIN10 target sites and S160 in the bZIP domain have highly
1030 conserved

1031 **Figure 6 – figure supplement 4.** Expression of bZIP63 and AKIN10 in the promoter activation assays

1032 **Figure 6 – source data 1.** Sequences of the bZIP63 homologues

1033 **Figure 7 – figure supplement 1.** Characterization of the *bzip63* complementation lines

1034 **Figure 7 – figure supplement 2.** Complementation of the dark-induced senescence phenotype of
1035 *bzip63*

1036 **Figure 7 – source data 1.** Excel table containing the relative metabolite levels of the
1037 complementation lines and the PCA loadings

1038 **Figure 8 – figure supplement 1.** Western blots and controls for the protoplast two-hybrid (P2H)
1039 assays

1040 **Figure 8 – figure supplement 2.** SnAK2 does not phosphorylate bZIP63 or the S1 class bZIPs

1041

1042 **References**

1043 Araújo WL, Tohge T, Ishizaki K, Leaver CJ, Fernie AR. 2011. Protein degradation - an alternative
1044 respiratory substrate for stressed plants. *Trends Plant Sci.* **16**: 489-98. doi: 10.1016/j.tplants.

1045 Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J. 2007. A central integrator of transcription
1046 networks in plant stress and energy signalling. *Nature* **448**: 938-42. doi: 10.1038/nature06069

1047 Baena-Gonzalez E, Sheen J. 2008. Convergent energy and stress signaling. *Trends in Plant Science* **13**:
1048 474-482. doi: 10.1016/j.tibs.2008.02.002

1049 Bayer RG, Kostler T, Jain A, Stael S, Ebersberger I, Teige M. 2014. Higher plant proteins of
1050 cyanobacterial origin - are they or are they not preferentially targeted to chloroplasts? *Molecular*
1051 *plant*. pii: ssu095. doi: 10.1093/mp/ssu095

1052 Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J,
1053 Ishizaki K, Leaver CJ. 2005. Comparative transcriptome analysis reveals significant differences in gene
1054 expression and signalling pathways between developmental and dark/starvation-induced senescence
1055 in *Arabidopsis*. *The Plant Journal* **42**:567-585. doi: 10.1111/j.1365-313X.2005.02399.x

1056 Correa LG, Riano-Pachon DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. 2008. The
1057 role of bZIP transcription factors in green plant evolution: adaptive features emerging from four
1058 founder genes. *PLoS One* **3**: e2944. doi: 10.1371/journal.pone.0002944

1059 Crozet P, Jammes F, Valot B, Ambard-Bretteville F, Nessler S, Hodges M, Vidal J, Thomas M. 2010.
1060 Cross-phosphorylation between *Arabidopsis thaliana* sucrose nonfermenting 1-related protein kinase
1061 1 (AtSnRK1) and its activating kinase (AtSnAK) determines their catalytic activities. *Journal of*
1062 *Biological Chemistry* **285**: 12071-12077. doi: 10.1074/jbc.M109.079194

1063 Deppmann CD, Alvania RS, Taparowsky EJ. 2006. Cross-species annotation of basic leucine zipper
1064 factor interactions: Insight into the evolution of closed interaction networks. *Molecular Biology and*
1065 *Evolution* **23**: 1480-92. doi: 10.1093/molbev/msl022

1066 Dietrich K, Weltmeier F, Ehlert A, Weiste C, Stahl M, Harter K, Droege-Laser W. 2011. Heterodimers
1067 of the *Arabidopsis* transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during
1068 low energy stress. *The Plant Cell* **23**: 381-95. doi: 10.1105/tpc.110.075390

1069 Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Droege-Laser W. 2006.
1070 Two-hybrid protein-protein interaction analysis in *Arabidopsis* protoplasts: establishment of a

1071 heterodimerization map of group C and group S bZIP transcription factors. *The Plant Journal* **46**: 890-
1072 900. doi: 10.1111/j.1365-313X.2006.02731.x

1073 Emanuelle S, Hossain MI, Moller IE, Pedersen HL, van de Meene AM, Doblin MS, Koay A, Oakhill JS,
1074 Scott JW, Willats WG, Kemp BE, Bacic A, Gooley PR, Stapleton DI. 2015. SnRK1 from *Arabidopsis*
1075 *thaliana* is an atypical AMPK. *Plant Journal* **82**: 183-92. doi: 10.1111/tpj.12813

1076 Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. 2006.
1077 Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator
1078 AREB1. *Proceedings of the National Academy of Sciences USA* **103**: 1988-93. doi:
1079 10.1073/pnas.0505667103

1080 Guo S, Vanderford NL, Stein R. 2010. Phosphorylation within the MafA N terminus regulates C-
1081 terminal dimerization and DNA binding. *The Journal of Biological Chemistry* **285**: 12655-61. doi:
1082 10.1074/jbc.M110.105759

1083 Hanson J, Hanssen M, Wiese A, Hendriks MM, Smeekens S. 2008. The sucrose regulated transcription
1084 factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE
1085 SYNTHETASE1 and PROLINE DEHYDROGENASE2. *The Plant Journal* **53**: 935-49. doi: 10.1111/j.1365-
1086 313X.2007.03385.x

1087 Hardie DG. 2007. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy.
1088 *Nature reviews Molecular Cell Biology* **8**: 774-85. doi: 10.1038/nrm2249

1089 Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains energy
1090 homeostasis. *Nature reviews Molecular Cell Biology* **13**: 251-62. doi: 10.1038/nrm3311

1091 Harthill J, Meek SE, Morrice N, Peggie MW, Borch J, Wong BHC, MacKintosh C. 2006. Phosphorylation
1092 and 14-3-3 binding of *Arabidopsis* trehalose-phosphate synthase 5 in response to 2-deoxyglucose.
1093 *The Plant Journal* **47**: 211-223. doi: 10.1111/j.1365-313X.2006.02780.x

1094 Hedbacher K, Carlson M. 2008. SNF1/AMPK pathways in yeast. *Frontiers in Bioscience* **13**: 2408-20

1095 Holmberg CI, Tran SE, Eriksson JE, Sistonen L. 2002. Multisite phosphorylation provides sophisticated
1096 regulation of transcription factors. *Trends in Biochemical Sciences* **27**: 619-27. doi: 10.1016/S0968-
1097 0004(02)02207-7

1098 Huang J Z, Huber S C. 2001. Phosphorylation of synthetic peptides by a CDPK and plant SNF1-related
1099 protein kinase. Influence of proline and basic amino acid residues at selected positions. *Plant and Cell*
1100 *Physiology*. **42**: 1079-1087. doi: 10.1093/pcp/pce137

1101 Jakoby M, Weisshaar B, Droege-Laser W, Vicente-Carabajosa J, Tiedemann J, Kroj T, Parcy F. 2002.
1102 bZIP transcription factors in *Arabidopsis*. *Trends in Plant Science* **7**: 106-11. doi: 10.1016/S1360-
1103 1385(01)02223-3

1104 Kang SG, Price J, Lin PC, Hong JC, Jang JC. 2010. The *arabidopsis* bZIP1 transcription factor is involved
1105 in sugar signaling, protein networking, and DNA binding. *Molecular Plant* **3**: 361-73. doi:
1106 10.1093/mp/ssp115

1107 Kim JW, Tang QQ, Li X, Lane MD. 2007. Effect of phosphorylation and S-S bond-induced dimerization
1108 on DNA binding and transcriptional activation by C/EBPbeta. *Proceedings of the National Academy of*
1109 *Sciences USA* **104**: 1800-4. doi: 10.1073/pnas.0611137104

1110 Kirby J, Kavanagh TA. 2002. NAN fusions: a synthetic sialidase reporter gene as a sensitive and
1111 versatile partner for GUS. *The Plant Journal* **32**: 391-400. doi: 10.1046/j.1365-313X.2002.01422.x

1112 Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T. 2006. Phosphate-binding tag, a new tool to
1113 visualize phosphorylated proteins. *Mol Cell Proteomics* **5**: 749-57. doi: 10.1074/mcp.T500024-
1114 MCP200

1115 Kirchler T, Briesemeister S, Singer M, Schutze K, Keinath M, Kohlbacher O, Vicente-Carabajosa J, Teige
1116 M, Harter K, Chaban C. 2010. The role of phosphorylatable serine residues in the DNA-binding
1117 domain of *Arabidopsis* bZIP transcription factors. *European Journal of Cell Biology* **89**: 175-83. doi:
1118 10.1016/j.ejcb.2009.11.023

1119 Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B. 2012. GABI-Kat SimpleSearch: new
1120 features of the *Arabidopsis thaliana* T-DNA mutant database. *Nucleic Acids Research* **40**: D1211-
1121 D1215. doi: 10.1093/nar/gkr1047

1122 Kulma A, Villadsen D, Campbell DG, Meek SEM, Harthill JE, Nielsen TH, MacKintosh C. 2004.
1123 Phosphorylation and 14-3-3 binding of *Arabidopsis* 6-phosphofructo-2-kinase/fructose-2,6-
1124 bisphosphatase. *The Plant Journal* **37**: 654-667. doi: 10.1111/j.1365-313X.2003.01992.x

1125 Kunz S, Pesquet E, Kleczkowski LA. 2014. Functional dissection of sugar signals affecting gene
1126 expression in *Arabidopsis thaliana*. *PloS One* **9**: e100312. doi: 10.1371/journal.pone.0100312

1127 Lee S, Shuman JD, Guszczynski T, Sakchaisri K, Sebastian T, Copeland TD, Miller M, Cohen MS,
1128 Taunton J, Smart RC, Xiao Z, Yu LR, Veenstra TD, Johnson PF. 2010. RSK-mediated phosphorylation in
1129 the C/EBP leucine zipper regulates DNA binding, dimerization, and growth arrest activity. *Molecular
1130 and Cellular Biology* **30**: 2621-35. doi: 10.1128/MCB.00782-09

1131 Ma J. 2012. Reprogramming of metabolism by the *Arabidopsis thaliana* bZIP11 transcription factor.
1132 PhD thesis, Utrecht University.

1133 Ma J, Hanssen M, Lundgren K, Hernandez L, Delatte T, Ehlert A, Liu CM, Schluemann H, Droege-
1134 Laser W, Moritz T, Smeekens S, Hanson J. 2011. The sucrose-regulated *Arabidopsis* transcription
1135 factor bZIP11 reprograms metabolism and regulates trehalose metabolism. *The New Phytologist* **191**:
1136 733-45. doi: 10.1111/j.1469-8137.2011.03735.x

1137 Matiolli CC, Tomaz JP, Duarte GT, Prado FM, Del Bem LE, Silveira AB, Gauer L, Correa LG, Drumond
1138 RD, Viana AJ, Di Mascio P, Meyer C, Vincentz M. 2011. The *Arabidopsis* bZIP gene AtbZIP63 is a
1139 sensitive integrator of transient abscisic acid and glucose signals. *Plant Physiology* **157**: 692-705. doi:
1140 10.1104/pp.111.181743

1141 Mayr B, Montminy M. 2001. Transcriptional regulation by the phosphorylation-dependent factor
1142 CREB. *Nature reviews Molecular Cell Biology* **2**: 599-609. doi: 10.1038/35085068

1143 McGee SL, Hargreaves M. 2008. AMPK and transcriptional regulation. *Frontiers in Bioscience* **13**:
1144 3022-33. doi: 10.2741/2907

1145 Motohashi H, O'Connor T, Katsuoka F, Engel JD, Yamamoto M. 2002. Integration and diversity of the
1146 regulatory network composed of Maf and CNC families of transcription factors. *Gene* **294**: 1-12. doi:
1147 10.1016/S0378-1119(02)00788-6

1148 Naegele T, Mair A, Sun X, Fragner L, Teige M, Weckwerth W. 2014. Solving the differential
1149 biochemical Jacobian from metabolomics covariance data. *PLoS One* **9**: e92299. doi:
1150 10.1371/journal.pone.0092299

1151 Nukarinen E, Nägele T, Pedrotti L, Mair A, Teige M, Baena-Gonzalez E, Dröge-Laser W, Weckwerth W.
1152 2015. Dynamic phosphoproteomics reveals the antagonistic control of SnRK1 on TOR signaling.
1153 Submitted for publication.

1154 Oh SA, Lee SY, Chung IK, Lee CH, Nam HG. 1996. A senescence-associated gene of *Arabidopsis*
1155 thaliana is distinctively regulated during natural and artificially induced leaf senescence. *Plant
1156 Molecular Biology* **30**: 739-754. doi: 10.1007/BF00019008

1157 Para A, Li Y, Marshall-Colón A, Varala K, Francoeur NJ, Moran TM, Edwards MB, Hackley C, Bargmann
1158 BO, Birnbaum KD, McCombie WR, Krouk G, Coruzzi GM. 2014. Hit-and-run transcriptional control by
1159 bZIP1 mediates rapid nutrient signaling in *Arabidopsis*. *Proc Natl Acad Sci U S A* **111**: 10371-6. doi:
1160 10.1073/pnas.1404657111

1161 Polge C, Thomas M. 2007. SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy
1162 control? *Trends in Plant Science* **12**: 20-8. doi: 10.1016/j.tplants.2006.11.005

1163 Porra RJ, Tompson WA, Kriedemann PE. 1989. Determination of accurate extinction coefficients and
1164 simultaneous equations for assaying chlorophylls a and b extracted with four different solvents:
1165 verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.
1166 *Biochimica et Biophysica Acta* **975**: 384-394. doi: 10.1016/S0005-2728(89)80347-0

1167 Reinke AW, Baek J, Ashenberg O, Keating AE. 2013. Networks of bZIP protein-protein interactions
1168 diversified over a billion years of evolution. *Science* **340**: 730-4. doi: 10.1126/science.1233465

1169 Rodrigues-Pousada C, Menezes RA, Pimentel C. 2010. The Yap family and its role in stress response.
1170 *Yeast* **27**: 245-58. doi: 10.1002/yea.1752

1171 Ramakers C, Ruijter JM, Deprez RH, Moorman AF. 2003. Assumption-free analysis of quantitative
1172 real-time polymerase chain reaction (PCR) data. *Neuroscience letters* **339**: 62-6. doi: 10.1016/S0304-
1173 3940(02)01423-4

1174 Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M,
1175 et al. 2003. TM4: a free, open-source system for microarray data management and analysis.
1176 *BioTechniques* **34**: 374-8.

1177 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C,
1178 Saalfeld S, Schmid B, et al. 2012. Fiji: an open-source platform for biological-image analysis. *Nature
1179 Methods* **9**: 676-82. doi: 10.1038/nmeth.2019

1180 Schuetze K, Harter K, Chaban C. 2008. Post-translational regulation of plant bZIP factors. *Trends in
1181 Plant Science* **13**: 247-55. doi: 10.1016/j.tplants.2008.03.002

1182 Sugden C, Donaghy P, Halford NG, Hardie DG. 1999. Two SNF1-Related Protein Kinases from Spinach
1183 Leaf Phosphorylate and Inactivate 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase, Nitrate
1184 Reductase, and Sucrose Phosphate Synthase in Vitro. *Plant Physiology* **120**: 257-274. doi:
1185 10.1104/pp.120.1.257

1186 Sussman MR, Amasino RM, Young JC, Krysan PJ, Austin-Phillips S. 2000. The *Arabidopsis* knockout
1187 facility at the University of Wisconsin-Madison. *Plant Physiology* **124**: 1465-7. doi:
1188 10.1104/pp.124.4.1465

1189 Szabados L, Savouré A. 2010. Proline: a multifunctional amino acid. *Trends Plant Sci.* **15**: 89-97. doi:
1190 10.1016/j.tplants

1191 Szal B, Podgórska A. 2012. The role of mitochondria in leaf nitrogen metabolism. *Plant Cell Environ.*
1192 **35**: 1756-68. doi: 10.1111/j.

1193 Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K. 2011. Universal and
1194 confident phosphorylation site localization using phosphoRS. *Journal of Proteome Research* **10**: 5354-
1195 62. doi: 10.1021/pr200611n

1196 Tome F, Naegele T, Adamo M, Garg A, Marco-Llorca C, Nukarinen E, Pedrotti L, Peviani A, Simeunovic
1197 A, Tatkiewicz A, Tomar M, Gamm M. 2014. The low energy signaling network. *Frontiers in plant*
1198 *science* **5**: 353. doi: 10.3389/fpls.2014.00353

1199 Tsukada J, Yoshida Y, Kominato Y, Auron PE. 2011. The CCAAT/enhancer (C/EBP) family of basic-
1200 leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene
1201 regulation. *Cytokine* **54**: 6-19. doi: 10.1016/j.cyto.2010.12.019

1202 Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC, Shinozaki K. 2013. Genetics
1203 and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling
1204 pathway in *Arabidopsis thaliana*. *Science Signaling* **6**: rs8. doi: 10.1126/scisignal.2003509

1205 Usadel B, Blasing OE, Gibon Y, Retzlaff K, Hohne M, Gunther M, Stitt M. 2008. Global transcript levels
1206 respond to small changes of the carbon status during progressive exhaustion of carbohydrates in
1207 *Arabidopsis* rosettes. *Plant Physiology* **146**: 1834-61. doi: 10.1104/pp.107.115592

1208 van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge UI, Kunze R. 2006. Transcription
1209 Analysis of *Arabidopsis* Membrane Transporters and Hormone Pathways during Developmental and
1210 Induced Leaf Senescence. *Plant Physiology* **141**: 776-92. doi: 10.1104/pp.106.079293

1211 Veerabagu M, Kirchler T, Elgass K, Stadelhofer B, Stahl M, Harter K, Mira-Rodado V, Chaban C. 2014.
1212 The Interaction of the *Arabidopsis* Response Regulator ARR18 with bZIP63 Mediates the Regulation
1213 of PROLINE DEHYDROGENASE Expression. *Molecular Plant* **7**: 1560-77. doi: 10.1093/mp/ssu074

1214 Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J. 2008. Multicolor bimolecular
1215 fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in
1216 planta. *The Plant Journal* **56**: 505-16. doi: 10.1111/j.1365-313X.2008.03612.x

1217 Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher
1218 K, Oecking C, Harter K, Kudla J. 2004. Visualization of protein interactions in living plant cells using
1219 bimolecular fluorescence complementation. *The Plant Journal* **40**: 428-38. doi: 10.1111/j.1365-
1220 313X.2004.02219.x

1221 Weiste C, Dröge-Laser W. 2014. The Arabidopsis transcription factor bZIP11 activates auxin-mediated
1222 transcription by recruiting the histone acetylation machinery. *Nat Commun.* **5**: 3883. doi:
1223 10.1038/ncomms4883.

1224 Yoo SD, Cho YH, Sheen J. 2007. Arabidopsis mesophyll protoplasts: a versatile cell system for
1225 transient gene expression analysis. *Nature Protocols* **2**: 1565-72. doi: 10.1038/nprot.2007.199

1226 Yoshida S, Ito M, Watanabe A. 2001. Isolation and RNA Gel Blot Analysis of Genes that Could Serve as
1227 Potential Molecular Markers for Leaf Senescence in Arabidopsis thaliana. *Plant Cell Physiology*
1228 **42**:170-178. doi: 10.1093/pcp/pce021

1229

1230 **Figures Legends and tables**

1231

1232 **Figure 1. *bZIP63* mutants have a phenotype in dark-induced senescence**

1233 (A) and (B) Dark-induced senescence phenotype of 4.5 week-old soil grown plants. Comparison of a
1234 *bzip63* line in the Wassilewskya (Ws-2), and two *bZIP63* ox lines in the Columbia (Col-0) background,
1235 after nine days in darkness. (A) Representative leaf series. (B) Box-and-whiskers plot of the total
1236 green leaf area of eight biological replicates as determined with ImageJ. See Figure 1 – figure
1237 supplement 1 for molecular characterization of the *bZIP63* mutant lines, Figure 1 – figure supplement
1238 2 for a scheme of the determination of the green leaf area, quantitative chlorophyll measurements,
1239 controls and green area of individual leaves, Figure1 – source data 1 for the used ImageJ macro, and
1240 Figure 1 - figure supplement 3 for expression of senescence marker genes in wt and *bzip63*. (C) and
1241 (D) Sugar rescue of the dark-induced senescence phenotype. Seedlings were grown for 12 days on ½
1242 MS agar containing 0.5% sucrose transferred to ½ MS agar containing 0% or 2% glucose and grown
1243 for another six days before incubation in the dark for seven days. (A) Representative seedlings. (B)
1244 Box-and whiskers plot of the chlorophyll content of 8 seedlings per line and condition. See Figure 1 –
1245 figure supplement 4 for pictures and chlorophyll content of seedlings before dark incubation.
1246 P-values from T-tests between mutants and wt < 0.05, < 0.01, and < 0.001 are indicated by *,
1247 **, and ***, respectively.

1248

1249 **Figure 2. *bZIP63* mutants have an altered primary metabolism**

1250 Metabolic phenotype of five week-old soil grown plants after 6h light (L) and extended night (E). Log-
1251 2 fold changes of metabolite levels in ko and ox compared to their respective wt, displayed on a
1252 simplified map of the central primary metabolism. Values are means of five biological replicates. P-
1253 values from T-tests between mutants and wt < 0.05, <0.01, and < 0.001 are indicated by *, ** and
1254 ***, respectively. For more details including mean values and SD see Figure 2 – figure supplement 1
1255 and Figure 2 – source data 1.

1256 **Figure 3. bZIP63 is phosphorylated at multiple sites in an energy-dependent manner in vivo**

1257 **(A)** 2D gel western blots (α GFP) of lambda phosphatase (λ PP)-treated protein extracts from adult
1258 soil-grown plants expressing bZIP63-GFP (ox#3). **(B)** Phos-tag gel western blots showing the in vivo
1259 phosphorylation state of bZIP63 in seedlings after 6h extended night in the presence (+) or absence
1260 (-) of 1% sucrose and in five week-old soil-grown plants after 6h light (L) or extended night (EN).
1261 Plants either expressed 35S::bZIP63-GFP (ox#3) or a genomic fragment of bZIP63 (GY11) with a YFP-
1262 tag. Recombinant bZIP63-YFP was used as an nonphosphorylated control. Numbered arrowheads on
1263 the right mark the position of each observed bZIP63 band for easy reference with other figures (see
1264 Figure 3 – figure supplement 1 for a comparative image of all Phos-tag western blots). For more
1265 information on the genomic line see Figure 7 and Figure 7 – figure supplement 1. **(C)** Identification of
1266 in vivo phosphorylation sites by immunoprecipitation (IP) and tandem mass spectrometry (MS/MS).
1267 An exemplary western blot of the IP is shown. The scheme at the bottom shows the positions of the
1268 identified in vivo phosphorylation sites and the total sequence coverage reached with each
1269 proteolytic enzyme (grey bars). Asterisks mark the identification of a phospho-site. For more
1270 information on samples and (phospho-) peptides see Figure 2 – figure supplement 2.

1271 IEF, isoelectric focusing; CBB, coomassie brilliant blue; BD, basic domain; ZIP, leucine zipper; LTQ,
1272 linear ion trap quadrupole; chym., chymotrypsin

1273

1274 **Figure 4. Several different kinases can phosphorylate bZIP63**

1275 **(A)** In-gel kinase assay with a root protein extract from hydroponically grown wild type plant and
1276 bZIP63 as substrate. Arrows indicate the positions of potential bZIP63 kinases. **(B)** Scheme of the
1277 kinase identification process. **(C)** In-gel kinase assay with samples from affinity purification of a root
1278 protein extract with bZIP63 and bZIP63 as a substrate (left) and a list of catalytic and regulatory (*)
1279 kinase subunits identified with high confidence (right). The list also contains the gene identifier (AGI),
1280 molecular weight (MW), and number of samples in which the protein was found. For controls and a

1281 list of all identified kinases and kinase peptides see Figure 4 – figure supplement 1 and 2 and Figure 4
1282 – source data 1.

1283 CBB, Coomassie brilliant blue

1284

1285 **Figure 5. The SnRK1 kinase AKIN10 phosphorylates bZIP63 and interacts with bZIP63 in vivo**

1286 **(A)** In-gel kinase assay with protein extracts from wt and *akin10* plants and bZIP63 as a substrate
1287 (top), western blot against AKIN10 (α AKIN10, middle), and Coomassie brilliant blue stain (CBB,
1288 bottom). Asterisks mark the position of AKIN10. For characterization of the *akin10* line see Figure 5 –
1289 figure supplement 1-3. **(B)** In vitro kinase assay with recombinant AKIN10/AKIN11 and bZIP63 as a
1290 substrate. See also Figure 5 – figure supplement 4 for kinase assays including the SnRK1 upstream
1291 kinase SnAK2. **(C)** and **(D)** Interaction of SnRK1 subunits with bZIP63. Homo-dimerization of bZIP63
1292 was used as a positive control. **(C)** Yeast two-hybrid (Y2H) assay with auto-activation in grey and
1293 interaction with bZIP63 in blue. Bars represent means \pm SD of eight biological replicates. For Y2H with
1294 SnK1 β 1 and β 2 see Figure 5 – figure supplement 6. **(D)** Laser scanning microscopy images of
1295 bimolecular fluorescence complementation (BiFC) in transiently transformed *N. tabacum* leaves
1296 (top). Arrowheads indicate the position of the nucleus. Size bar = 20 μ m. Expression of the fusion
1297 proteins was verified by western blots (α HA, α Flag, bottom). **(E)** Phos-tag gel western blots showing
1298 the in vivo phosphorylation state of bZIP63 in 4-5 week-old soil grown plants after 6h light (L) or
1299 extended night (EN) in the presence and absence of AKIN10 alone or both AKIN10 and AKIN11. Plants
1300 overexpressing bZIP63-YFP in the *akin10* line were compared to plants overexpressing bZIP63-GFP in
1301 the wt background (ox#3) (left). Additionally, AKIN10 and AKIN11 were knocked down (*akin10/11*) by
1302 virus-induced gene silencing (VIGS) in plants expressing genomic bZIP63 with a YFP-tag (GY9 line).
1303 See Figure 5 – figure supplement 7 for images and a western blots of the VIGS plants. Recombinant
1304 bZIP63-YFP was used as a nonphosphorylated control. Numbered arrowheads on the right mark the
1305 position of each observed bZIP63 band for easy reference with other figures (see Figure 3 – figure

1306 supplement 1 for a comparative image of all Phos-tag western blots). A comparison of the
1307 phosphorylation state of bZIP63 in seedlings can be found in Figure 5 – figure supplement 6.

1308

1309 **Figure 6. AKIN10 targets three highly conserved and functionally important serine residues in**
1310 **bZIP63**

1311 **(A)** In vitro kinase assay of wt and S/A mutants of GST-tagged bZIP63 with AKIN10. Positions of full
1312 length (FL) and N-terminal fragments of bZIP63 are marked by black arrows. The scheme on the right
1313 shows the position of the in vivo phosphorylation sites and the in vitro target sites of AKIN10 (red
1314 asterisk) on bZIP63. See Figure 6 – figure supplement 1 and 2 for controls and Phos-tag gel of kinase
1315 assays, respectively. **(B)** Conservation of phosphorylation sites in bZIP63. Sequences of bZIP63
1316 homologues from eight species were aligned with ClustalΩ. The scheme on top indicates the
1317 positions of the in vivo phosphorylation and AKIN10 target sites on bZIP63. The histogram below
1318 shows the sequence identity (red/black) and similarity (grey) to *A. thaliana* bZIP63. Red bars
1319 represent the in vivo phosphorylation sites. Below, the alignment of the sequence surrounding the
1320 AKIN10 target sites and the SnRK1 consensus motif (Huang and Huber, 2001) are shown. The
1321 grey/black shading indicates the degree of conservation, phosphorylation sites are in red. For
1322 alignment of non-AKIN10 target sites and full sequence alignment see Figure 6 – figure supplement 3,
1323 for sequences in fasta format see Figure 6 – source data 1. **(C)** Promoter activation assays in
1324 protoplasts with an ASN1/ProDH promoter-driven GUS reporter. Activation by bZIP63 wt and S/A
1325 mutants without (grey) or with (blue) co-transformation of AKIN10 is shown. Bars are means \pm SD of
1326 4 biological replicates, given in % of the activity of wt bZIP63 with AKIN10. Horizontal dashed lines
1327 indicate the signal in the control without bZIP63. Letters indicate significant differences as
1328 determined by ANOVA and pairwise T-testing ($P < 0.05$). See Figure 6 – figure supplement 4 for a
1329 western blot control.

1330 CBB, Coomassie brilliant blue.

1331

1332 **Figure 7. The *bzip63* phenotype can be complemented by wt bZIP63, but not by bZIP63 harboring**
1333 **S/A mutantions of the AKIN10 target sites**

1334 **(A)** Genomic complementation constructs. Exons are green, introns black. See Figure 7 – figure
1335 supplement 1 for characterization of the complementation lines. **(B)** Phos-tag gel western blots
1336 (α GFP) showing the in vivo phosphorylation state of bZIP63 in the complementation lines after 6h
1337 light (L) or extended night (EN) in five week-old soil-grown plants. Recombinant bZIP63-YFP was used
1338 as nonphosphorylated control. Numbered arrowheads on the right mark the position of each
1339 observed bZIP63 band for easy reference with other figures (see Figure 3 – figure supplement 1 for a
1340 comparative image of all Phos-tag western blots). **(C)** and **(D)** Dark-induced senescence phenotype of
1341 4.5 week-old soil-grown plants after nine days in darkness. **(C)** Leaves 3 – 7 of one representative
1342 plant per line. **(D)** Box-and-whiskers plot of the total green leaf area of eight biological replicates.
1343 Letters indicate significant differences as determined by ANOVA and pairwise T-testing ($P < 0.05$). See
1344 Figure 7 – figure supplement 2 for untreated plants and green leaf area of individual leaves. **(E)** and
1345 **(F)** Metabolite profile. **(E)** Hierarchical clustering of log-2 fold changes of metabolite concentrations
1346 compared to wt. Values are means of five biological replicates. **(F)** Principal component analysis
1347 (PCA). PC1 is plotted against PC2. The proportion of variance in % is indicated. The red line surrounds
1348 *bzip63* and GAY samples, the green line wt, GY, and ox#3 samples. For relative metabolite
1349 concentrations and PCA loading see Figure 7 – source data 1. **(G)** Relative expression of potential
1350 bZIP63 target genes in five week-old plants during early extended night as determined by RT-qPCR.
1351 Values are means \pm SD of four biological replicates and are given as fold change compared to Ws-2 at
1352 0h (left) or 4h (right). P-values from T-tests between mutants and wt < 0.05 , < 0.01 , and < 0.001 are
1353 indicated by *, ** and ***, respectively. Letters indicate significant differences as determined by
1354 ANOVA and pairwise T-testing ($P < 0.05$).
1355 CBB, Coomassie brilliant blue
1356

1357 **Figure 8. AKIN10-mediated phosphorylation of bZIP63 promotes its dimerization**

1358 **(A)** and **(B)** Protoplast two-hybrid (P2H) assays. **(A)** Interaction of bZIP63 fused to the Gal4-AD
1359 (activation domain) with bZIP63, bZIP1, and bZIP11 fused to the Gal4-BD (binding domain) without
1360 and with co-transformation of AKIN10. Bars represent the mean normalized GUS activity \pm SD of 3-4
1361 biological replicates. P-values from T-tests < 0.05 and < 0.01 are indicated by * and **, respectively.
1362 **(B)** Interaction of AD-bZIP63 (left) or AD-bZIP11 (right) with wt and S/A mutants of BD-bZIP63
1363 without and with co-transformation of AKIN10. Values are given in % of the signal with wt bZIP63 and
1364 AKIN10. Letters indicate significant differences as determined by ANOVA and pairwise T-testing ($P <$
1365 0.05). For western blots for (A) and (B) see Figure 8 – figure supplement 1. **(C)** In vitro kinase assay of
1366 bZIP63, 1, 2, 11, 44, and 53 with AKIN10 and the SnRK1 upstream kinase SnAK2. For a kinase assay
1367 with the bZIPs and alone SnAK2 see Figure 8 – figure supplement 2. **(D)**. Phos-tag gel western blots
1368 (α GFP) showing the in vivo phosphorylation state of S29 in bZIP63 after 6h light (L) or extended night
1369 (EN). Five week-old soil-grown plants of two genomic *bzip63* complementation lines harboring
1370 different S/A mutations were used. In line GAY14 (left) none of the AKIN10 target sites (S29/294/300)
1371 can be phosphorylated, while in the S294/300A (right) line S29 can still be phosphorylated.
1372 Numbered arrowheads on the right mark the position of each observed bZIP63 band for easy
1373 reference with other figures (see Figure 3 – figure supplement 1 for a comparative image of all Phos-
1374 tag western blots). The likely phosphorylation state of the bands in the western blot is shown on the
1375 right. X stands for one of the non-mutated serines (59, 102, 160, or 261).

1376 CBB, Coomassie brilliant blue

1377

1378 **Figure 9 – Phosphorylation of bZIP63 shifts its dimerization preferences**

1379 **(A)** Multi-color bimolecular fluorescence complementation (BiFC) in transiently transformed *N.*
1380 *tabacum* leaves to test the effect of bZIP63 phosphorylation on its dimerization preference. A
1381 cassette containing bZIP63 (wt or S29/294/300A), bZIP11, and bZIP1 – tagged with the C-terminal
1382 moiety of CFP and the N-terminal moieties of CFP and VENUS, respectively – was co-transformed

1383 with mCherry-tagged AKIN10. CFP (bZIP63-11) and VENUS (bZIP63-1) fluorescence was detected on a
1384 confocal laser scanning microscope and quantified for nuclei showing co-expression of AKIN10. Top:
1385 scheme of the multi-color BiFC construct and principle. Bottom center: representative microscopy
1386 pictures. Size bar = 50 μ m. Bottom right: Box-and-whiskers plot of the VENUS/CFP ratio of 115-118
1387 nuclei, normalized to the median of the S29/294/300A bZIP63 construct. T-test p-value was < 0.001,
1388 as indicated by ***. **(B)** Model of the regulation of bZIP63 dimerization and activity by AKIN10.
1389 Energy deprivation triggers activation of AKIN10, which phosphorylates S29 on bZIP63. This leads to
1390 increased formation of specific bZIP63 dimers and altered expression of dimer specific genes.

1391

1392 **Supplemental data**

1393

1394 **Figure 1 – figure supplement 1. Molecular characterization of the *bzip63* line and expression of**
1395 ***bZIP63* in the ko and ox lines**

1396 **(A)** Scheme of the genomic locus (top) and the protein (bottom) of bZIP63. UTRs and exons are
1397 shown in grey and green, respectively. The position of the T-DNA in the first exon, as well as the
1398 position of primers used for PCR and RT-qPCR are indicated. The position of the T-DNA insertion was
1399 determined by sequencing of the PCR product in **(C)**. **(B)** PCR on genomic DNA using primers fw and
1400 rv to show the homozygous T-DNA insertion in the *bzip63* line. **(C)** PCR on genomic DNA from *bzip63*
1401 plants using primers fw, rv, LB, and RB to determine the localization and orientation of the T-DNA
1402 insertion. **(D)** and **(E)** Expression of *bZIP63* in wt, bZIP63 ko and ox plants. RT-qPCR of bZIP63 in five
1403 week-old plants after 6h of light (L) or extended night (EN) using primers fwq and rvq. Bars represent
1404 means \pm SD of 5 biological replicates and are given as fold change to Ws-2 in L. **(F)** Pictures of five
1405 week-old wt and mutant plants grown in a 12h light/12h dark cycle.

1406

1407 **Figure 1 – figure supplement 2. Phenotype of *bZIP63* mutants in dark-induced senescence**

1408 Dark-induced senescence phenotype of 4.5 week-old soil-grown plants. Comparison of a *bzip63* line
1409 in the Wassilewskya (Ws-2) and two bZIP63 ox lines in the Columbia (Col-0) background. **(A)** Scheme
1410 of the workflow to determine the green leaf area. A detailed description and the ImageJ macro can
1411 be found in the methods section and in Figure 1 – source data 1. **(B)** Total chlorophyll (chl) content in
1412 μ g/mg freshweight (FW) of plants before and after 9 days in darkness. Bars represent the mean \pm SD
1413 of six biological replicates. **(C)** Representative leaf series of plants before dark treatment. **(D)** Barplot
1414 of the total green leaf area of the rosette before darkness. Values are the mean \pm SD of four
1415 biological replicates. **(E)** Dark-induced senescence timecourse. **(F)** Dotplot of the green leaf area of
1416 individual leaves after nine days in darkness.

1417 P-values from T-tests between mutants wt < 0.05, <0.01, and < 0.001 are indicated by *, ** and ***,
1418 respectively.

1419 **Figure 1 – figure supplement 3. Expression of senescence marker genes during prolonged darkness**
1420 Chlorophyll content (**A**) and expression of senescence marker genes (**B**) in 4.5 week-old soil-grown wt
1421 and *bzip63* plants after 0-4 days of darkness. Bars represent the mean \pm SD of three biological
1422 replicates. Letters indicate significant differences as determined by ANOVA and pairwise T-testing (P
1423 < 0.05). (**A**) Total rosettes were harvested at the indicated time points and the chlorophyll content in
1424 $\mu\text{g}/\text{mg FW}$ was determined. (**B**) From the same plants, expression of the photosynthetic marker gene
1425 *CAB2* (CHLOROPHYLL A/B-BINDING PROTEIN 2) and three senescence marker genes (Dietrich et al.,
1426 2011) was determined by RT-qPCR. The expression is shown relative to wt at day 0 (before dark
1427 incubation). *SEN1* (SENESCENCE 1) and *SAG103* (SENESCENCE-ASSOCIATED GENE 103) are known to
1428 be strongly induced by dark-induced senescence, while *YLS3* (YELLOW-LEAF-SPECIFIC 3) is induced by
1429 natural, but not by dark-induced senescence (Oh et al., 1996; van der Graaff et al., 2006, Yoshida et
1430 al., 2001).

1431
1432 **Figure 1 – figure supplement 4. Effect of sugar on bZIP63 mutants in light**
1433 Controls for the sugar rescue of the dark-induced senescence phenotype shown in Figure 1C and 1D.
1434 Seedlings were grown for 12 days on $\frac{1}{2}$ MS agar containing 0.5% sucrose transferred to $\frac{1}{2}$ MS agar
1435 containing 0% or 2% glucose and grown for another six days in a 12h light/ 12h dark cycle. (**A**)
1436 Representative seedlings. (**B**) Box-and whiskers plot of the chlorophyll content of eight seedlings. T-
1437 tests revealed no significant differences between chlorophyll content in wt and mutants.

1438
1439 **Figure 1 – source data 1. ImageJ macro for determination of leaf area and green leaf area**

1440
1441 **Figure 2 – figure supplement 1. Metabolic changes in bZIP63 ko and ox plants**
1442 Table of the metabolite levels in *bzip63* and *ox#3* compared to their respective wt shown in Figure 2.
1443 Values are the log-2 transformed means of five biological replicates. P-values from T-tests between
1444 mutants and wt < 0.05 , < 0.01 , and < 0.001 are indicated by *, ** and ***, respectively. The color

1445 gradient indicates increased (red) or decreased (blue) metabolite levels in the mutant. For relative
1446 changes between mutant and wt including the SD and p-values from T-tests see Figure 2 – source
1447 data 1.

1448

1449 **Figure 2 – source data 1. Excel table of relative metabolite levels in *bZIP63* mutants and p-values**
1450 **from T-tests**

1451 Table of relative metabolite levels in Ws-2, *bzip63*, Col-0 and ox#3 after 6h in light or extended night,
1452 which were used to calculate the log2-fold changes shown in Figures 1C and see Figure 1 – figure
1453 supplement 2. Mean values and SD of five biological replicates are given as fold changes to the
1454 corresponding wt. P-values from T-tests between wt and mutant are listed.

1455

1456 **Figure 3 – figure supplement 1. Comparison of Phos-tag western blots from different figures.**

1457 For better comparison of Phos-tag western blots (α GFP) shown in different figures of this
1458 manuscript, all Phos-tag western blots were aligned here. In case more than one image of the same
1459 lines and conditions exists, only one is shown. The bands were labeled with numbers from 1 to 8,
1460 where 1 is the presumably non-phosphorylated state and 8 is the highest phosphorylated form. The
1461 two semicircles to the right of each blot indicate the presence of a band at this position in each of the
1462 two lanes, with the shade corresponding to the intensity of the band (light grey for weak bands, dark
1463 for strong bands). The figures and figures supplements (S) in which the blots are shown are given
1464 below.

1465

1466 **Figure 3 – figure supplement 2. Overview over identified phospho-peptides of *bZIP63***

1467 **(A)** Sample overview, summarizing for each of the five independent experiments: plant material,
1468 growth conditions, the number of samples digested with each proteolytic enzyme, and the identified
1469 phospho-sites (Y). Experiments 1 to 3 were measured with a linear ion trap quadrupole (LTQ),
1470 experiments 4 and 5 with an LTQ-Oribtrap (OT). **(B)** Phospho-peptide identification frequencies for

1471 the proteolytic enzymes. The barplot shows, for each proteolytic enzyme, the number of samples in
1472 which an *in vivo* phosphorylation-site was covered (black or red) or not covered (grey), and how
1473 often a phospho-peptide was identified (red). **(C)** Graph showing the total protein coverage from all
1474 experiments, as well as the protein coverage that was achieved with each of the four proteolytic
1475 enzymes in % and as a sequence. Parts of the sequence that were covered and not covered are
1476 shown in black and light grey, respectively. Identified phospho-serines are red. Below the coverage,
1477 all identified phospho-peptides are listed and the instrument used for identification is specified (LTQ
1478 or OT). The numbers on top indicate the position in the protein sequence. The scheme below
1479 indicates the position of the conserved bZIP domain (green), including the basic domain (dark green),
1480 and the N- and C-terminal extensions (yellow).

1481 L, light; EN, extended night; D, dark; suc, sucrose; T, trypsin; C, chymotrypsin; L, LysC; S, subtilisin;
1482 NLS, nuclear localization signal

1483

1484 **Figure 4 – figure supplement 1. Auto-phosphorylation from the protein extracts is negligible in in-**
1485 **gel kinase assays**

1486 In-gel kinase assay with samples from affinity purification of a root protein extract from
1487 hydroponically grown plants with bZIP63. Comparison of a gel with bZIP63 as a substrate (top, see
1488 also Figure 4C) and a gel without substrate (middle). A Coomassie brilliant blue (CBB) stained gel is
1489 shown at the bottom.

1490

1491 **Figure 4 – figure supplement 2. Overview over the kinases identified by LC-MS/MS after affinity**
1492 **purification with bZIP63**

1493

1494 **References for Figure 4 – figure supplement 2**

1495 Bayer RG, Stael S, Rocha AG, Mair A, Vothknecht UC, Teige M. 2012. Chloroplast-localized protein kinases: a step forward towards
1496 a complete inventory. *Journal of Experimental Botany* **63**: 1713-23. doi: 10.1093/jxb/err377

1497 Benetka W, Mehlmer N, Maurer-Stroh S, Sammer M, Koranda M, Neumuller R, Betschinger J, Knoblich JA, Teige M, Eisenhaber F.
1498 2008. Experimental testing of predicted myristylation targets involved in asymmetric cell division and calcium-dependent
1499 signalling. *Cell Cycle* **7**: 3709-19. doi: 10.4161/cc.7.23.7176

1500 Berendzen KW, Bohmer M, Wallmeroth N, Peter S, Vesic M, Zhou Y, Tiesler FK, Schleifenbaum F, Harter K. 2012. Screening for in
 1501 planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry. *Plant Methods* **8**:
 1502 25. doi: 10.1186/1746-4811-8-25

1503 Bitran M, Roodbarkelari F, Horvath M, Koncz C. 2011. BAC-recombinering for studying plant gene regulation: developmental
 1504 control and cellular localization of SnRK1 kinase subunits. *The Plant Journal* **65**: 829-42. doi: 10.1111/j.1365-313X.2010.04462.x

1505 Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, Geelen D, Hilson P, Inze D, Van Damme D, Russinova E. 2010. Systematic
 1506 localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. *Plant Physiology* **152**: 553-65. doi:
 1507 10.1104/pp.109.148643

1508 Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J. 2010. Differential innate immune
 1509 signalling via Ca(2+) sensor protein kinases. *Nature* **464**: 418-22. doi: 10.1038/nature08794

1510 Dammann C, Ichida A, Hong B, Romanowsky SM, Hrabak EM, Harmon AC, Pickard BG, Harper JF. 2003. Subcellular targeting of nine
 1511 calcium-dependent protein kinase isoforms from Arabidopsis. *Plant Physiology* **132**: 1840-48. doi: 10.1104/pp.103.020008

1512 Dong CH, Rivarola M, Resnick JS, Maggin BD, Chang C. 2008. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a
 1513 regulatory role for RTE1 in ETR1 ethylene signaling. *The Plant Journal* **53**: 275-86. doi: 10.1111/j.1365-313X.2007.03339.x

1514 Fragoso S, Espindola L, Paez-Valencia J, Gamboa A, Camacho Y, Martinez-Barajas E, Coello P. 2009. SnRK1 isoforms AKIN10 and
 1515 AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation. *Plant Physiology* **149**: 1906-16. doi:
 1516 10.1104/pp.108.133298

1517 Gissot L, Polge C, Jossier M, Girin T, Bouly JP, Kreis M, Thomas M. 2006. AKINbetagamma contributes to SnRK1 heterotrimeric
 1518 complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS/GBD sequence. *Plant Physiology*
 1519 **142**: 931-44. doi: 10.1104/pp.106.087718

1520 Kitsios G, Alexiou KG, Bush M, Shaw P, Doonan JH. 2008. A cyclin-dependent protein kinase, CDKC2, colocalizes with and modulates
 1521 the distribution of spliceosomal components in Arabidopsis. *The Plant Journal* **54**: 220-35. doi: 10.1111/j.1365-313X.2008.03414.x

1522 Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH. 2005. High-throughput protein localization in Arabidopsis using
 1523 Agrobacterium-mediated transient expression of GFP-ORF fusions. *The Plant Journal* **41**: 162-74. doi: 10.1111/j.1365-
 1524 313X.2004.02281.x

1525 Lee JY, Taoka K, Yoo BC, Ben-Nissan G, Kim DJ, Lucas WJ. 2005. Plasmodesmal-associated protein kinase in tobacco and Arabidopsis
 1526 recognizes a subset of non-cell-autonomous proteins. *The Plant Cell* **17**: 2817-31. doi: 10.1105/tpc.105.034330

1527 Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M. 2010. The Ca(2+) -dependent
 1528 protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. *The Plant Journal* **63**: 484-98. doi:
 1529 10.1111/j.1365-313X.2010.04257.x

1530 Padmanaban S, Chanroj S, Kwak JM, Li X, Ward JM, Sze H. 2007. Participation of endomembrane cation/H⁺ exchanger AtCHX20 in
 1531 osmoregulation of guard cells. *Plant Physiology* **144**: 82-93. doi: 10.1104/pp.106.092155

1532 Park HJ, Ding L, Dai M, Lin R, Wang H. 2008. Multisite phosphorylation of Arabidopsis HFR1 by casein kinase II and a plausible role
 1533 in regulating its degradation rate. *The Journal of biological chemistry* **283**: 23264-73. doi: 10.1074/jbc.M801720200

1534 Perales M, Portoles S, Mas P. 2006. The proteasome-dependent degradation of CKB4 is regulated by the Arabidopsis biological
 1535 clock. *The Plant Journal* **46**: 849-60. doi: 10.1111/j.1365-313X.2006.02744.x

1536 Pierre M, Traverso JA, Boisson B, Domenichini S, Bouchez D, Giglione C, Meinnel T. 2007. N-myristoylation regulates the SnRK1
 1537 pathway in Arabidopsis. *The Plant Cell* **19**: 2804-21. doi: 10.1105/tpc.107.051870

1538 Rodriguez Milla MA, Uno Y, Chang IF, Townsend J, Maher EA, Quilici D, Cushman JC. 2006. A novel yeast two-hybrid approach to
 1539 identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. *FEBS
 1540 Letters* **580**: 904-11. doi: 10.1016/j.febslet.2006.01.013

1541 Salinas P, Fuentes D, Vidal E, Jordana X, Echeverria M, Holguigue L. 2006. An extensive survey of CK2 alpha and beta subunits in
 1542 Arabidopsis: multiple isoforms exhibit differential subcellular localization. *Plant Cell Physiology* **47**: 1295-1308. doi:
 1543 10.1093/pcp/pcj100

1544 Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP. 2007. Two calcium-
 1545 dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. *The Plant Cell* **19**: 3019-36.
 1546 doi: 10.1105/tpc.107.050666

1547

1548

1549 **Figure 4 – source data 1.** Excel table containing a detailed overview over the identified kinases and
1550 analyzed samples as well as all peptides found for the kinase subunit

1551 The tab “kinase overview” contains a table showing in which samples each kinase subunit was
1552 identified, including the number of peptides, proteotypic peptides, MASCOT (Matrix Science) score,
1553 and expected molecular weight. The other tabs list all peptides found for the kinase subunits in each
1554 sample and state whether the peptide is proteotypic (Y) or not.

1555

1556 **Figure 5 – figure supplement 1. Molecular characterization of the *akin10* line**

1557 **(A)** Scheme of the genomic locus and protein of *AKIN10* (top) and *IMS2* (bottom). For the genomic
1558 locus, UTRs and exons are shown in grey and green, respectively. For *AKIN10* an alternative first exon
1559 for splicing form 2 (sf2) is shown in light green. The confirmed (*AKIN10*) and annotated but not
1560 detected (*IMS2*) T-DNA insertion sites are indicated, as well as the binding sites of primers used for
1561 PCRs in (B-D). For the *AKIN10* protein, the positions of the kinase catalytic domain (KD), the ubiquitin-
1562 associated domain (UBA), the kinase-associated domain (KA), as well as the binding sites for
1563 antibodies against *AKIN10* and AMPK-pT172 used in (E) are shown. The AMPK-pT172 antibody
1564 recognizes the phosphorylated T in the T-loop of both *AKIN10* and *AKIN11*. The position of K48,
1565 which was mutated in the inactive *AKIN10* version used in this manuscript, is shown as well. **(B)** PCR
1566 on genomic DNA from wt and *akin10* plants to confirm the T-DNA insertion in *AKIN10* and
1567 homozygosity of the plant lines. **(C)** PCR on genomic DNA from wt and *akin10* plants did not confirm
1568 the second T-DNA insertion in the *akin10* line in the *IMS2* gene. **(D)** Expression of *AKIN10* and *AKIN11*
1569 in rosette leaves of five week-old wt and *akin10* plants after 6h of light (L) and extended night (EN) as
1570 determined by RT-qPCR. Bars represent the means \pm SD of four biological replicates and are
1571 normalized to wt in L. Letters indicate significant differences as determined by ANOVA and pairwise
1572 T-testing ($P < 0.05$). **(E)** Western blots detecting *AKIN10* (α *AKIN10*) and *AKIN10* and 11
1573 phosphorylated in the T-loop (α AMPK-pT172) in wt and *akin10* plants. Proteins were extracted from

1574 mature soil-grown plants after 6h of light or extended night (left) or from two week-old seedlings
1575 treated with 6h of extended darkness in the presence (+) or absence (-) of 1% sucrose (suc; right).

1576 CBB, Coomassie Brilliant Blue

1577

1578 **Figure 5 – figure supplement 2. Phenotype and gene expression of selected AKIN10 target genes in**
1579 **the *akin10* line**

1580 **(A)** No obvious difference in growth could be observed between wt and *akin10* plants grown for
1581 seven weeks under short day conditions. The number of leaves, fresh weight (FW), dry weight (DW)
1582 and the water content (FW/DW) were determined. Bars represent the means \pm SD of 20 biological
1583 replicates. **(B)** Mild flowering phenotype of *akin10*. Wt and *akin10* plants were grown under short
1584 day conditions and the number of leaves at time of bolting was determined. Bars represent the
1585 means \pm SD of 14 (wt) and 11 (*akin10*) biological replicates. **(C)** Expression of selected AKIN10 target
1586 genes (Baena-Gonzalez et al., 2007) involved in amino acid metabolism (*ASN1*, *ProDH*, *BCAT2*
1587 (BRANCHED-CHAIN AMINO ACID TRANSAMINASE 2), AA-TP family protein (amino acid transporter
1588 family protein)) and sugar metabolism (*DIN10*) after 6h of light (L) and extended night (E) as
1589 determined by RT-qPCR. Bars represent the means \pm SD of three biological replicates.

1590 P-values from T-tests between mutants and wt < 0.05, <0.01, and < 0.001 are indicated by *, ** and
1591 ***, respectively.

1592

1593 **Figure 5 – figure supplement 3. Expression of bZIPs in the *akin10* line**

1594 Expression of *bZIP63*, *bZIP1*, and *bZIP11* in rosette leaves of five week-old wt and *akin10* plants after
1595 6h of light (L) and extended night (EN) as determined by RT-qPCR. Bars represent the means \pm SD of
1596 four biological replicates and are normalized to wt in L. P-values from T-tests between mutants and
1597 wt < 0.05, <0.01, and < 0.001 are indicated by *, ** and ***, respectively.

1598 **Figure 5 – figure supplement 4. SnAK2 increases the kinase activity of AKIN10 and AKIN11 but does**
1599 **not phosphorylate bZIP63**

1600 **(A)** In vitro kinase assay with recombinant AKIN10 or AKIN11 and bZIP63 as a substrate in the
1601 presence of SnAK2. **(B)** Phos-tag gel western blot of an in vitro kinase assay with inactive AKIN10
1602 (AKIN10 K/M), active AKIN10, or AKIN11 and bZIP63 as a substrate in the presence of SnAK2. An
1603 antibody recognizing the C-terminus of bZIP63 (α bZIP63) was used (see Figure 5 - figure supplement
1604 1). **(C)** In vitro kinase assay with AKIN10 and/or SnAK2 and bZIP63 as a substrate showing the activity
1605 of AKIN10 in the presence or absence of SnAK2. The signal intensity from the bZIP63 phosphorylation
1606 is given in % of the strongest signal.

1607 CBB, Coomassie brilliant blue

1608

1609 **Figure 5 – figure supplement 5. AKIN β 1 and AKIN β 2 don not interact with bZIP63**

1610 Yeast two-hybrid (Y2H) assay showing of AKIN β 1 and AKIN β 2 with bZIP63. Homo-dimerization of
1611 bZIP63 was used as a positive control. Auto-activation of BD-fusion proteins is shown in grey,
1612 interaction with bZIP63 in blue. Bars represent means \pm SD of eight biological replicates.

1613

1614 **Figure 5 – figure supplement 6. Altered sugar-dependent in vivo phosphorylation of bZIP63 in**
1615 **seedlings**

1616 Phos-tag gel western (α GFP) blots showing the in vivo phosphorylation state of bZIP63 in plants
1617 overexpressing bZIP63-GFP/YFP in the wt or *akin10* background. Proteins were extracted from
1618 seedling cultures after 6h extended night in the presence (+) or absence (-) of 1% sucrose.
1619 Recombinant bZIP63-YFP was used as nonphosphorylated control. Numbered arrowheads on the
1620 right mark the position of each observed bZIP63 band for easy reference with other figures (see
1621 Figure 3 – figure supplement 1 for a comparative image of all Phos-tag western blots). 8 indicates the
1622 hyper-phosphorylated form of bZIP63. CBB, Coomassie brilliant blue

1623

1624 **Figure 5 – figure supplement 7. AKIN10/AKIN11 VIGS plants**

1625 AKIN10 and AKIN11 were knocked down in plants expressing a genomic fragment of bZIP63 with a c-
1626 terminal YFP tag (GY9 line) using VIGS. Two week-old plants were infiltrated with the VIGS construct
1627 (*akin10/11*, right) or not (control, left) and two weeks later plants showed a clear phenotype and a
1628 strong reduction in AKIN10 and AKIN11 protein amount. **(A)** Pictures of representative plants
1629 showing stunted growth of *akin10/11* plants, as well as increased anthocyanin accumulation, leaf
1630 wilting and early senescence. **(B)** Western blot of control and *akin10/11* leaf extracts with an
1631 antibody against the phosphorylated T-loop of AMPK (α AMPK-pT172), recognizing both AKIN10 and
1632 AKIN11. Samples marked with an asterisk were used for the Phos-tag gels shown in Figure 5 E. CBB,
1633 Coomassie brilliant blue

1634

1635 **Figure 6 – figure supplement 1. AKIN10 phosphorylates bZIP63 but not GST**

1636 **(A)** In vitro kinase assay with recombinant AKIN10 and GST-tagged bZIP63 or GST as a substrate.
1637 Positions of full length (FL) and N-terminal fragments of bZIP63 are marked by black arrows. The
1638 scheme on the right shows the position of the in vivo phosphorylation sites and the in vitro target
1639 sites of AKIN10 (red asterisk) in GST-bZIP63, as well as the approximate length of the N-terminal
1640 fragments. **(B)** Western blot (α bZIP63-N and -C) of GST-tagged bZIP63, used as substrate for the
1641 kinase assays. The scheme on the right indicates the binding sites of the two antibodies on bZIP63
1642 and the approximate length of the detected fragments.

1643 CBB, Coomassie brilliant blue

1644

1645 **Figure 6 – figure supplement 2. AKIN10 phosphorylates S29, S294, and S300 on bZIP63**

1646 Phos-tag gel western blot (α bZIP63-C) of an in vitro kinase assay with active (wt) and inactive (K/M)
1647 AKIN10 and wt and S/A mutants of GST-tagged bZIP63 as substrate. The scheme on the bottom
1648 shows which of the three AKIN10 target sites can be phosphorylated (P) or are mutated (X). The
1649 scheme on the right indicates the likely phosphorylated sites for each band.

1650 **Figure 6 – figure supplement 3. The AKIN10 target sites and S160 in the bZIP domain have highly
1651 conserved**

1652 **(A) and (B)** Sequence conservation of bZIP63. Sequences of bZIP63 homologues from eight species
1653 were aligned with ClustalΩ. **(A)** Conservation of non-AKIN10 target sites. The scheme on top indicates
1654 the positions of the in vivo phosphorylation and AKIN10 target sites on bZIP63. The histogram below
1655 shows the sequence identity (red/black) and similarity (grey) to *A. thaliana* bZIP63 in each position.
1656 Red bars represent the in vivo phosphorylation sites. Below, an alignment of the sequences
1657 surrounding the phosphorylation sites not targeted by AKIN10 is depicted. The grey/black shading
1658 indicates the degree of conservation, phosphorylation sites are in red. **(B)** Full sequence alignment.
1659 Species names are abbreviated. The grey/black shading indicates the degree of conservation. Red
1660 arrows indicate the positions of the in vivo phosphorylation sites. Numbers on top indicate the
1661 position in the alignment, numbers on the right indicate the position in each sequence. A consensus
1662 sequence is given below the alignment. The sequence identity matrix is at the bottom right.

1663

1664 **Figure 6 – figure supplement 4. Expression of bZIP63 and AKIN10 in the promoter activation assays**

1665 Exemplary western blot (α HA) of protoplasts co-transformed with *AKIN10* and wt or S/A mutants of
1666 *bZIP63*. CBB, Coomassie brilliant blue

1667

1668 **Figure 6 – source data 1. Sequences of the bZIP63 homologues**

1669 Text file containing the sequences of the bZIP63 homologues used for ClustalΩ alignment in Figure 5B
1670 and Figure 5 – figure supplement 3 in fasta format.

1671

1672 **Figure 7 – figure supplement 1. Characterization of the *bzip63* complementation lines**

1673 **(A) and (B)** Expression of bZIP63 in different plant lines. **(A)** RT-qPCR of *bZIP63* in five week-old plants
1674 after 6h of light (L) or extended night (EN). Bars represent means \pm SD of five biological replicates and
1675 are given as fold change to Ws-2 in L. The 6h L samples were also used for the metabolic profiling

1676 shown in Figures 6E and F and Figure 6 – source data 1. **(B)** Western blot (α GFP) detecting YFP-tagged
1677 bZIP63 in transgenic plant lines after 6h of L and EN. **(C)** Epifluorescence microscopy images of soil-
1678 grown seedlings of the GY9 and GAY14 lines showing expression of bZIP63-YFP. From top to bottom:
1679 leaf epidermis, leaf veins, roots, lateral root tips. Scale bar is 20 μ m. **(D)** Phos-tag gel western blots
1680 (α GFP) showing the in vivo phosphorylation state of bZIP63 in the complementation lines. Proteins
1681 were extracted from seedling cultures after 6h extended night in the presence (+) or absence (-) of
1682 1% sucrose. Recombinant bZIP63-YFP was used as an nonphosphorylated control. Numbered
1683 arrowheads on the right mark the position of each observed bZIP63 band for easy reference with
1684 other figures (see Figure 3 – figure supplement 1 for a comparative image of all Phos-tag western
1685 blots).

1686 CBB, Coomassie brilliant blue

1687

1688 **Figure 7 – figure supplement 2. Complementation of the dark-induced senescence phenotype of**

1689 ***bzip63***

1690 **(A)** Representative leaf series of 4.5 week-old plants before and after nine days in darkness. **(B)**
1691 Barplot of the total green leaf area of the rosette before darkness. Values are the mean \pm SD of four
1692 biological replicates. **(C)** Dotplot of the green leaf area of individual leaves after nine days in
1693 darkness. Values are the mean \pm SD of eight biological replicates. The insertion at the right side
1694 shows the values from leaves 3 – 7 as a barplot (framed by dotted line). Letters indicate significant
1695 differences as determined by ANOVA and pairwise T-testing ($P < 0.05$). The p-values of the F-test for
1696 each leaf are given.

1697

1698 **Figure 7 – source data 1. Excel table containing the relative metabolite levels of the**
1699 **complementation lines and the PCA loadings**

1700 The tab “metabolites normalized to wt” contains the relative metabolite levels, which were used to
1701 calculate the fold changes shown in Figure 7E, as well as P-values from statistical tests. Values are the

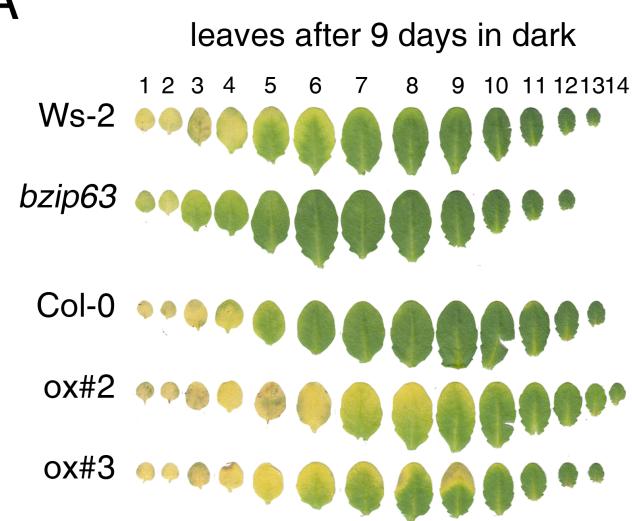
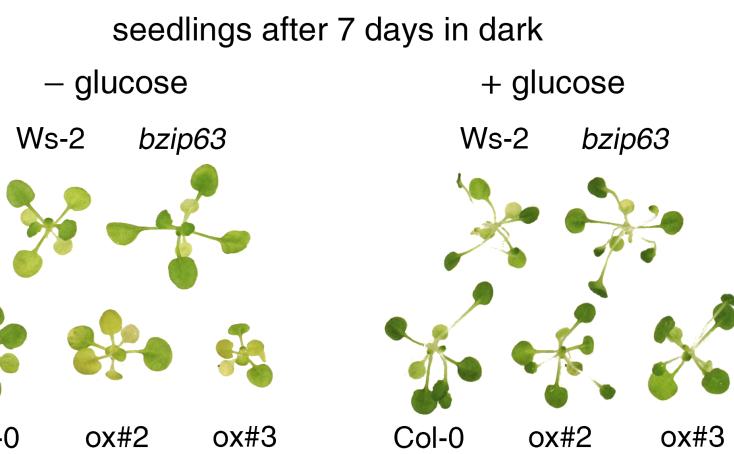
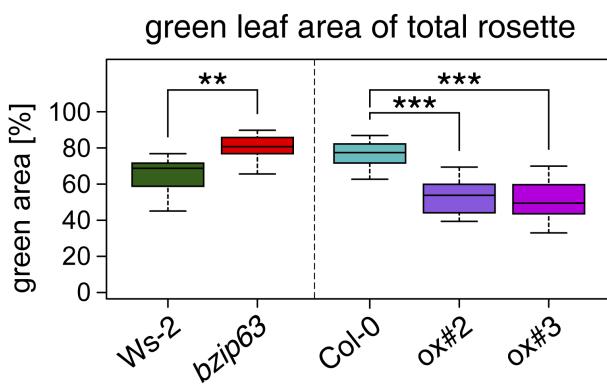
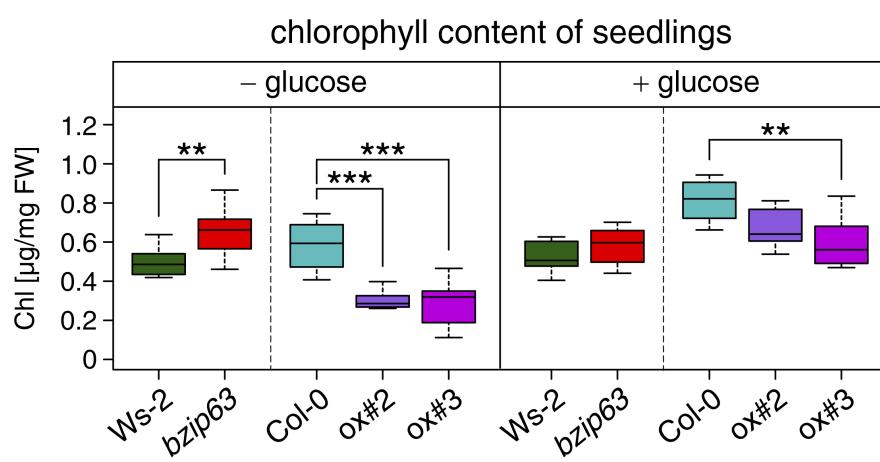
1702 mean \pm SD of five biological replicates given as fold change to the corresponding wt. The tab “PCA -
1703 variance and loadings” contains the SD, proportion of variance, and loadings of all principal
1704 components from the PCA analysis shown in Figure 7F.

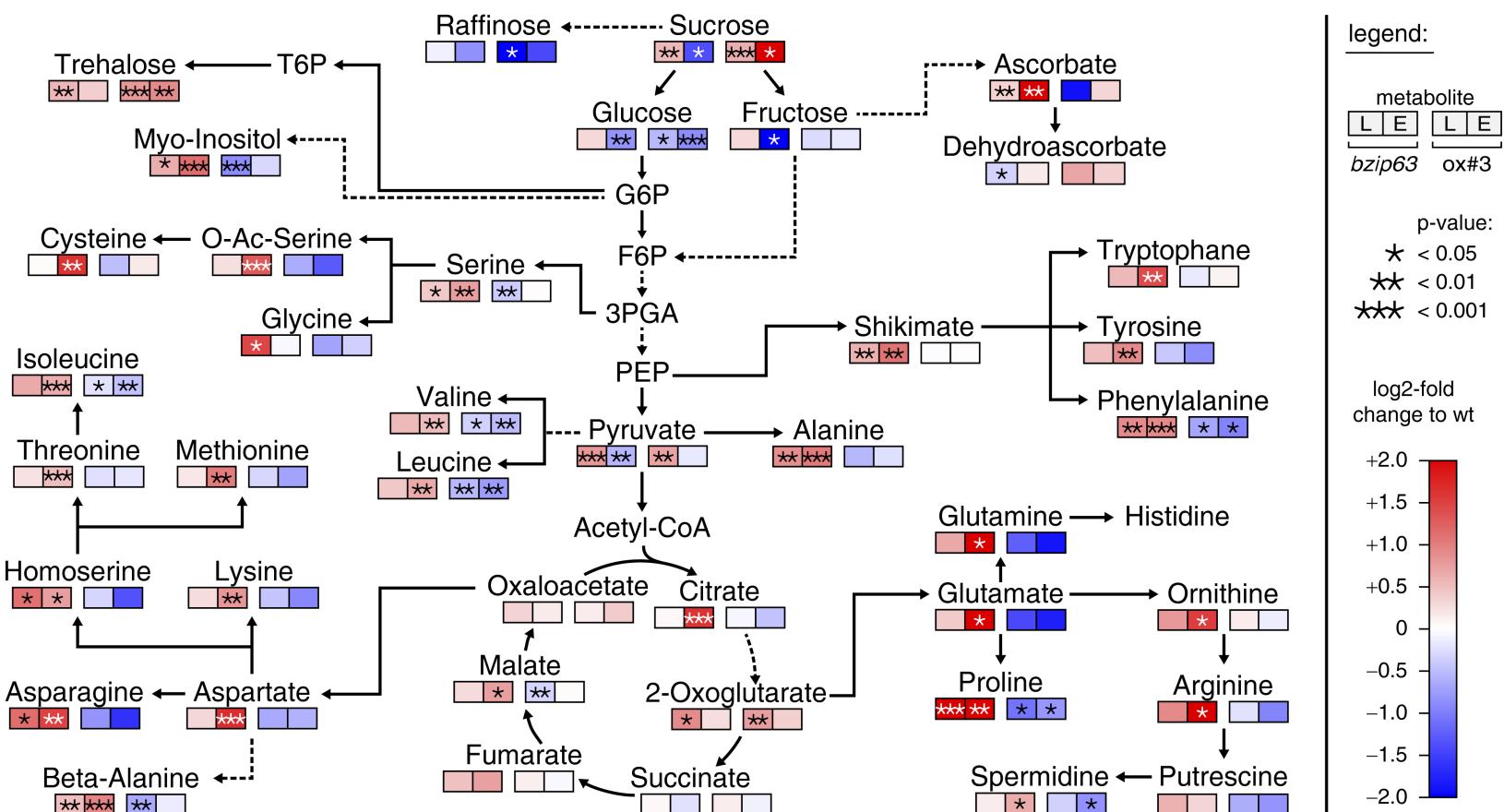
1705

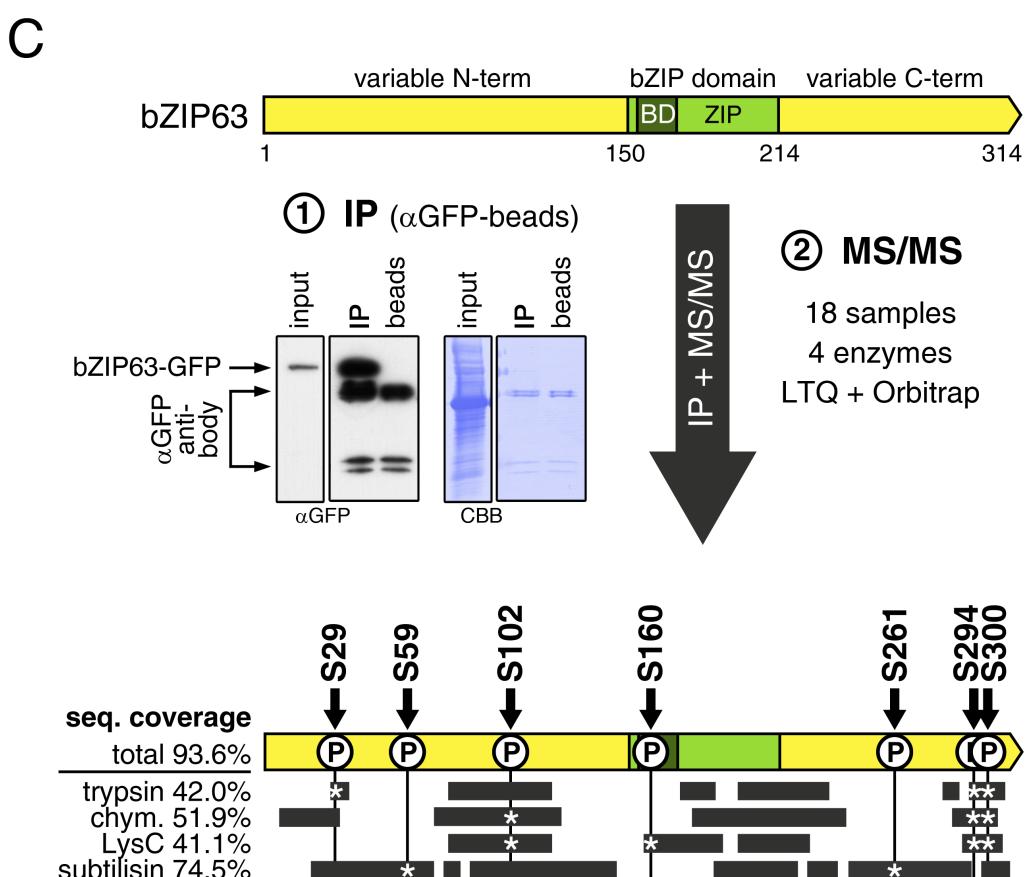
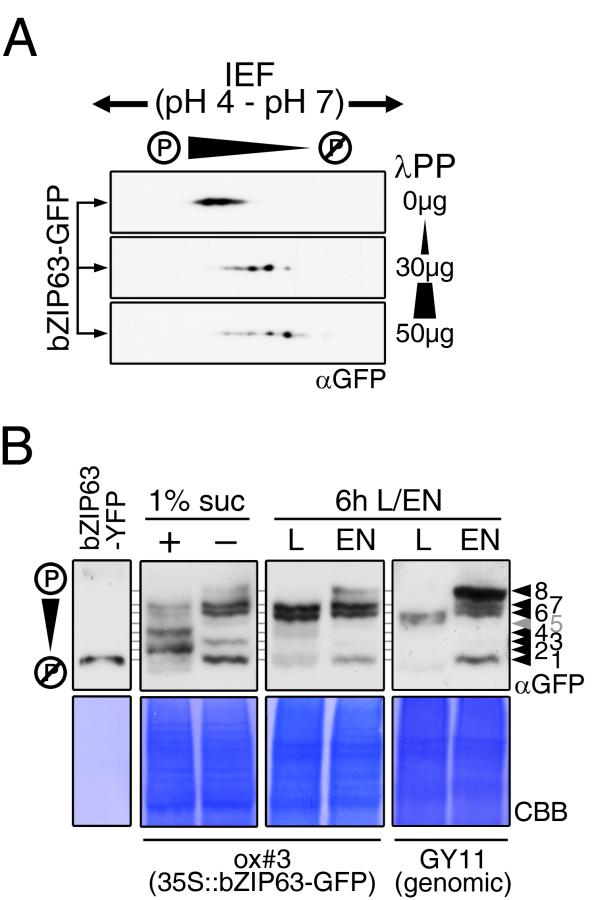
1706 **Figure 8 – figure supplement 1. Western blots and controls for the protoplast two-hybrid (P2H)**

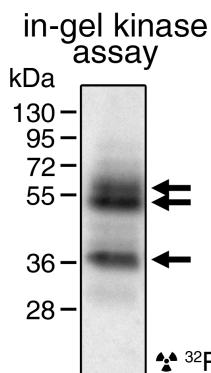
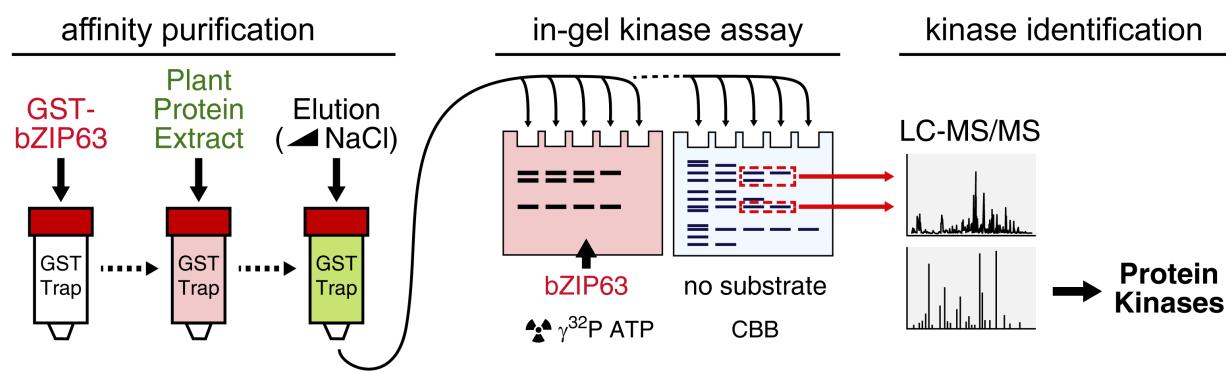
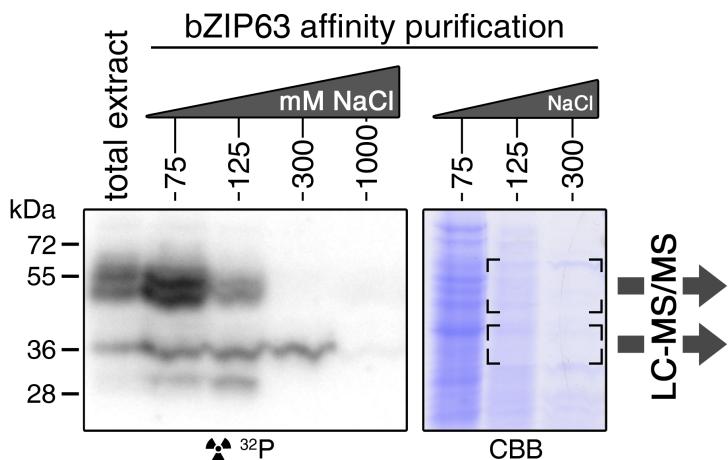
1707 **assays**

1708 **(A)** Western blot showing the expression of AD (activation domain)-bZIPs and AKIN10 (α HA) and BD
1709 (DNA binding domain)-bZIP63 (α BD) in the P2H assay in Figure 8A. **(B)** Exemplary western blot
1710 showing the expression of BD-bZIP63 in the P2H assays in Figure 8B.





1711 CBB, Coomassie brilliant blue

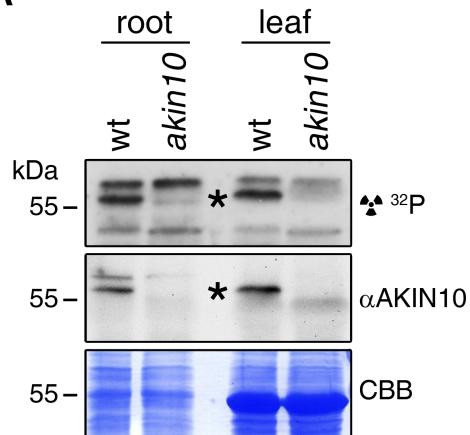

1712

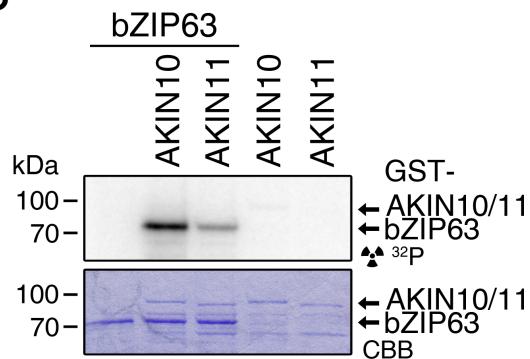


1713 **Figure 8 – figure supplement 2. SnAK2 does not phosphorylate bZIP63 or the S1 class bZIPs**




1714 In vitro kinase assay of bZIP63, 1, 2, 11, 44, and 53 with SnAK2.

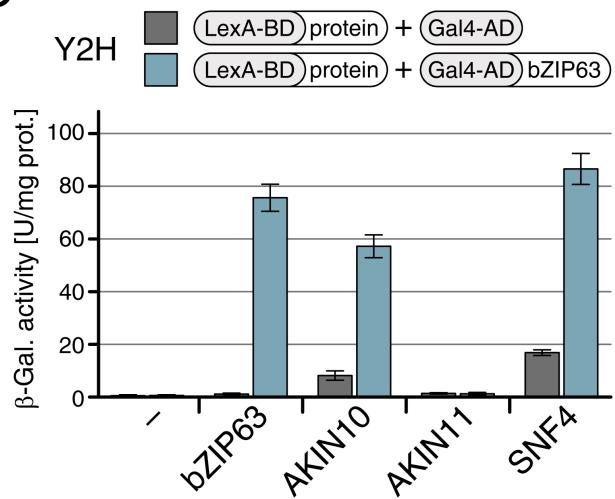
1715 CBB, Coomassie brilliant blue

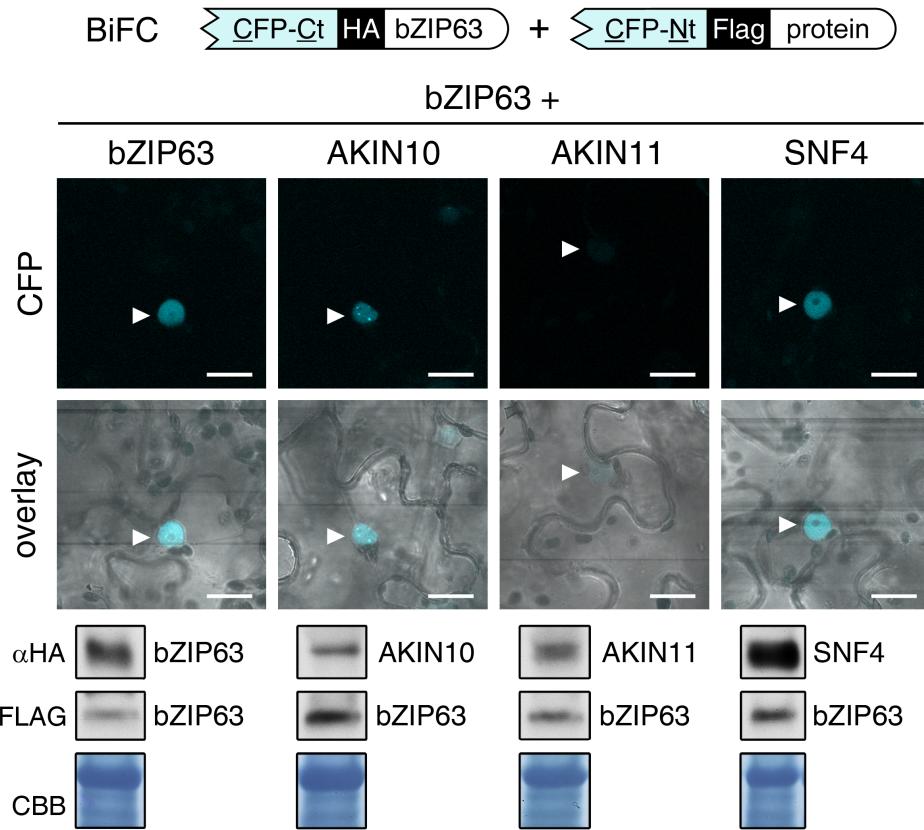
A**C****B****D**

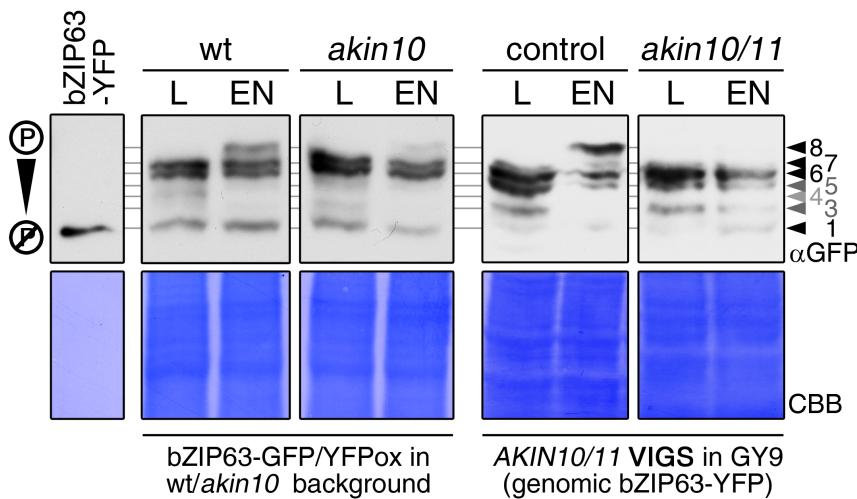


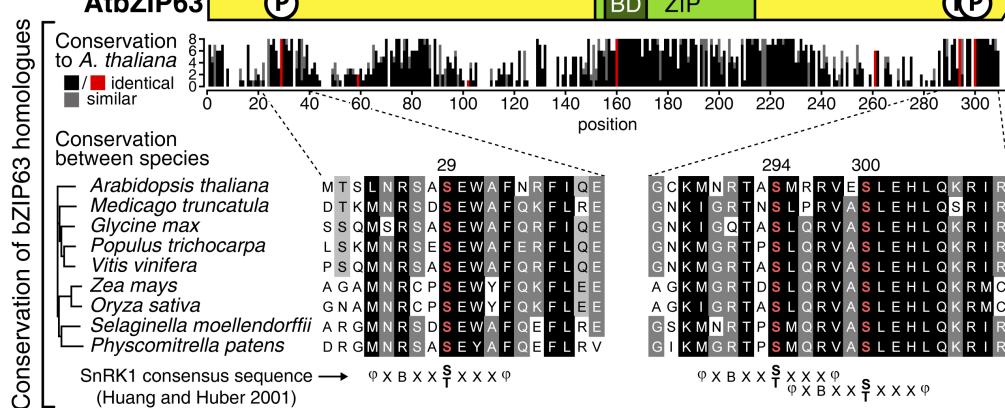
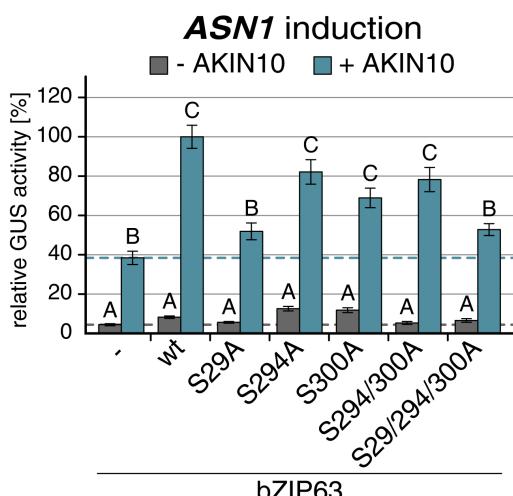
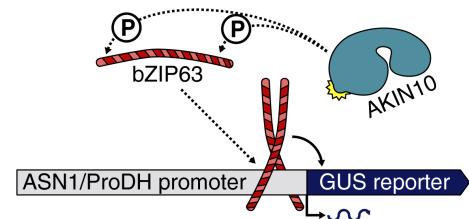
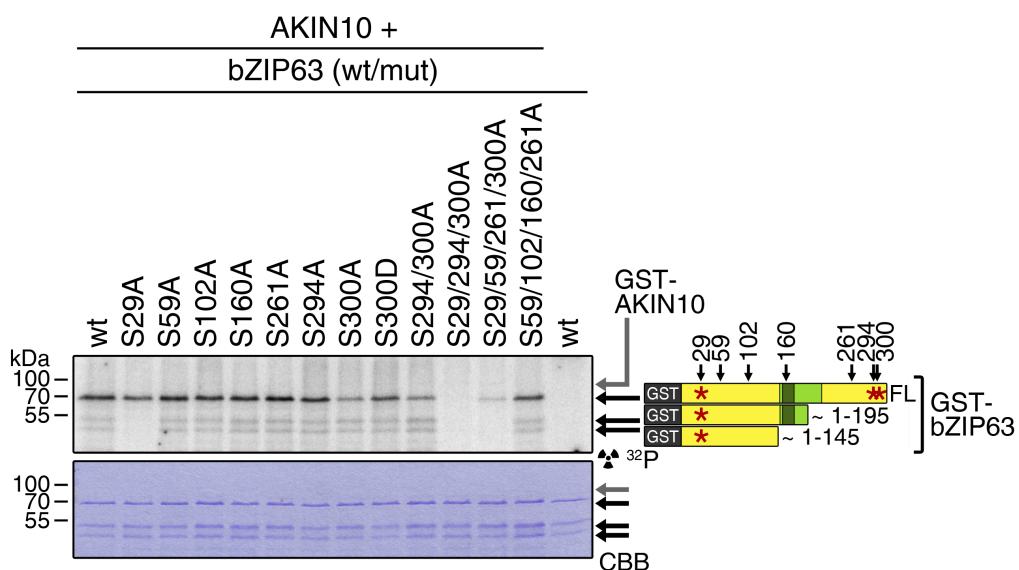

A**B****C**

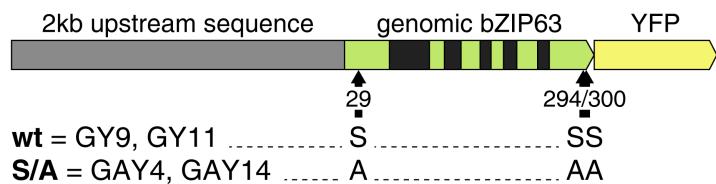
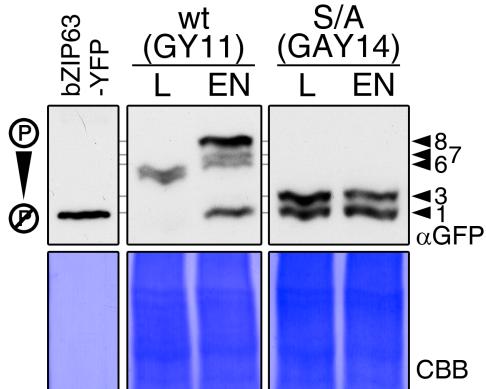
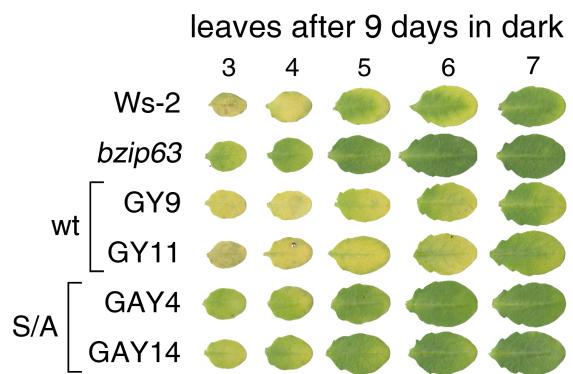
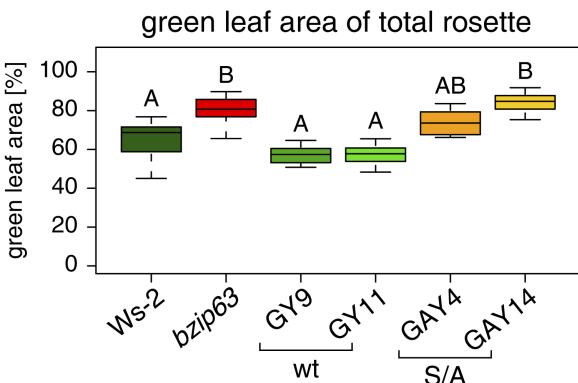
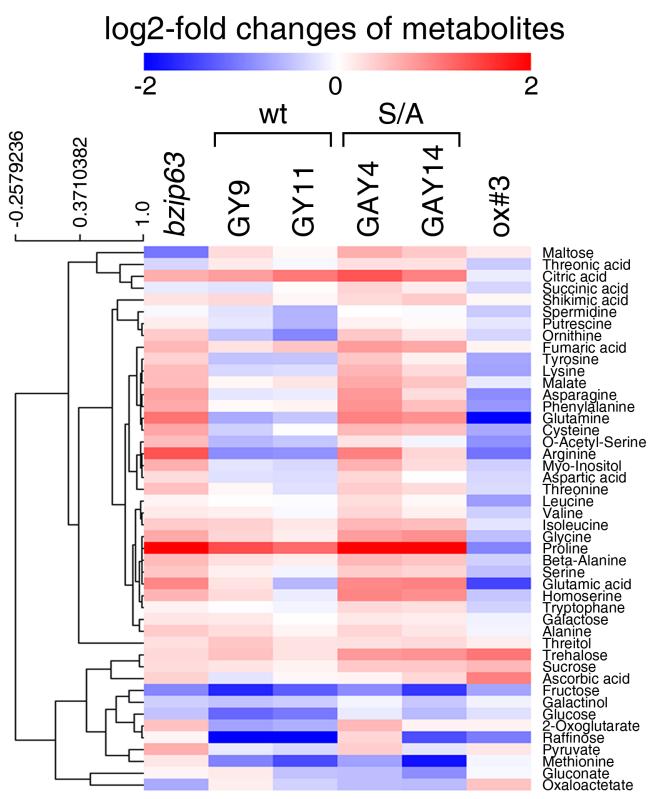
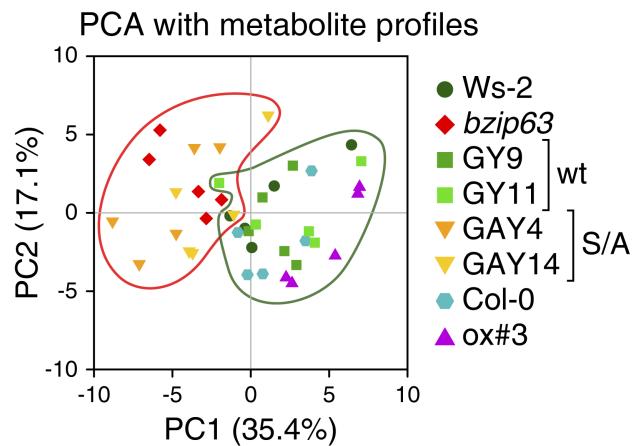
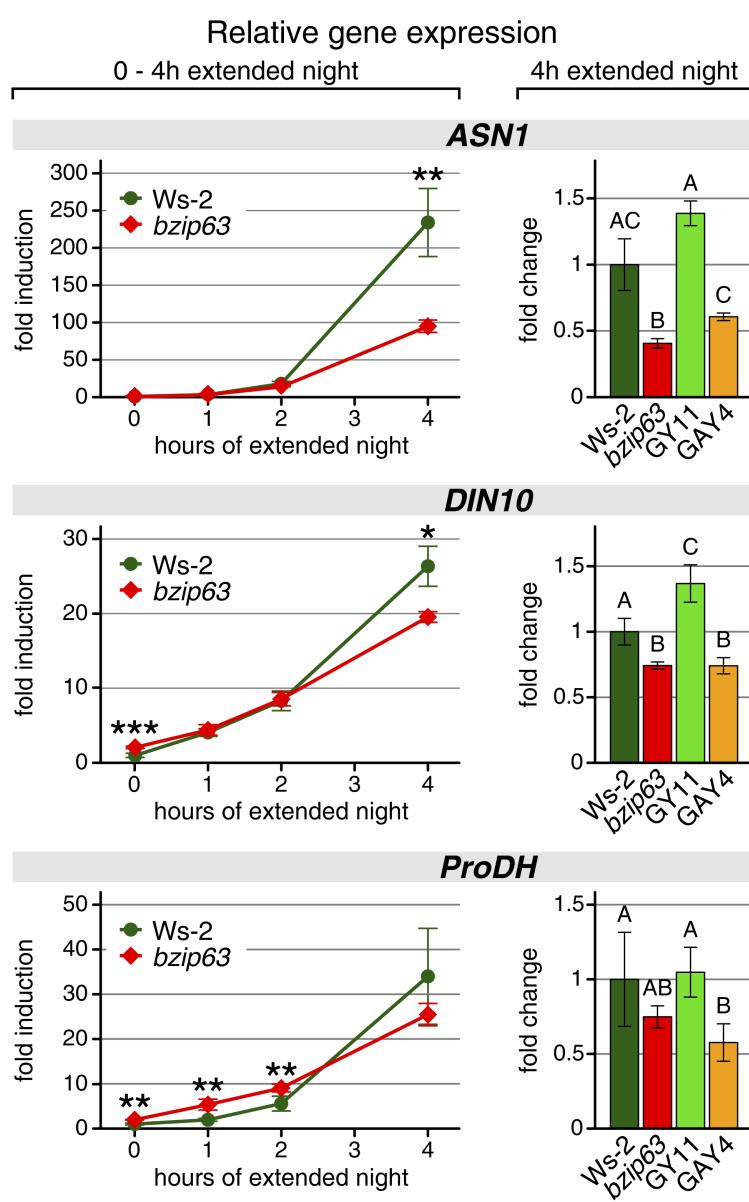
Kinase family	Kinase	AGI	MW [kDa]	times found
SnRK1	AKIN10	At3g01090	58/61	9
	AKIN11	At3g29160	59/41	8
	SNF4*	At1g09020	53/43	9
CDPKs	CPK3	At4g23650	59	3
CKII	CKA1	At5g67380	48/44	8
	CKA2	At3g50000	47	10
	CKB1*	At5g47080	32/29/28	7
other	CKL2	At1g72710	52	2


A

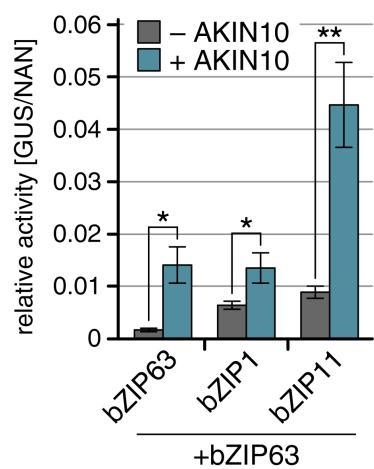
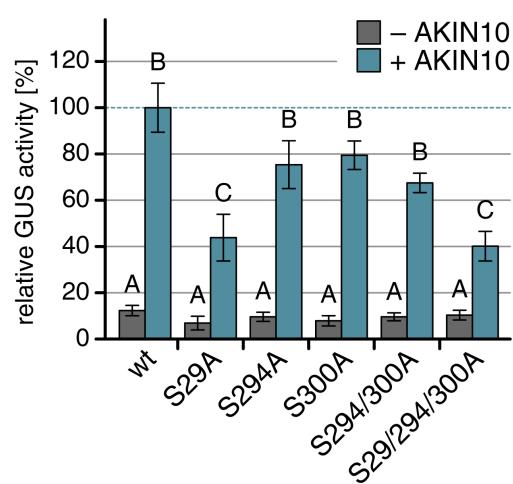
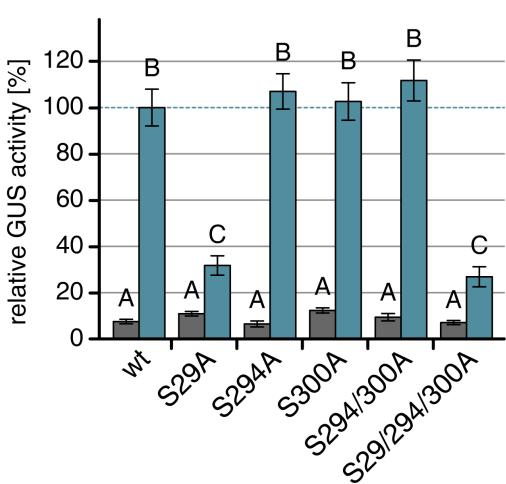
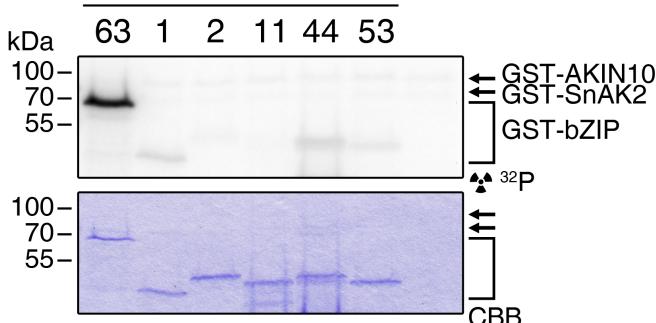
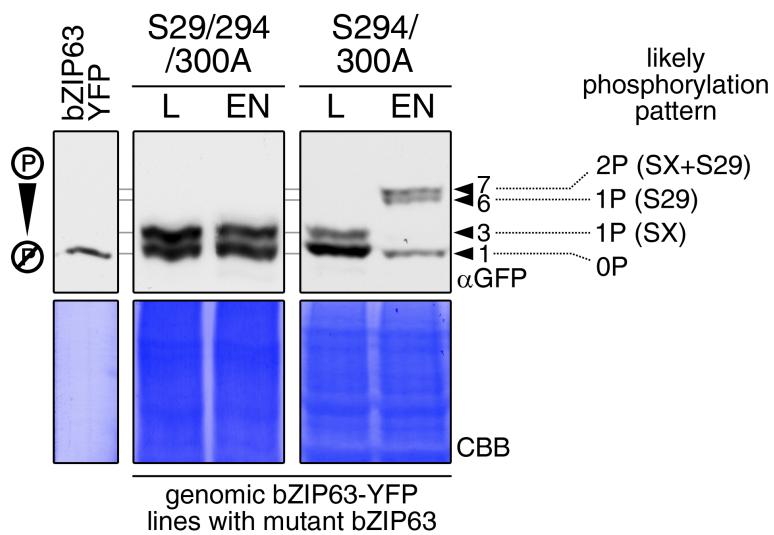

B

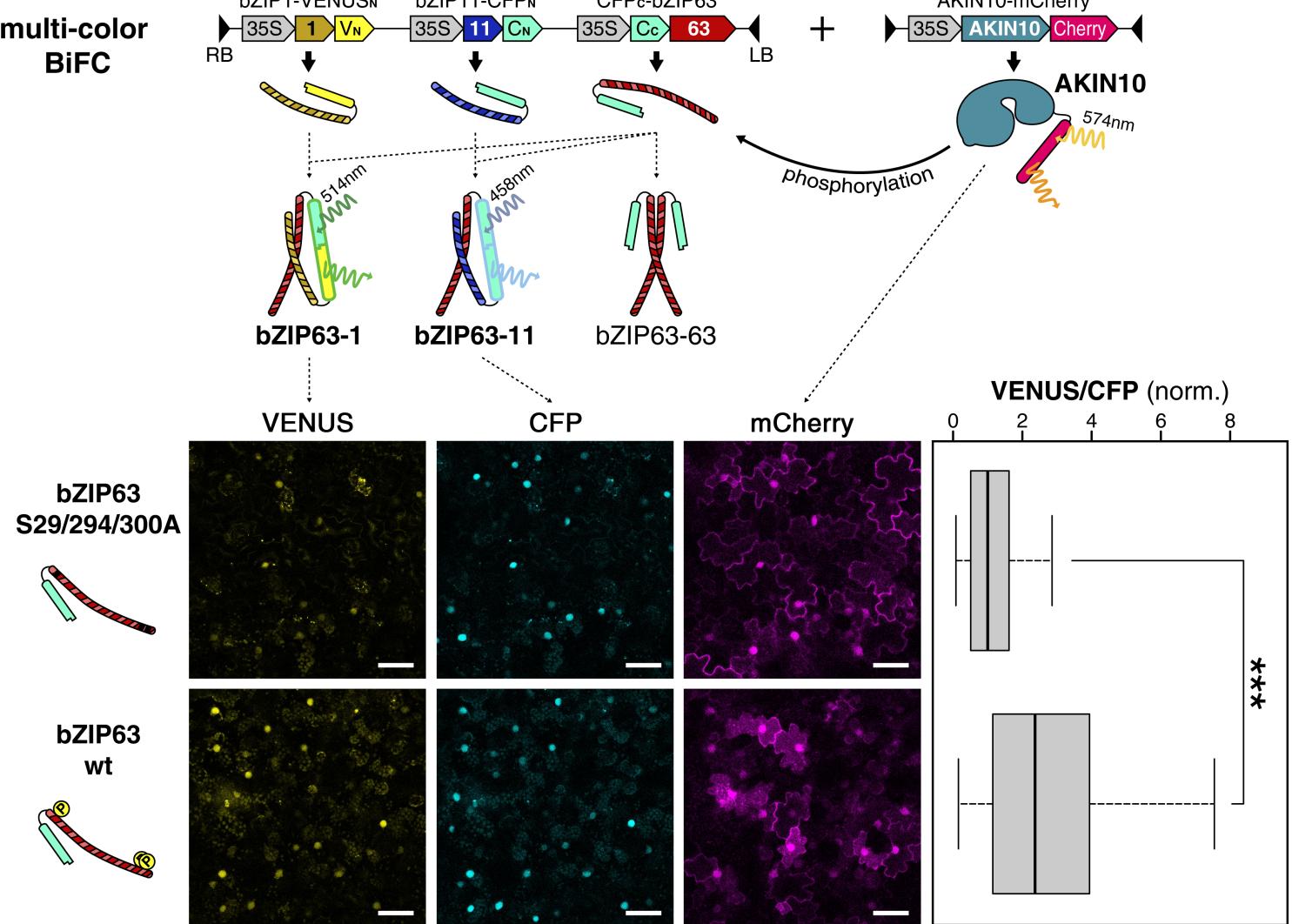

C

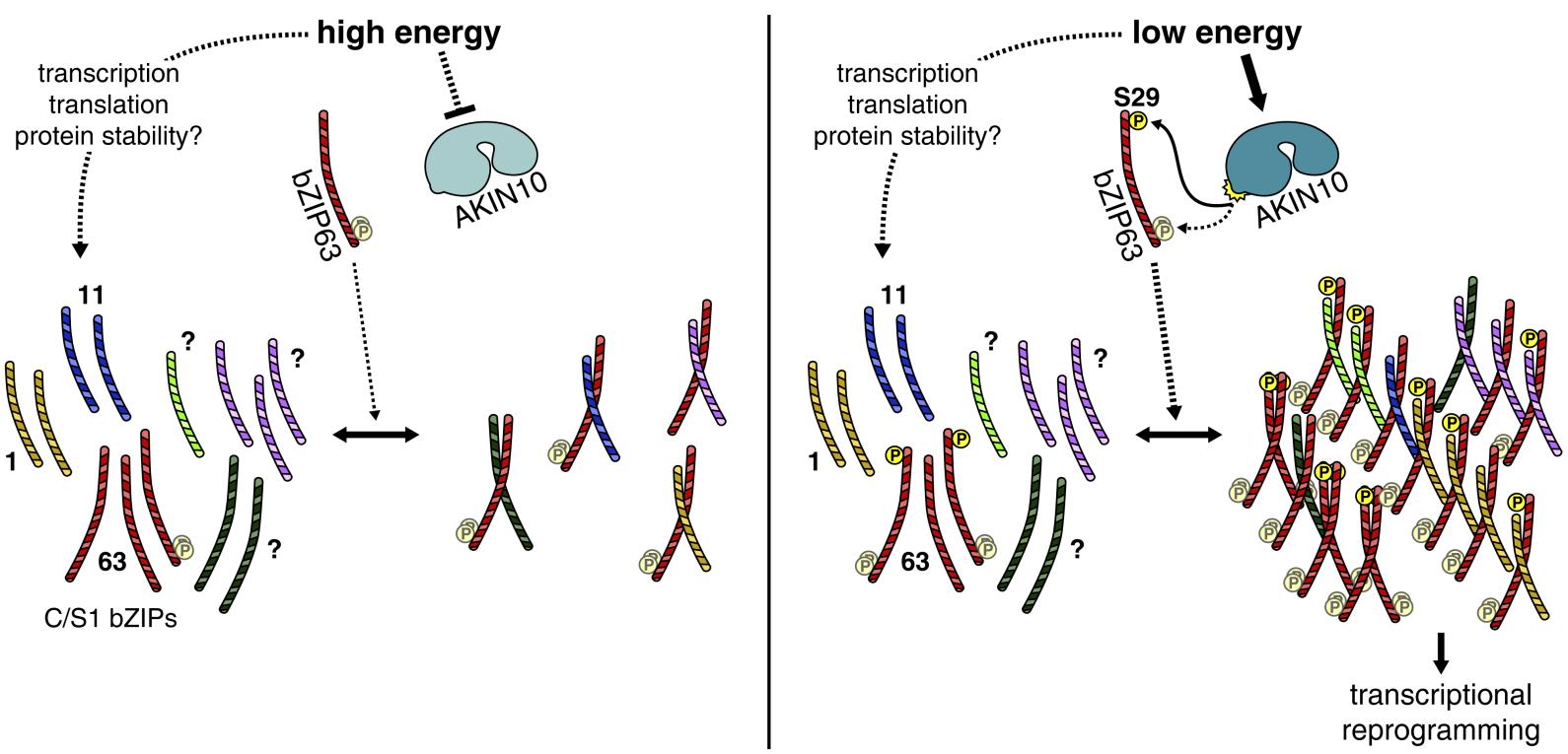







D

E

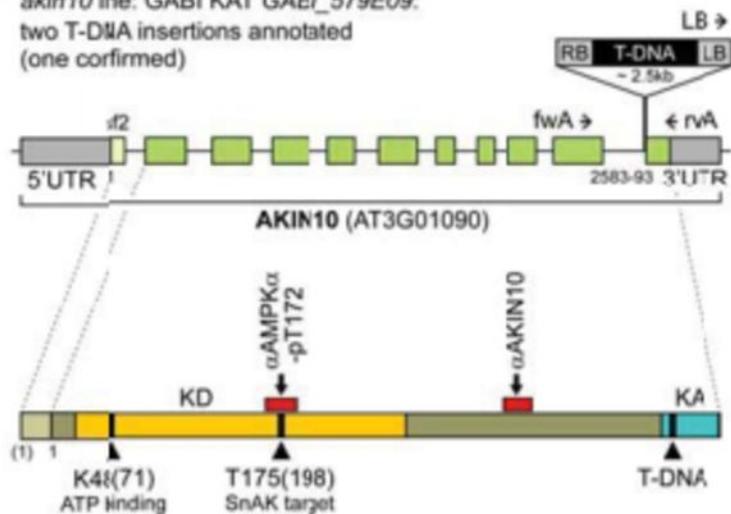
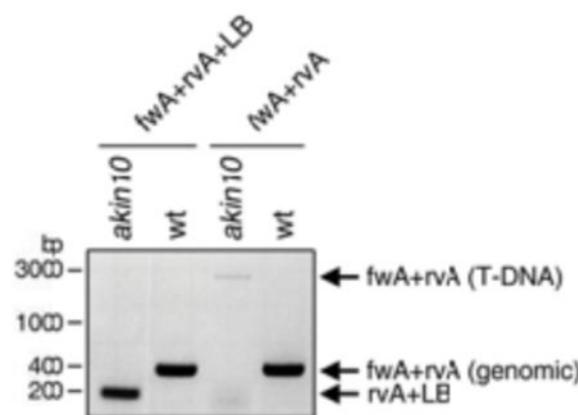
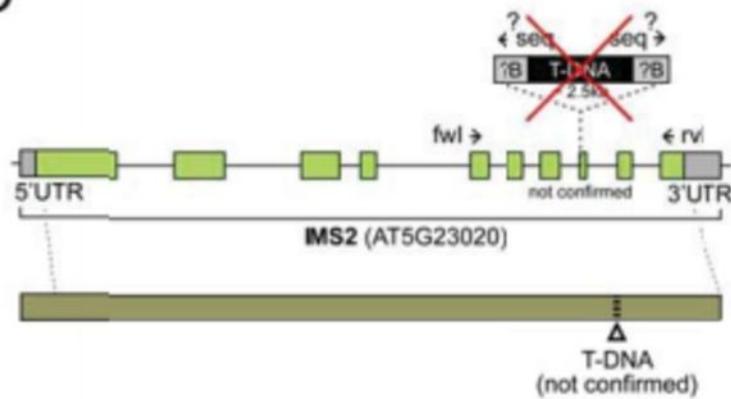
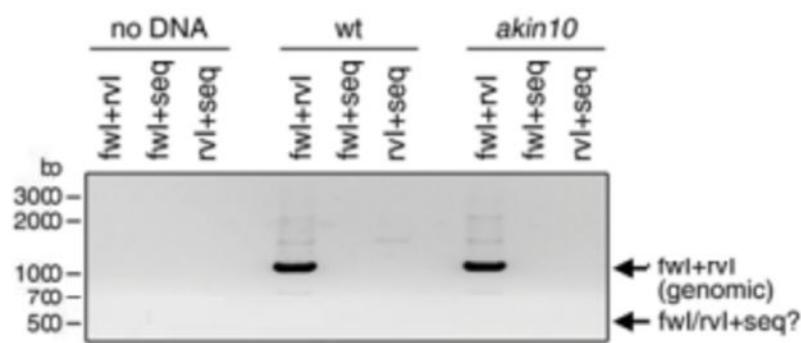
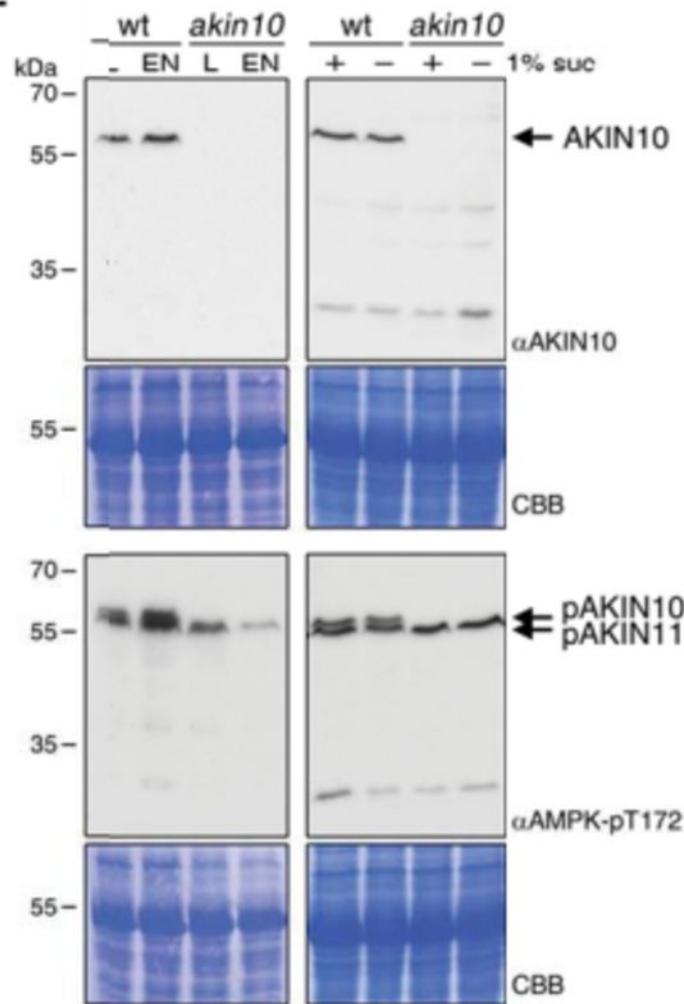
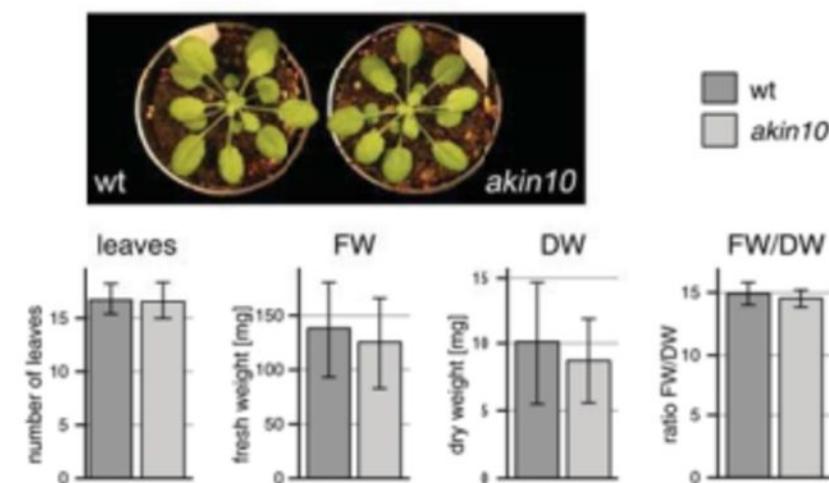
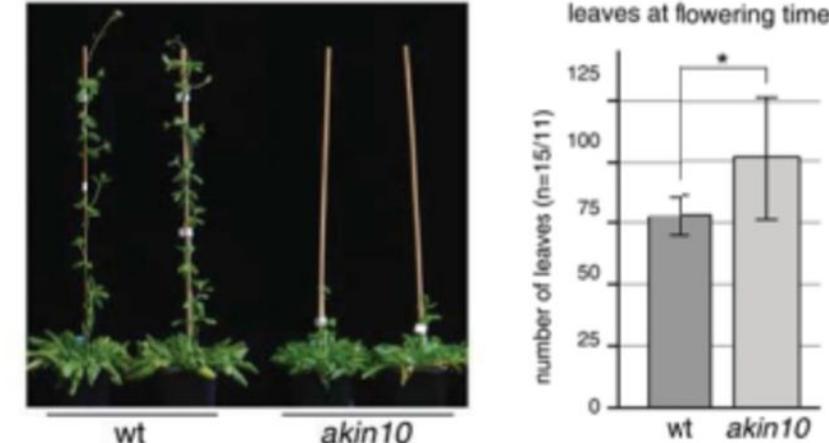

Aconstructs for complementation of *bzip63* (GY/GAY)**B****C****D****E****F****G**

A**P2H assay**

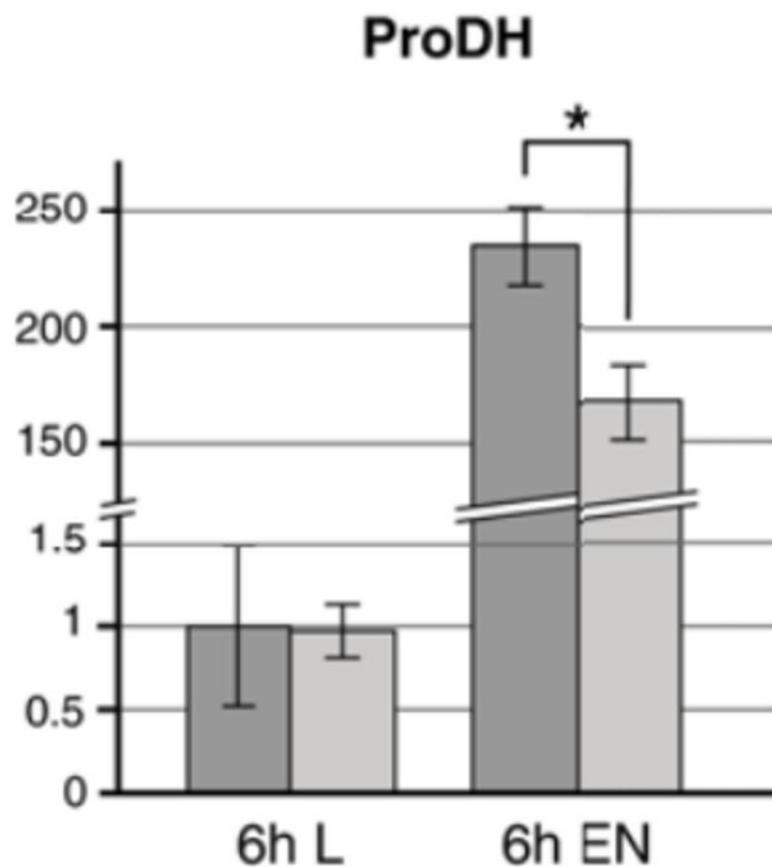
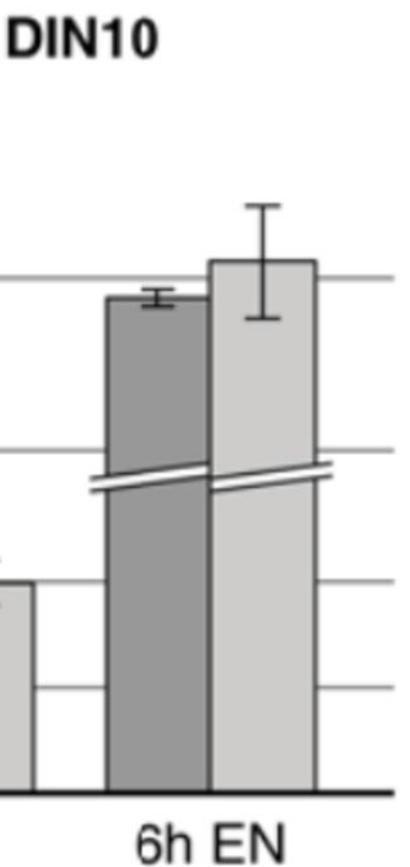
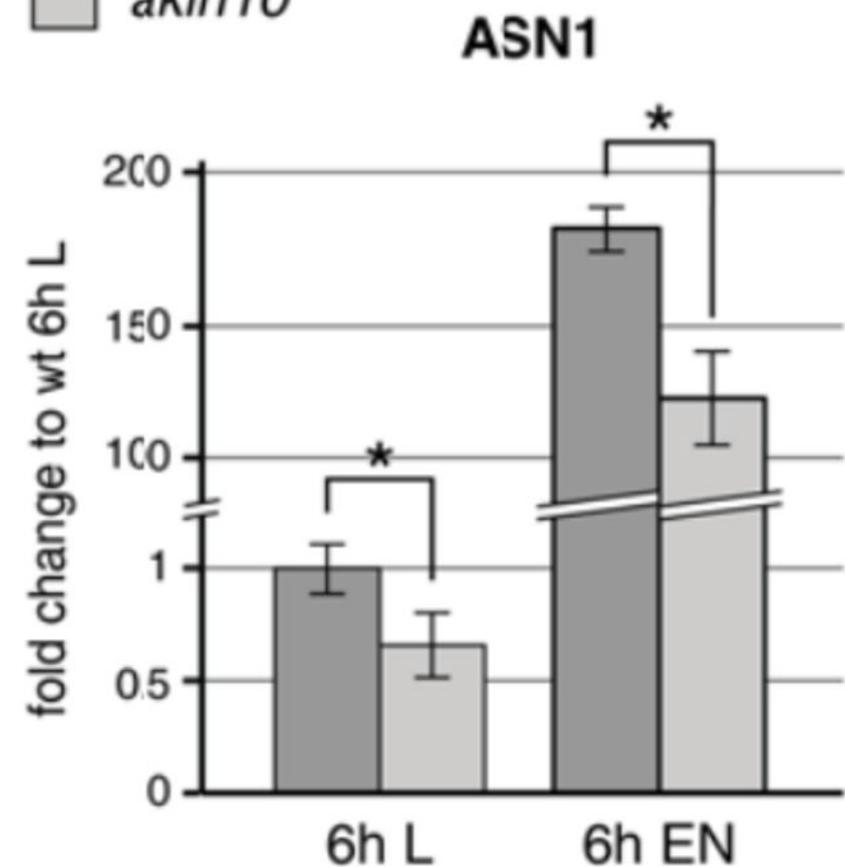

(Gal4-AD) bZIP + (Gal4-BD) bZIP63

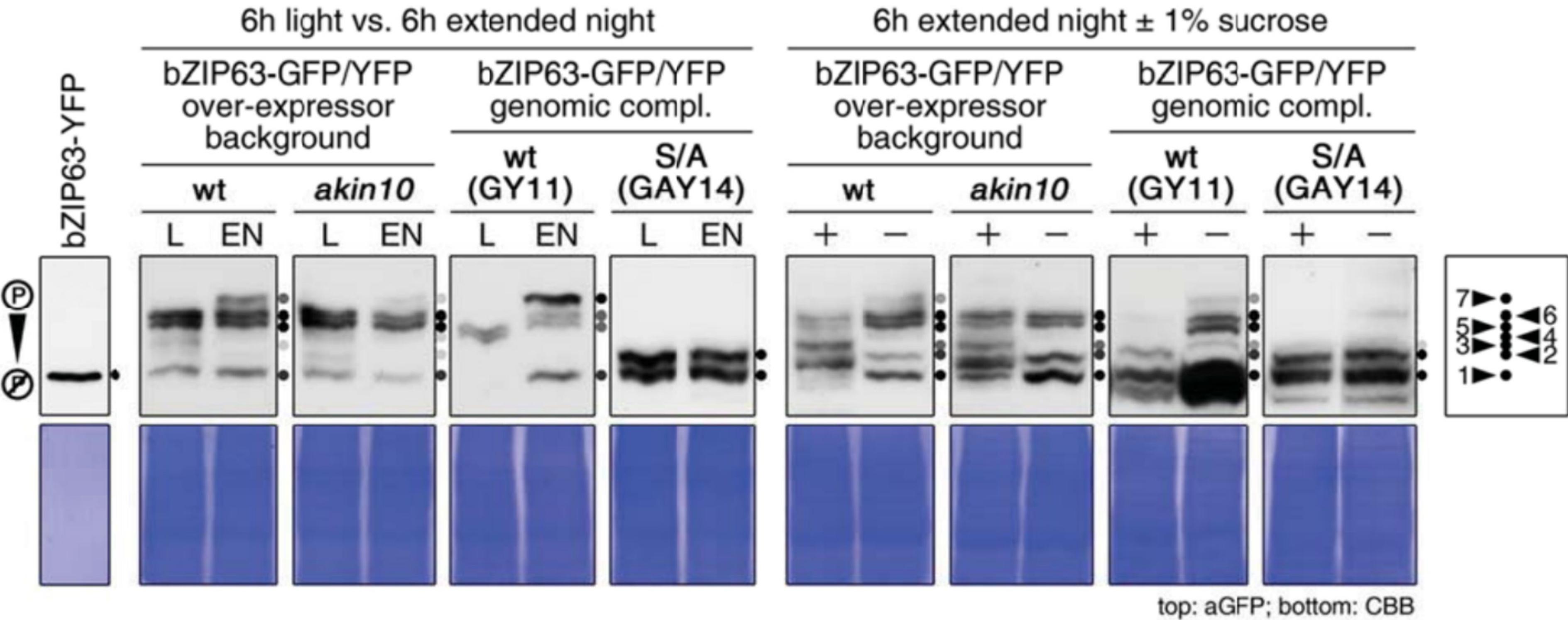
B**bZIP63_{wt} + bZIP63_{wt/mut}****bZIP11 + bZIP63_{wt/mut}****C****AKIN10 + SnAK2****bZIP****D**

A

B


A

akin10 line: GABI KAT GAEI_579E09:
two T-DNA insertions annotated
(one confirmed)

B**C****D****E****F****G**

wt
akin10

