Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function

  1. Rui Yang
  2. Dario Lirussi
  3. Tina M Thornton
  4. Dawn M Jelley-Gibbs
  5. Sean A Diehl
  6. Laure K Case
  7. Muniswamy Madesh
  8. Douglas J Taatjes
  9. Cory Teuscher
  10. Laura Haynes
  11. Mercedes Rincón  Is a corresponding author
  1. University of Vermont, United States
  2. Helmholtz Center for Infection Research, Germany
  3. Taconic, United States
  4. Temple University, United States
  5. Trudeau Institute, United States

Abstract

IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells. Mitochondrial hyperpolarization caused by IL-6 is uncoupled from the production of ATP by oxidative phosphorylation. However, it is a mechanism to raise the levels of mitochondrial Ca2+ late during activation of CD4 cells. Increased levels of mitochondrial Ca2+ in the presence of IL-6 are used to prolong Il4 and Il21 expression in effector CD4 cells. Thus, the effect of IL-6 on mitochondrial membrane potential and mitochondrial Ca2+ is an alternative pathway by which IL-6 regulates effector function of CD4 cells and it could contribute to the pathogenesis of inflammatory diseases.

Article and author information

Author details

  1. Rui Yang

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dario Lirussi

    Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Tina M Thornton

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dawn M Jelley-Gibbs

    Taconic, Germantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean A Diehl

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Laure K Case

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Muniswamy Madesh

    Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas J Taatjes

    Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Cory Teuscher

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Laura Haynes

    Trudeau Institute, Saranac lake, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mercedes Rincón

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    For correspondence
    mrincon@uvm.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All procedures performed on the mice were approved by the Institutional Animal Care and Use Committee (IACUC) of University of Vermont using protocols #12-032 (Rincon), #11-024 (Teuscher) and by the IACUC of Trudeau Institute using protocol #03-005 (Haynes).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,534
    views
  • 1,025
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Yang
  2. Dario Lirussi
  3. Tina M Thornton
  4. Dawn M Jelley-Gibbs
  5. Sean A Diehl
  6. Laure K Case
  7. Muniswamy Madesh
  8. Douglas J Taatjes
  9. Cory Teuscher
  10. Laura Haynes
  11. Mercedes Rincón
(2015)
Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function
eLife 4:e06376.
https://doi.org/10.7554/eLife.06376

Share this article

https://doi.org/10.7554/eLife.06376

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Angela L Rachubinski, Elizabeth Wallace ... Joaquín M Espinosa
    Research Article

    Background:

    Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

    Methods:

    We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping. We also report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints.

    Results:

    We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations in DS. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. Analysis of the first 10 participants to complete 16 weeks of tofacitinib treatment shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression.

    Conclusions:

    JAK inhibition is a valid strategy to treat autoimmune conditions in DS. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS.

    Funding:

    NIAMS, Global Down Syndrome Foundation.

    Clinical trial number:

    NCT04246372.

    1. Immunology and Inflammation
    2. Medicine
    Yong Jin, Jiayu Xing ... Qingsheng Yu
    Research Article

    Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson’s disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.