Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function

  1. Rui Yang
  2. Dario Lirussi
  3. Tina M Thornton
  4. Dawn M Jelley-Gibbs
  5. Sean A Diehl
  6. Laure K Case
  7. Muniswamy Madesh
  8. Douglas J Taatjes
  9. Cory Teuscher
  10. Laura Haynes
  11. Mercedes Rincón  Is a corresponding author
  1. University of Vermont, United States
  2. Helmholtz Center for Infection Research, Germany
  3. Taconic, United States
  4. Temple University, United States
  5. Trudeau Institute, United States

Abstract

IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells. Mitochondrial hyperpolarization caused by IL-6 is uncoupled from the production of ATP by oxidative phosphorylation. However, it is a mechanism to raise the levels of mitochondrial Ca2+ late during activation of CD4 cells. Increased levels of mitochondrial Ca2+ in the presence of IL-6 are used to prolong Il4 and Il21 expression in effector CD4 cells. Thus, the effect of IL-6 on mitochondrial membrane potential and mitochondrial Ca2+ is an alternative pathway by which IL-6 regulates effector function of CD4 cells and it could contribute to the pathogenesis of inflammatory diseases.

Article and author information

Author details

  1. Rui Yang

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dario Lirussi

    Department of Vaccinology and Applied Microbiology, Helmholtz Center for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Tina M Thornton

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dawn M Jelley-Gibbs

    Taconic, Germantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sean A Diehl

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Laure K Case

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Muniswamy Madesh

    Department of Medical Genetics and Molecular Biochemistry, Temple University, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas J Taatjes

    Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Cory Teuscher

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Laura Haynes

    Trudeau Institute, Saranac lake, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mercedes Rincón

    Department of Medicine, Immunobiology Program, University of Vermont, Burlington, United States
    For correspondence
    mrincon@uvm.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ruslan Medzhitov, Howard Hughes Medical Institute, Yale University School of Medicine, United States

Ethics

Animal experimentation: All procedures performed on the mice were approved by the Institutional Animal Care and Use Committee (IACUC) of University of Vermont using protocols #12-032 (Rincon), #11-024 (Teuscher) and by the IACUC of Trudeau Institute using protocol #03-005 (Haynes).

Version history

  1. Received: January 7, 2015
  2. Accepted: May 13, 2015
  3. Accepted Manuscript published: May 14, 2015 (version 1)
  4. Version of Record published: May 29, 2015 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 5,496
    views
  • 1,003
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Yang
  2. Dario Lirussi
  3. Tina M Thornton
  4. Dawn M Jelley-Gibbs
  5. Sean A Diehl
  6. Laure K Case
  7. Muniswamy Madesh
  8. Douglas J Taatjes
  9. Cory Teuscher
  10. Laura Haynes
  11. Mercedes Rincón
(2015)
Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function
eLife 4:e06376.
https://doi.org/10.7554/eLife.06376

Share this article

https://doi.org/10.7554/eLife.06376

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.