Abstract

Perforin-2 (MPEG1) is a pore-forming, antibacterial protein with broad-spectrum activity. Perforin-2 is expressed constitutively in phagocytes and inducibly in parenchymal, tissue-forming cells. In vitro, Perforin-2 prevents the intracellular replication and proliferation of bacterial pathogens in these cells. Perforin-2 knockout mice are unable to control the systemic dissemination of methicillin-resistant Staphylococcus aureus (MRSA) or Salmonella typhimurium and perish shortly after epicutaneous or orogastric infection respectively. In contrast, Perforin-2-sufficient littermates clear the infection. Perforin-2 is a transmembrane protein of cytosolic vesicles -derived from multiple organelles- that translocate to and fuse with bacterium containing vesicles. Subsequently, Perforin-2 polymerizes and forms large clusters of 100Å pores in the bacterial surface with Perforin-2 cleavage products present in bacteria. Perforin-2 is also required for the bactericidal activity of reactive oxygen and nitrogen species and hydrolytic enzymes. Perforin-2 constitutes a novel and apparently essential bactericidal effector molecule of the innate immune system.

Article and author information

Author details

  1. Ryan M McCormack

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    Ryan M McCormack, This author is an inventor of patents used in the study and stand to gain royalties from future commercialization..
  2. Lesley R de Armas

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    Lesley R de Armas, This author is an inventor of patents used in the study and stand to gain royalties from future commercialization..
  3. Motoaki Shiratsuchi

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  4. Desiree G Fiorentino

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  5. Melissa L Olsson

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  6. Mathias G Lichtenheld

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  7. Alejo Morales

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  8. Kirill Lyapichev

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    Kirill Lyapichev, This author is an inventor of patents used in the study and stand to gain royalties from future commercialization..
  9. Louis E Gonzalez

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  10. Natasa Strbo

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  11. Neelima Sukumar

    Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  12. Olivera Stojadinovic

    Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  13. Gregory V Plano

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  14. George P Munson

    Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  15. Marjana Tomic-Canic

    Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  16. Robert S Kirsner

    Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    No competing interests declared.
  17. David G Russell

    Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  18. Eckhard R Podack

    Microbiology and Immunology, U. Miami, School of Medicine, Miami, United States
    For correspondence
    epodack@miami.edu
    Competing interests
    Eckhard R Podack, This author is an inventor of patents used in the study and stand to gain royalties from future commercialization..

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#13-233 and #12-259) of the University of Miami Miller School of Medicine.

Copyright

© 2015, McCormack et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,839
    views
  • 903
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryan M McCormack
  2. Lesley R de Armas
  3. Motoaki Shiratsuchi
  4. Desiree G Fiorentino
  5. Melissa L Olsson
  6. Mathias G Lichtenheld
  7. Alejo Morales
  8. Kirill Lyapichev
  9. Louis E Gonzalez
  10. Natasa Strbo
  11. Neelima Sukumar
  12. Olivera Stojadinovic
  13. Gregory V Plano
  14. George P Munson
  15. Marjana Tomic-Canic
  16. Robert S Kirsner
  17. David G Russell
  18. Eckhard R Podack
(2015)
Perforin-2 is essential for intracellular defense of parenchymal cells and phagocytes against pathogenic bacteria
eLife 4:e06508.
https://doi.org/10.7554/eLife.06508

Share this article

https://doi.org/10.7554/eLife.06508

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.