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Abstract Wnt signalling regulates multiple processes including angiogenesis, inflammation, and

tumorigenesis. Norrin (Norrie Disease Protein) is a cystine-knot like growth factor. Although

unrelated to Wnt, Norrin activates the Wnt/β-catenin pathway. Signal complex formation involves

Frizzled4 (Fz4), low-density lipoprotein receptor related protein 5/6 (Lrp5/6), Tetraspanin-12 and

glycosaminoglycans (GAGs). Here, we report crystallographic and small-angle X-ray scattering

analyses of Norrin in complex with Fz4 cysteine-rich domain (Fz4CRD), of this complex bound with

GAG analogues, and of unliganded Norrin and Fz4CRD. Our structural, biophysical and cellular data,

map Fz4 and putative Lrp5/6 binding sites to distinct patches on Norrin, and reveal a GAG binding

site spanning Norrin and Fz4CRD. These results explain numerous disease-associated mutations.

Comparison with the Xenopus Wnt8–mouse Fz8CRD complex reveals Norrin mimics Wnt for Frizzled

recognition. The production and characterization of wild-type and mutant Norrins reported here

open new avenues for the development of therapeutics to combat abnormal Norrin/Wnt signalling.

DOI: 10.7554/eLife.06554.001

Introduction
Wnt morphogens, secreted cysteine-rich palmitoleoylated glycoproteins, play critical roles in cell-fate

determination, tissue homeostasis and embryonic development (Clevers and Nusse, 2012;Malinauskas

and Jones, 2014). Aberrant Wnt signalling leads to cancer, osteoporosis and degenerative illnesses

(Anastas and Moon, 2013). Norrie Disease Protein (NDP) gene encodes Norrin (Berger et al., 1992;

Chen et al., 1992), a secreted cystine-knot like growth factor, distinct from the lipid-modified Wnt

(Willert et al., 2003). Norrin activates the canonical Wnt/β-catenin pathway by interaction with Wnt

receptor Frizzled4 cysteine-rich domain (Fz4CRD), and co-receptor low density lipoprotein receptor

related protein 5/6 ectodomain (Lrp5/6ECD), plus the auxiliary four-pass transmembrane protein

Tetraspanin-12 (Tspan-12) and glycosaminoglycans (GAGs) of heparan sulfate proteoglycans (HSPGs)

(Xu et al., 2004; Junge et al., 2009; Ke et al., 2013).

The Norrin mediated pathway maintains the blood-retina and blood-brain barriers (Wang et al.,

2012) and regulates angiogenesis in the cochlea and uterus (Rehm et al., 2002; Ye et al., 2011) as well

as neuroprotective effects on retinal neurons (Ohlmann et al., 2010; Seitz et al., 2010). Mutations in

theNDP gene and the receptor genes, FZ4, LRP5, and TSPAN-12, have been identified for vitreoretinal

diseases including Norrie Disease, Familial Exudative Vitreoretinopathy, and Coats’ Disease

(Nikopoulos et al., 2010; Ye et al., 2010; Ohlmann and Tamm, 2012). NDP, FZ4, LRP5, and

TSPAN-12 knock-out mice experiments further support the notion that dysfunctional Norrin signalling

results in impaired retinal angiogenesis (Richter et al., 1998; Kato et al., 2002; Robitaille et al., 2002;

Xu et al., 2004; Junge et al., 2009). Unlike Wnts which have promiscuous interactions with Fz

receptors, Norrin specifically binds to Fz4CRD, but not to the 14 other CRDs of Fz and secreted
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Frizzled-related protein (sFRP) family members (Hsieh et al., 1999; Smallwood et al., 2007). Similar to

Wnt, Norrin (1) binds to Lrp5/6ECD (Ke et al., 2013); (2) interacts with HSPGs and shows limited spatial

diffusion (Perez-Vilar and Hill, 1997; Xu et al., 2004; Smallwood et al., 2007; Ohlmann et al., 2010).

As well as being a potential target for therapeutic interventions, an understanding of Norrin mediated

signalling will also provide insights into the fundamental features required to trigger canonical Wnt/β-catenin
signalling.

Structural analyses of the extracellular components and interactions mediating Norrin signalling

were considered to be challenging because of the difficulties of generating recombinant Norrin

(Perez-Vilar and Hill, 1997; Shastry and Trese, 2003; Ohlmann et al., 2010). Ke et al. (2013)

reported a refolding method (from Escherichia coli inclusion bodies) to produce active recombinant

Norrin fused with a N-terminal maltose binding protein (MBP-Norrin), an advance that enabled them

to determine the crystal structure of MBP-Norrin. Here, we develop an efficient mammalian cell

expression method to produce active untagged recombinant Norrin and detail the structural and

functional properties of this potential therapeutic agent. Our crystallographic and solution studies

further reveal that dimeric Norrin forms a complex with two copies of monomeric Fz4CRD. Our

molecular level analysis of the Norrin–Fz4CRD complex bound with GAG analogue, in combination

with structure-guided biophysical and cell-based studies, defines the basis for ligand recognition.

Structural comparison with the Xenopus Wnt8 in complex with mouse Fz8CRD (Janda et al., 2012)

shows that Norrin uses its β-strands to mimic a finger-like loop in Wnt for binding to the Fz receptor

CRD. Finally, we note that engineered Norrin mutants resulting from our analyses may be of use as

agents for blocking Wnt receptor activation.

Results

Production of biologically active Norrin
To address the challenge of producing Norrin in large quantities, we screened conditions and constructs

for Norrin expression (Figure 1A). We found that fusion of Norrin to the C-terminus of small ubiquitin-like

eLife digest The cells within an animal need to be able to communicate with each other to

coordinate many complex processes in the body, such as the formation of tissues and organs. One

way in which the cells can communicate is through a pathway called Wnt signalling. Generally, one

cell releases a protein called Wnt, which binds to a receptor protein called Frizzled that sits on the

surface of the same or another cell. This activates a series of events in the cells that can change the

activity of particular genes. Wnt signalling has many roles in animals, and defects in it can contribute

to cancer and other devastating diseases.

Another protein called Norrin can also activate Wnt signalling by binding to Frizzled and another

receptor protein called Lrp5/6. This group or ‘complex’ also includes molecules called glycosami-

noglycans. In humans, mutations in the gene that encodes Norrin can cause a disease in which blood

vessels in the eye fail to form correctly, which can result in blindness. However, it is not clear how

Norrin activates Wnt signalling.

Chang et al. developed a method to produce large quantities of Norrin protein to allow them to

study the structure of the protein. Then, a technique called X-ray crystallography was used to reveal

the three-dimensional structure of Norrin when it is bound to Frizzled. The model reveals that a pair

of Norrin proteins form a complex with two Frizzled proteins and highlights particular areas of the

Norrin protein that interact with Frizzled. Molecules of glycosaminoglycan bind to a site in the

complex that spans both Norrin and Frizzled. The model also predicts that other areas of the Norrin

protein may be involved in binding Lrp5/6.

Chang et al. compared the model to the structure of a Wnt protein bound to Frizzled, which

revealed that Norrin and Wnt show some fundamental similarities in the way they bind to Frizzled.

These findings move us closer to defining the essential features of the protein complexes that modify

Wnt signalling, and may aid the development of new therapies for diseases that affect the

development of the eye.

DOI: 10.7554/eLife.06554.002
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modifier (SUMO) (Peroutka et al., 2008), in combination with addition of valproic acid (Backliwal et al.,

2008), a putative histone deacetylase inhibitor, substantially boosted expression of the secreted protein

in human embryonic kidney (HEK) 293T cells (Figure 1B,C). After removal of the SUMO fusion tag, the

recombinant Norrin shows a monodispersed state in size-exclusion chromatography (SEC; Figure 1D)

and is biologically active in a cell-based luciferase reporter assay (Figure 1E).

The crystal structure of Norrin and its oligomeric state in solution
We determined three crystal structures of Norrin (Figure 2A and Table 1), using selenomethionine-

labeled protein for phasing (Figure 2—figure supplement 1). The Norrin protein fold is identical to

that of the previously reported MBP-Norrin crystal structure (Ke et al., 2013). Each Norrin monomer

comprises three β-hairpins (β1-β2, β3-β4 and β5-β6), a β7 strand at the C-terminus, and four

Figure 1. Expression and purification of biologically active recombinant Norrin. (A) Schematic diagrams of the expression constructs including Norrin

(a signal peptide, SP, followed by Norrin and Rho-1D4 tag at C-terminus) and SUMO-Norrin (a SP followed by a Strep-tag II, an octahistidine, SUMO, HRV

3C protease cleavage site, Norrin, and Rho-1D4 tag at C-terminus). (B and C) Conditioned media from transfected HEK293T cells were immunoblotted (IB)

with the anti-Rho-1D4 antibody. (B) SUMO fusion improves Norrin secreted expression. (C) The expression level of SUMO tagged Norrin was further

boosted for HEK-293T cells treated with valproic acid. (D) SEC elution profile and SDS-PAGE under reducing conditions with fractions analysed marked by

red lines. (E) Purified recombinant untagged Norrin actives the canonical Wnt/β-catenin pathway in the luciferase reporter assay. RLU: relative light unit.

Error bars indicate standard deviations (n = 3).

DOI: 10.7554/eLife.06554.003
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intramolecular disulphide bonds (Figure 2—figure supplement 2). The two monomers assemble as

an elongated, head-to-tail, dimer (Figure 2A) stabilized by three intermolecular disulphide bridges

(Cys93-Cys95, Cys95-Cys93, and Cys131-Cys131), in agreement with small-angle X-ray scattering

(SAXS) measurements which showed Norrin dimer in solution (Figure 2—figure supplement 3A and

Table 2). The dimer interface is further stabilized by extensive hydrogen bonds and hydrophobic

interactions (Figure 2—figure supplement 3B,C). Superposition of all molecules in the asymmetric

units from our three crystal forms with the MBP-Norrin structure (Ke et al., 2013) showed an average

root-mean-square (r.m.s.) deviation of 1.5 Å over 190 equivalent Cα atoms (Figure 2—figure

supplement 3D). On inspection the superpositions revealed a high degree of conformational

plasticity in the β1-β2, β3-β4 and β5-β6 loops (Figure 2B). The flexibility inherent in these regions is

consistent with the relatively high crystallographic B factor values (Figure 2C). Conversely, the

structural comparisons underscore the conserved nature of the interface at the dimer core. It has

previously been noted that disruption of the dimer by either Cysteine-to-Alanine mutations of

Figure 2. Crystal structure and structural analysis of apo Norrin. (A) Schematic diagram of Norrin is rainbow coloured and disulphide bonds are drawn as

lines. Cartoon representation of dimeric Norrin. Four intramolecular disulphide bonds are shown as magenta sticks. Cys93, Cys95, and Cys131 (forming

intermolecular disulphide bridges) are shown as cyan, blue, and green sticks, respectively. Two cystine-knot motifs are marked with dotted boxes and the

filled circles denote the N- and C-termini. (B) Ribbon diagram of superpositions of Norrin molecules from the asymmetric unit of crystal form I (green,

chain A and B; cyan, chain C and D; magenta, chain E and F), crystal form II (yellow, chain A and B; blue, chain C and D), crystal form III (grey, chain A and

B; purple, chain C and D), and MBP-Norrin (cyan; PDB ID: 4MY2). The flexible regions are highlighted as red lines. Loop regions (β1-β2 loop, β3-β4 loop,

and β5-β6 loop) show structural plasticity. The well ordered regions include the cystine-knot motifs plus intermolecular disulphide linked areas (black circle)

and two Fz4 binding sites (cyan dotted circle). (C) Representative Norrin dimer displayed with the diameter of the Cα tube defined by Cα atom B factor

(small tube means structural rigidity; large tube indicates structural flexibility).

DOI: 10.7554/eLife.06554.004

The following figure supplements are available for figure 2:

Figure supplement 1. Electron density map of Norrin structure.

DOI: 10.7554/eLife.06554.005

Figure supplement 2. Multiple sequence alignment of Norrin.

DOI: 10.7554/eLife.06554.006

Figure supplement 3. Norrin solution structure and structural analyses.

DOI: 10.7554/eLife.06554.007
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Table 1. Data collection, phasing and refinement statistics

Norrin–

Fz4CRD–SOS

Methylated

Norrin–Fz4CRD Norrin

Norrin

Se-Met

Methylated

Norrin

Crystal form I I II

Data collection

Space group P6122 P4322 P212121 P212121 P212121

Cell dimensions

a, b, c (Å) 119.1, 119.1, 119.2 98.9, 98.9, 120.4 46.4, 79.1, 243.3 45.8, 78.8, 232.8 102.7, 53.1, 96.1

α, β, γ (˚) 90, 90, 90 90, 90, 120 90, 90, 90 90, 90, 90 90, 90, 90

Peak

Wavelength 0.9200 0.9795 0.9686 0.9795 0.9795

Resolution (Å) 47.34–3.00
(3.18– 3.00)

49.46–2.30
(2.38–2.30)

65.56–2.40
(2.49–2.40)

116.39–3.18
(3.26–3.18)

33.65–2.00
(2.05–2.00)

Rpim (%) 3.1 (54.8) 4.5 (56.1) 6.1 (42.3) 2.8 (23.4) 4.1 (58.3)

I/σI 14.6 (1.6) 10.7 (1.4) 7.8 (1.9) 20.2 (3.0) 9.1 (1.7)

Completeness (%) 100 (100) 98.9 (97.2) 99.9 (100) 99.9 (99.9) 100 (100)

Redundancy 19.6 (20.6) 6.0 (5.6) 5.6 (5.7) 33.3 (9.9) 5.6 (5.8)

Refinement

Resolution (Å) 47.34–3.00
(3.18–3.00)

49.46–2.30
(2.38–2.30)

65.56–2.40
(2.49–2.40)

33.65–2.00
(2.05–2.00)

No. reflections 10,503 (1648) 26,816 (2514) 34,722 (3384) 36,272 (2635)

Rwork/Rfree 21.5/26.7 19.7/22.1 21.6/26.2 23.3/24.8

No. atoms

Protein 1759 2557 4930 3187

Ligand/ion 83 39 101 10

Water 0 115 164 122

B-factors

Protein 113 63 70 57

Ligand/ion 133 71 92 73

Water 0 57 55 51

R.m.s deviations

Bond lengths (Å) 0.005 0.004 0.009 0.005

Bond angles (˚) 1.18 0.93 1.08 1.07

Ramachandran plot

Favored (%) 95.5 97.0 96.7 97.2

Allowed (%) 4.5 3.0 3.3 2.8

PDB code 5BQC 5BQE 5BPU 5BQ8

Norrin Fz4CRD Fz4CRD

Crystal form III I II

Data collection

Space group C121 P212121 P61

Cell dimensions

a, b, c (Å) 86.8, 38.1, 177.2 72.6, 102.1, 116.5 76.1, 76.1, 204.5

α, β, γ (˚) 90, 94, 90 90, 90, 90 90, 90, 90

Wavelength 0.9795 0.9686 0.9686

Resolution (Å) 44.19–2.30 (2.38–2.30) 41.77–2.20 (2.27–2.20) 47.37–2.40 (2.49–2.40)

Table 1. Continued on next page
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intermolecular disulphide bonds or mutations of hydrophobic residues at the dimer interface results in

a loss of Norrin-mediated signalling (Smallwood et al., 2007; Ke et al., 2013).

The crystal structure of Fz4CRD

We determined two crystal structures of Fz4CRD (Figure 3 and Table 1). Similar to mouse Fz8CRD
(Dann et al., 2001) the Fz4CRD fold comprises four α helices (Figure 3A and Figure 3—figure

supplement 1A) stabilized by five disulphide bridges (Cys45–Cys106, Cys53–Cys99, Cys90–Cys128,

Cys117–Cys158, Cys121–Cys145). The N-acetylglucosamines on two N-linked glycosylation sites at

Asn59 and Asn144 are visible in the electron density map (Figure 3A). Superposition of all Fz4CRD
molecules in the asymmetric units from two crystal forms revealed a well-ordered protein fold

(Figure 3—figure supplement 1B). The conserved disulphide bonds in FzCRD superfamily members

are essential for functional activity. Familial Exudative Vitreoretinopathy disease mutant C45Y results in

misfolded protein retained in the endoplasmic reticulum, similar to the effects of Cysteine-to-Alanine

mutations in the related CRD of Drosophila Smoothened (Smo) (Zhang et al., 2011; Rana et al., 2013).

Structural comparison showed Fz4CRD closely resembles the CRDs of mouse Fz8 and secreted Frizzled-

related protein 3 (sFRP3) with an average r.m.s. deviation of 1.2 Å over 115 equivalent Cα atoms

(Figure 3—figure supplement 1C–E) and approximate sequence identity of 35%. Comparisons with

the CRDs of muscle-specific kinase (MuSk) and Smo showed more substantial structural differences with

an average r.m.s. deviation of 2.3 Å over 86 equivalent Cα atoms (Figure 3—figure supplement 1F–H).

Table 1. Continued

Norrin Fz4CRD Fz4CRD

Crystal form III I II

Rpim (%) 2.8 (36) 4.1 (49.5) 2.6 (33.9)

I/σI 16.7 (2.0) 12.8 (2.0) 14.5 (2.2)

Completeness (%) 99.2 (97.7) 99.2 (99.7) 99.5 (99.4)

Redundancy 5.8 (6.0) 4.3 (4.4) 4.0 (4.1)

Refinement

Resolution (Å) 44.19–2.30 (2.38–2.30) 41.77–2.20 (2.27–2.20) 47.37–2.40 (2.49–2.40)

No. reflections 26,073 (2538) 44,268 (3802) 25,975 (2724)

Rwork/Rfree 22.1/25.0 17.7/22.3 20.3/24.3

No. atoms

Protein 3104 3866 3877

Ligand/ion 72 70 99

Water 54 148 69

B-factors

Protein 91 47 76

Ligand/ion 72 67 72

Water 142 43 68

R.m.s deviations

Bond lengths (Å) 0.006 0.01 0.005

Bond angles (˚) 1.03 1.35 0.94

Ramachandran plot

Favored (%) 96.0 99.0 97.0

Allowed (%) 4.0 1.0 3.0

PDB code 5BQB 5BPB 5BPQ

All structures were determined from one crystal.

Values in parentheses are for highest-resolution shell.

DOI: 10.7554/eLife.06554.008
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Assessment of the monomeric states of FzCRD in solution
Fz receptors are members of the GPCR family (Nichols et al., 2013), known for formation of receptor

dimers, although it is unclear whether dimerization is mediated by the CRD, transmembrane helices or

intracellular domain. In the case of Fz4, β-galactosidase complementation in combination with

bioluminescence resonance energy transfer and split-yellow fluorescence protein assays suggest that

Fz4 exists as dimer on the cell membrane in the absence of Norrin or Wnts (Kaykas et al., 2004;

Ke et al., 2013). However, ligand-independent receptor dimerization of Fz4 is not sufficient to

activate signalling (Xu et al., 2004; Ke et al., 2013). Interestingly, we found that our Fz4CRD structures

form the same dimeric assembly in two crystal lattices (r.m.s. deviation of 0.7 Å over 238 equivalent Cα
atoms from two crystal forms; Figure 3—figure supplement 2A). The dimer interface has an average

1330 Å2 buried surface area, in agreement with the characteristics of known protein–protein interfaces

(Lawrence and Colman, 1993). However, this Fz4CRD dimer (front-to-front) is distinct from the previously

reported crystal structure of mouse Fz8CRD dimer (back-to-back; Figure 3—figure supplement 2B)

(Dann et al., 2001). We were therefore curious to assess the dimerization characteristics of the CRDs of

Fz receptors. Size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) results

(Figure 3B and Table 3) showed Fz4CRD, Fz5CRD and Fz8CRD exist as monomers in solution at 50 μM
concentration, in agreement with previously reported SEC studies of Fz8CRD and SEC-MALS analyses of

MuSKCRD and SmoCRD (Stiegler et al., 2009; Nachtergaele et al., 2013). SAXS measurements further

support the conclusion that Fz4CRD is monomeric in solution at 290 μM concentration (Figure 3C,D).

Taken together, our results suggest that the CRDs of Fz receptors exist as monomers and may not be

involved in receptor dimerization; multiple GPCRs dimerize through their hepta-helical transmembrane

domains (Rios et al., 2001). However, we cannot exclude the possibility that in the environment of

the cellular membrane the weak interaction propensities of the CRDs, in combination with the

transmembrane domains, are important for the dimerization of Fz receptors.

The crystal structure of Norrin in complex with Fz4CRD

We purified Norrin–Fz4CRD complex (Figure 4—figure supplement 1A) and determined the crystal

structures of methylated Norrin–Fz4CRD (dimethylated surface-exposed lysine residues;

Figure 4—figure supplement 1B,C) and Norrin–Fz4CRD–SOS (complex bound with heparin mimic

sucrose octasulfate, SOS; Figure 4A and Figure 4—figure supplement 1D) at 2.3 Å and 3.0 Å

resolution, respectively (Table 1). These two complex structures show different stoichiometries: a 2:1

complex for the methylated Norrin–Fz4CRD and a 2:2:2 stoichiometry for the Norrin–Fz4CRD–SOS

complex, the architecture of which resembles a butterfly (Figure 4A). The Norrin–Fz4CRD binding

interface is conserved between the complex structures (Figure 4—figure supplement 1E). Each

Fz4CRD interacts one-to-one with a separate Norrin chain, burying on average 1680 Å2 of surface area.

Table 2. Molecular properties of the proteins determined by SAXS

Proteins N-Glyc state Rg (nm)* Dmax (nm)†

Volume porod

(Vp [nm3])

MWTheoretical

(kDa)‡

MWMeasured

(KDa)§
MWMeasured

(KDa)#

Fz4CRD deglyc¶ 1.98 6.93 33.0 17.1 (monomer) 15.9 19.9

Fz4CRD glyc** 2.24 7.84 41.1 21.4 (monomer) 23.7 24.7

Norrin 2.74 9.18 37.4 27.2 (dimer) 33.5 22.5

Norrin–Fz4CRD deglyc¶ 3.41 11.92 93.8 61.3 (2:2 complex) 57.9 56.5

*Rg is Radius of gyration, calculated from Guinier plot using AutoRg (Petoukhov et al., 2012).

†Dmax is the maximum dimension of the particle, calculated by GNOM (Svergun, 1992).

‡The theoretical molecular weight (MWTheoretical) is predicated from amino acid sequence plus the molecular weight of N-linked glycans (see ‘Materials

and methods’, SEC-MELS analysis for detailed information of calculation).

§The measured molecular weight (MWMeasured) is calculated from forward scattering of sample (I(0)) by comparison with reference bovine serum

albumin (BSA).

#The measured molecular weight (MWMeasured) is obtained by dividing the Volume Porod (Vp [nm3]) by 1.66 (Rambo and Tainer, 2011).

¶The proteins were produced from HEK293T cells in the presence of kifunensine with limited glycosylation and treated with endoglycosidase-F1.

**The proteins were produced from HEK293T cells with full glycosylation.

DOI: 10.7554/eLife.06554.009
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To investigate the preference for complex formation in a 2:1 or 2:2 stoichiometry, we performed SEC-

MALS (Figure 4B) and SAXS (Figure 4C) measurements in the absence of SOS. Both methods show

Norrin interacts with Fz4CRD in a 2:2 stoichiometry. Lysine methylation of the Norrin–Fz4CRD complex

was used to facilitate crystal lattice formation (Walter et al., 2006; Malinauskas et al., 2011), and on

close inspection of the structure we found Lys102 and Lys104, two residues which contribute to the

Norrin–Fz4CRD interface, (see next section) are dimethylated in the uncomplexed subunit of the Norrin

dimer (Figure 4—figure supplement 1C), and contribute instead to a lattice contact. This observation

suggests that the 2:1 stoichiometry merely reflects the favourable crystallization characteristics of a

sub population of asymmetrically methylated Norrin–Fz4CRD complexes. Thus although the

Figure 3. Crystal and solution structures of unliganded Fz4CRD. (A) Schematic domain organization (SP, signal peptide; TM. transmembrane domain; CD,

cytoplasmic domain). Crystallization constructs are rainbow coloured. Disulphide bonds are drawn and blue hexagons denote N-linked glycosylation sites.

Cartoon representation of Fz4CRD in rainbow colouring. N-linked N-acetyl-glucosamines (GlcNAc) and disulphide bonds are shown as blue sticks. (B) SEC-

MALS experiments. The red line represents the molecular weight (left ordinate axis) and black lines show the differential refractive index (right ordinate

axis) as well as SDS-PAGE (Inset). The numbers denote the corresponding molecular weights of each peak. (C and D) SAXS analyses of deglycosylated and

glycosylated Fz4CRD solution structures. The experimental scattering data (black circles) and calculated scattering patterns (coloured lines) are shown and

the Fz4CRD solution structure model is presented. The upper right inset shows the experimental (black circles) and calculated (coloured lines) Guinier

region. The dashed lines delimit the range of fitting for Rg analysis (Rg·S ≤ 1.3). The bottom right inset shows the experimental (black circles) and

calculated (coloured lines) pair distance distribution P(r) curve.

DOI: 10.7554/eLife.06554.010

The following figure supplements are available for figure 3:

Figure supplement 1. Multiple sequence alignment and structural analysis of cysteine-rich like domains.

DOI: 10.7554/eLife.06554.011

Figure supplement 2. Distinct dimeric assembly of Fz4CRD and mouse Fz8CRD observed from crystal structures.

DOI: 10.7554/eLife.06554.012
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methylated Norrin–Fz4CRD structure usefully provides high-resolution information for the ligand–

receptor interface (Figure 4—figure supplement 1F), the Norrin–Fz4CRD–SOS structure defines the

overall architecture of the native complex (Figure 4A). The two Fz4CRD diverge from the Norrin dimer

without contacting each other (Figure 4A), and with their C-termini suitably oriented for attachment

to the same cell surface.

The Norrin–Fz4CRD complex has a novel architecture; the mode of interaction of Norrin is distinct

from that of other cystine-knot secreted growth factors (transforming growth factor-β, bone

morphogenetic protein, platelet-derived growth factor, and vascular endothelial growth factor) with

either their receptors or antagonists (Figure 4—figure supplement 2).

Neither Norrin nor Fz4CRD undergoes large conformational changes upon complex formation,

although the flexibility of residues involved in the binding interface is reduced (Figure 4—figure

supplement 3). Interestingly, superposition of the Norrin–Fz4CRD complex and the previously reported

MBP-Norrin structure resulted in steric clashes between the Fz4CRD and the MBP (Figure 4—figure

supplement 4). This suggests that MBP hinders Norrin interaction with Fz4CRD consistent with MBP-

Norrin only having half of the signalling activity of untagged Norrin (Ke et al., 2013).

Analyses of binding interfaces
At the ligand–receptor interface (Figure 5A) two β-hairpins in Norrin (β1-β2 and β5-β6) contact three
loops in Fz4CRD (I, II, and III). Fz4CRD loop I hydrogen bonds to Norrin (Figure 5B). Fz4CRD loop II

makes extensive hydrophobic contacts plus one salt-bridge (Fz4CRD Lys109 with Norrin Asp46;

Figure 5C). Fz4CRD loop III interacts with Norrin via an extensive hydrogen bond network as well as

hydrophobic contacts (Figure 5D). Interactions with SOS involve the positively charged residues of

Lys58, Arg107, Arg109, and Arg115 on Norrin, plus His154 and Asn155 on Fz4CRD loop III (Figure 5E).

These residues define a likely binding site for GAGs, in agreement with previous reports of Norrin

interactions with extracellular matrix and heparin (Xu et al., 2004; Ohlmann et al., 2010).

Verification of Fz4 binding site
The Norrin–Fz4 interface revealed in our crystal structures (Figure 6A,B) is in excellent agreement with

reported disease-associated mutations (Figure 6C) and surface residue conservation (Figure 6D).

We performed mutagenesis and functional assays to verify this Fz4 binding site. Surface plasmon

resonance (SPR) experiments (Figure 6E and Figure 6—figure supplement 1A) show a micromolar

equilibrium dissociation constant between Norrin and Fz4CRD. Mutations of either H43N/V45T or

L61N/A63S, which resulted in the introduction of an N-linked glycosylation site in the Fz4 binding site

on Norrin, completely abolish the interaction (Figure 6—figure supplement 1B). Norrin disease-

associated mutants V45E and L61P/A63D lose binding affinity for Fz4CRD (Figure 6—figure

supplement 1C), as do mutants R41E/H43E and R38E/R41S/H43E/K102E/K104E (Figure 6—figure

supplement 1D). In contrast, Norrin mutants L52N/K54S and M114N/L116S (to introduce an N-linked

Table 3. Molecular properties of the proteins determined by SEC-MALS

Protein Number of N-glyc sites N-Glyc state MWTheoretical (kDa)‡ MWMeasured (KDa)

Fz4CRD 2 deglyc* 17.1 (monomer) 15.7 ± 0.4

Fz4CRD 2 glyc† 21.4 (monomer) 23.6 ± 0.3

mFz5CRD 2 glyc† 22.2 (monomer) 23.9 ± 0.9

mFz8CRD 2 glyc† 22.1 (monomer) 23.7 ± 0.2

Norrin–Fz4CRD 4 (2:2 complex) deglyc* 61.3 (2:2 complex) 60.1 ± 0.4

Norrin–Fz4CRD 4 (2:2 complex) glyc† 69.9 (2:2 complex) 61.3 ± 0.5

*The proteins were produced from HEK293T cells in the presence of the N-glycosylation processing inhibitors,

kifunensine resulting in limited glycosylation and were treated with endoglycosidase-F1.

†The proteins were produced from HEK293T cells with full glycosylation.

‡The measured molecular weight (MWMeasured) is in general agreement with theoretical molecular weight

(MWTheoretical) predicated based on the primary sequence plus the molecular weight of N-linked glycans

(see ‘Materials and methods’, SEC-MELS analysis for detailed information of calculation).

DOI: 10.7554/eLife.06554.013
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glycosylation site in the β1-β2 loop or β5-β6 loop, respectively), predicted to lie outside the Fz4

binding site (Figure 6A), show the same binding affinity as wild-type (Figure 6—figure supplement 1E).

Cell-based Wnt/β-catenin responsive luciferase assays (Figure 6F) further support the significance of

Figure 4. Crystal structure and solution behaviour of Norrin–Fz4CRD complex. (A) Ribbon representation of Norrin (magenta and pink) in a 2:2:2 complex

with Fz4CRD (cyan and pale cyan) and SOS (green). (B) SEC-MALS analyses. The profile of molecular weight (left ordinate axis) and differential refractive

index (right ordinate axis) are shown as thick and thin lines, respectively. SDS-PAGE (Inset) shows Norrin in complex with Fz4CRD (triplet band for

glycosylated Fz4CRD, marked as green circles, represents glycosylation heterogeneity). (C) SAXS experiments. Experimental scattering data (black circles)

and calculated scattering patterns (coloured lines) are shown to a maximal momentum transfer of q = 0.35 Å−1. Individual data: fit pairs are displaced

along an arbitrary y axis to allow for better visualization. Bottom curve: Norrin–Fz4CRD 1:2 complex crystal structure (red line). Middle curve: Norrin–Fz4CRD
2:2 complex crystal structure (blue line). Top curve: modelled Norrin–Fz4CRD 2:2 complex crystal structure (missing regions for Norrin and Fz4CRD N- and

C-termini are modeled into the crystal complex structure; green line). Structural models are shown in cartoon representation. The bottom left inset shows

the experimental (black circles) and calculated (coloured lines) Guinier region. The bottom right inset shows the experimental (black circles) and calculated

(coloured lines) pair distance distribution P(r) curves.

DOI: 10.7554/eLife.06554.014

The following figure supplements are available for figure 4:

Figure supplement 1. Protein complex production and structural properties of Norrin–Fz4CRD complex.

DOI: 10.7554/eLife.06554.015

Figure supplement 2. Structural comparison of cystine-knot growth factor monomers and their ternary complexes.

DOI: 10.7554/eLife.06554.016

Figure supplement 3. No large conformational changes upon complex formation.

DOI: 10.7554/eLife.06554.017

Figure supplement 4. Structural comparison of Norrin–Fz4CRD complex with MBP-Norrin.

DOI: 10.7554/eLife.06554.018
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the Fz4 binding site. Norrin mutants that lose binding to Fz4CRD also fail to induce the luciferase

reporter activity, in agreement with the SPR results (Figure 6—figure supplement 1) and prior

genetic data (Xu et al., 2004; Smallwood et al., 2007). Taken together, our structural and functional

results suggest that Norrin uses β strands (β1-β2 and β5-β6) for Fz4CRD binding rather than, as

proposed by Bazan et al. (2012) using the loop between β1 and β2 (Bazan et al., 2012).

To determine the binding affinity of Norrin for different CRD of Fz receptors, we undertook a series

of SPR experiments. The results (Figure 6—figure supplement 1F) show that Norrin has greatest

affinity for Fz4CRD (Kd: 1 μM), low affinities for Fz5CRD (Kd: 42 μM) and Fz8CRD (Kd: 64 μM), and no

binding to Fz7CRD. In combination, these results confirm that pairing Norrin with Fz4CRD provides

Figure 5. Structural details of binding sites in the Norrin–Fz4CRD–SOS complex. (A) Side-view of complex. Fz4CRD
loops involved in Norrin binding are coloured blue (loop I), green (loop II), and yellow (loop III). (B–E) Views detailing

the interfaces. Selected residues involved in binding are shown as sticks and coloured magenta (Norrin), blue

(loop I), green (loop II), yellow (loop III), and cyan (Phe96 of Fz4CRD) and those associated with disease mutations are

highlighted in boxes. Dotted lines denote hydrogen bonds. (B) Interactions between Fz4CRD loop I and Norrin.

(C) Hydrophobic interactions of Norrin with Fz4CRD loop II and part of loop III. (D) Interactions of Fz4CRD loop III with

Norrin. (E) SOS binding to Norrin and Fz4CRD loop III.

DOI: 10.7554/eLife.06554.019

Chang et al. eLife 2015;4:e06554. DOI: 10.7554/eLife.06554 11 of 27

Research article Biophysics and structural biology | Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.06554.019
http://dx.doi.org/10.7554/eLife.06554


Figure 6. Biophysical and functional characterisation of Fz4 binding site. Surface representation of Norrin–Fz4CRD complex in open book view.

(A) Interface residues are coloured orange (Norrin) and blue (loop I), green (loop II), yellow (loop III), and cyan (Phe96) on Fz4CRD. Norrin mutation sites

used in functional assays are labelled (red, residues involved in Fz4CRD binding; grey filled box, residues associated with diseases; black, residues located

outside the Fz4 binding site). (B) Norrin and Fz4CRD coloured by electrostatic potential from red (acidic; −7 kbT/ec) to blue (basic; 7 kbT/ec). (C) Disease-

associated mutations mapped onto the surface of Norrin and Fz4CRD (purple, missense mutations; red, missense mutations of cysteine residues).

(D) Surfaces colour-coded according to sequence conservation from white (not conserved) to black (conserved). (E) SPR results for Fz4CRD binding to

Norrin wild-type (WT) and Norrin V45E mutant. Inset SPR sensorgrams are of equilibrium-based binding assays with reference subtraction. (F) Luciferase

Figure 6. continued on next page
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selective and high affinity binding relative to interactions with other CRD of Fz receptors, in agreement

with prior studies (Xu et al., 2004; Smallwood et al., 2007; Ke et al., 2013). However, it remains to be

clarified whether the low affinity interactions of Norrin with other Fz receptors can play any functional

role in vivo.

Verification of GAG binding site
To assess our putative binding site for GAGs (Figure 5E), we performed structure-guided mutagenesis

and functional studies. Our heparin binding experiments confirmed that Norrin shows high affinity

interaction with heparin (Figure 7—figure supplement 1A), consistent with previous studies

(Perez-Vilar and Hill, 1997; Xu et al., 2004; Smallwood et al., 2007; Ohlmann et al., 2010), and

further demonstrated Norrin–Fz4CRD complex binding to heparin (Figure 7A). The Norrin triple

mutation R107E/R109E/R115L (R115L is a disease-associated mutation; Figure 2—figure supplement 2)

impaired heparin binding (Figure 7B) and abolished signalling activity (Figure 7C). However, this mutant

protein retained the ability to bind Fz4CRD (Figure 7D) with a 2:2 stoichiometry (Figure 7—figure

supplement 1B). Ke et al. (2013) have reported MBP-Norrin binding to the Lrp6 ectodomain fragment

comprising the first two tandem β-propeller-epidermal growth factor-like domain pairs (Lrp6P1E1P2E2;

Ke et al., 2013); we found both our wild-type and R107E/R109E/R115L mutant Norrin bind to Lrp6P1E1P2E2
(Figure 7E,F). The Norrin K58N mutant (a disease-associated mutation; Figure 2—figure supplement 2)

exhibited half of wild-type activity in our cell-based assay (Figure 7C), but did not affect Fz4CRD
interaction (Figure 6—figure supplement 1C). These results are in agreement with previous

functional studies (Smallwood et al., 2007), and suggest this area is a GAG binding site rather than

that, as Ke et al. (2013) proposed, residues Arg107, Arg109, and Arg115 are involved in Lrp5/6

binding (Ke et al., 2013). HSPGs play important roles in the regulation of the Wnt signalling pathway

(Malinauskas and Jones, 2014). Wnt signalling activity can be inhibited by treatment with exogenous

heparin (Ai et al., 2003). Also, Jung et al. (2015) have reported that PG545, a heparan sulphate mimetic,

can blockWnt binding to the cell surface, by competing with endogenous HSPGs, and inhibit Wnt signalling

(Jung et al., 2015). For Norrin mediated Wnt/β-catenin signalling, we found that SOS could inhibit activity

when pre-incubated with Norrin before stimulation of reporter cells (Figure 7—figure supplement 1D).

Mapping a potential Lrp5/6 binding site on Norrin
Norrin interaction with co-receptor Lrp5/6ECD (Figure 7E) is essential for signal activation (Xu et al., 2004;

Ke et al., 2013). To identify Norrin residues potentially involved in Lrp5/6ECD binding, we assessed solvent

exposure, disease-association, and lack of involvement in Fz4CRD or GAG binding (Figure 2—figure

supplement 2). Five residues (Lys54, Arg90, Arg97, Gly112, and Arg121) were highlighted by this analysis

and form a continuous, positively charged, concave patch (Figure 8A). Notably, a negatively charged

region of the Lrp6ECD surface has been implicated in ligand binding (Ahn et al., 2011; Bourhis et al.,

2011; Chen et al., 2011; Cheng et al., 2011). We therefore focused on the positively charged concave

surface of Norrin as a potential Lrp5/6 binding site (Figure 8A), interestingly, this putative binding site has

a partially overlap, at Lys54, with the residue suggested to be involved in Lrp5/6 interaction by Ke et al.

(2013). To test our proposed location for the Lrp5/6 binding site, we generated the disease-associated

Norrin mutant R121W (Arg121 is a mutational hotspot; Figure 2—figure supplement 2). This mutation

substantially impairs signalling activity (Figure 8—figure supplement 1A), but retains the ability to

interact with Fz4CRD (Figure 8—figure supplement 1B) and heparin (Figure 8—figure supplement 1C).

However, we found the R121W mutation reduced protein solubility and stability during protein

Figure 6. Continued

reporter assays histograms with Kd values from SPR measurements (Figure 6—figure supplement 1) shown above. Residues involved in the Fz4CRD
binding site are coloured red. Residues without contact with Fz4CRD are coloured black. Grey filled boxes highlight disease-associated residues

(Figure 2—figure supplement 2). The luciferase activities were normalized to a maximum activity value (100%) for Norrin wild-type and error bars

represent standard deviations (n = 3).

DOI: 10.7554/eLife.06554.020

The following figure supplement is available for figure 6:

Figure supplement 1. SPR equilibrium binding data.

DOI: 10.7554/eLife.06554.021
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Figure 7. Verification of Norrin GAG binding site. Heparin affinity chromatography of (A) Norrin–Fz4CRD complex and (B) Norrin R107E/R109E/

R115L–Fz4CRD complex. Protein elution profiles (left panel) were monitored by absorbance at 280 nm (blue curves) for a NaCl gradient (0.25–2 M; black

dashed lines). Input sample, flow-through (green line) and peak fractions (red line) were analysed on SDS-PAGE (right panel). Norrin-Fz4CRD complex was

eluted at 1.3 M NaCl concentration. (C) Luciferase reporter assays for Norrin mutations (coloured green) in the GAG binding site. Grey filled boxes

highlight disease-associated residues (Figure 2—figure supplement 2). (D) SPR binding assay of Norrin R107E/R109E/R115L mutant and Fz4CRD
interaction. Sensorgrams (top panel) and fitted plots of equilibrium binding response (bottom panels) for a series of concentrations of Fz4CRD are shown.

Figure 7. continued on next page
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production and in heparin binding assays. Analyses of additional Norrin mutants in biophysical and

cellular assays will be required to verify the putative Lrp5/6 binding site. Taken together, the current

data suggest three distinct and independent binding sites on Norrin for Fz4, Lrp5/6, and GAGs

(Figure 8B). This arrangement of binding sites likely enables Norrin to form a ternary complex.

Structural comparison of Norrin–Fz4CRD with Wnt8–Fz8CRD

As Norrin and Wnt both trigger the canonical Wnt/β-catenin pathway, we compared their modes of

action. Xenopus Wnt8 (Figure 9A) has been described as using ‘thumb’ and ‘index finger’ regions to

grasp mouse Fz8CRD at two distinct sites (Janda

et al., 2012). In site 1, a palmitoleoyl group

(PAM) covalently linked to the tip of the thumb

inserts into a groove in Fz8CRD, removal of this

PAM moiety suppresses Wnt signalling activity

(Kakugawa et al., 2015; Zhang et al., 2015).

In site 2, the index finger contacts a hydrophobic

pocket. We superposed Norrin–Fz4CRD with

Wnt8–Fz8CRD. There are no major structural

differences between the Fz4CRD and Fz8CRD
(r.m.s. deviation of 1.3 Å over 110 equivalent

Cα atoms; Figure 9A), and the structural ele-

ments that mediate site 1 PAM binding in Fz8CRD
are largely conserved in Fz4CRD (Figure 9B). The

Norrin binding site on Fz4CRD (∼800 Å2 buried

area) overlaps with site 2 on Fz8CRD (∼400 Å2

buried area; Figure 8A), in agreement with

previous mutational mapping studies (Small-

wood et al., 2007). The position of the Wnt8

index finger overlaps with Norrin β1 and β2, and,
unexpectedly, these β strands show some struc-

tural equivalence with Wnt8 (Figure 9C). Site 2

Wnt8 residues are strictly conserved in all Wnts,

and the apolar residues in the corresponding

positions on Norrin are associated with disease

mutations (Figure 9C).

We also used our superposition of the Fz4CRD
and Fz8CRD structures (Figure 9A) to identify the

determinants of the Norrin binding specificity for

Fz4CRD (Figure 6—figure supplement 1F). In

Fz4CRD loop I (Figure 9D), Asn55 is replaced by

Fz8CRD Gly45, a change that would abolish

interaction with Norrin Ser34 in the complex

(Figure 5B). In Fz4CRD loop II (Figure 9E), the

substitution of Lys109 by Fz8CRD Asp99 would

introduce an unfavorable electrostatic interaction

with Norrin Asp46 (Figure 5C). Thirdly, in Fz4CRD
loop III (Figure 9F), hydrogen bonds and salt

Figure 7. Continued

(E and F) SPR equilibrium binding experiments of Lrp6P1E1P2E2 binding to Norrin wild-type and R107E/R109E/R115L mutant, respectively. Biotinylated

Norrin proteins were immobilized on a CM5 chip and Lrp6P1E1P2E2 as analyte was injected over the chip. Sensorgrams (top panel) and fitted plots (bottom

panels) for a series of concentrations of Lrp6P1E1P2E2 are presented.

DOI: 10.7554/eLife.06554.022

The following figure supplement is available for figure 7:

Figure supplement 1. Supporting experiments for GAG binding site.

DOI: 10.7554/eLife.06554.023

Figure 8. The potential Lrp5/6 binding site on Norrin.

(A) Cartoon representation of Norrin (grey) in complex

with Fz4CRD (cyan). Residues in the potential Lrp5/6

binding site are shown as spheres (atom colouring:

magenta, carbon; blue, nitrogen; red, oxygen).

The boxes highlight residues associated with disease

mutations. (B) Cartoon model of Norrin showing three

distinct binding sites.

DOI: 10.7554/eLife.06554.024

The following figure supplement is available for figure 8:

Figure supplement 1. Verification of Norrin potential

Lrp5/6 binding site.

DOI: 10.7554/eLife.06554.025
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bridges to Norrin would be lost on replacing Asn152 and Glu160 with Fz8CRD Gly142 and Asp150

respectively (Figure 5D). Consistent with this analysis, these residue substitutions have been reported

to affect Fz4CRD binding to Norrin (Smallwood et al., 2007), and Fz4CRD is unique in containing this

particular combination of residues (Figure 2—figure supplement 2).

Discussion
Overall, our analyses provide several advances for our understanding of Norrin and Wnt signalling.

Firstly, our results give fresh insight into the role of HSPGs. HSPGs have been proposed to regulate

the local distribution of ligand and receptor at the cell surface, potentially acting as an introductory

agency for ligand and receptor (Lin and Perrimon, 1999; Baeg et al., 2001;Malinauskas et al., 2011;

Malinauskas and Jones, 2014). We have discovered a GAG binding site that may span Norrin and

Fz4CRD (Figure 5E). Interestingly, Smallwood et al. (2007) found the binding affinity of Norrin with

Fz4CRD is enhanced in the presence of heparin (Smallwood et al., 2007). We propose that the

extended GAG binding site may allow co-receptor HSPGs to recruit secreted Norrin for interaction

with Fz4CRD and to co-localize Norrin and Fz4 receptor, similar to the role of HSPGs in Wnt signalling

(Reichsman et al., 1996; Baeg et al., 2001; Fuerer et al., 2010). For example, HSPGs have been

shown to regulate the Wnt morphogenetic gradient (Lin and Perrimon, 1999; Baeg et al., 2004).

Also, Capurro et al. (2014) have reported that Fz4CRD binds to the GAGs of the human HSPG

Glypican-3 and that these interactions are involved in Wnt signal complex formation (Capurro et al.,

2014). Secondly, we show the Norrin dimer binds separately to two molecules of Fz4CRD (Figure 4), in

contrast to the 1:1 complex of Wnt8–Fz8CRD (Janda et al., 2012). Our discovery of the Fz4 and GAG

Figure 9. Structural comparison of Norrin–Fz4CRD with Wnt8–Fz8CRD. (A) Superposition of Norrin (magenta)–Fz4CRD (cyan) with Wnt8 (green)–Fz8CRD (blue)

(PDB ID: 4F0A). Disulphide bonds, N-linked glycans, and PAM (of Wnt8) are shown as sticks. SOS is shown as grey surface. (B) Comparison of site

1 (PAM binding) on Fz4CRD (cyan) and Fz8CRD (blue). Fz4 His69 is disease associated. (C) The Wnt8 index finger (site 2; green) structurally overlays Norrin

(β1 and β2; magenta). Norrin residues associated with diseases are boxed. (D–F), Structural comparison of Fz4CRD and Fz8CRD for ligand binding. Loop I-III

residues for Fz4CRD and Fz8CRD are shown as sticks. Fz8CRD residues for Wnt8 binding (site 2) are boxed in purple. Fz4 disease-associated

residues are boxed. Red arrows indicate residue substitutions between Fz4CRD and Fz8CRD. Fz8CRD residues Tyr151 and Asn152 are modelled as

alanines (PDB ID: 4F0A).

DOI: 10.7554/eLife.06554.026
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binding sites, and analysis of a potential Lrp5/6 binding region, maps out distinct binding surfaces on

Norrin (Figure 8B), which provide a framework in which to understand the effects of inherited

mutations and probe the overall architecture of the ternary complex (Norrin–Fz4CRD–Lrp5/6ECD).

Thirdly, we determine how Norrin structurally mimics Wnt for site 2 binding surfaces on the Fz

ectodomain (Figure 9A). Interestingly, previous analyses using water-soluble ‘mini-Wnt’ proteins,

which cannot contribute site 1 binding, have raised the possibility that site 2 binding to the CRD of Fz

receptors can activate canonical Wnt/β-catenin signalling albeit weakly (Janda et al., 2012; von

Maltzahn et al., 2013). Our findings indicate that the site 2 binding mode is central to signallosome

formation for Norrin mediated signalling.

We used SPR experiments to establish the binding affinity for Norrin–Fz4CRD complex formation.

The Kd value of 1.1 μM for the interaction between Norrin and Fz4CRD we report here

(Figure 6—figure supplement 1A) is weaker than previously published results (Xu et al., 2004;

Ke et al., 2013). This discrepancy is likely due to our SPR binding assays being carried out with

monomeric Fz4CRD. Xu et al. (2004) used an enzyme-linked immunosorbent assay to give an affinity of

3–4 nM for mouse Norrin fused with C-terminal alkaline phosphatase binding to mouse Fz4CRD
dimerized by a C-terminal Fc fusion (Xu et al., 2004). Ke et al. (2013) reported Kd values of 11 nM

and 5 nM for the interaction between MBP-Norrin and Fc-tagged dimeric Fz4CRD using an

AlphaScreen luminescence assay and biolayer interferometry, respectively (Ke et al., 2013). It is

noteworthy that as Fc-dimerized Fz4CRD may mimic Fz4 receptor dimerization at the cellular surface,

these tighter binding affinities may be more indicative of Norrin binding in the physiologically relevant

environment. Similarly, our Kd value of 2.87 μM for Norrin binding to Lrp6P1E1P2E2 in an SPR based

assay (Figure 7E) differs from the Kd value of 0.45 μM reported by Ke et al. (2013) based on an

homologous AlphaScreen competition assay using unlabeled MBP-Norrin against biotinylated MBP-

Norrin for interaction with Lrp6P1E1P2E2 (Ke et al., 2013).

Our studies reported here, in combination with previous findings for Norrin and Wnt signalling, are

consistent with Norrin-induced receptor clustering and signallosome formation. Inactive pre-

dimerized Fz4 may engage with homodimeric Tspan-12 to enhance receptor clustering (Kaykas

et al., 2004; Ke et al., 2013). Norrin binding generates ternary complex formation by Fz4, Lrp5/6 and

the GAGs of HSPGs to trigger signalling, which is enhanced in the presence of Tspan12. In the

cytoplasm, Dishevelled binds to the C-terminal tail of Fz4 and self-assembles to oligomer (Schwarz-

Romond et al., 2007), leading to Axin recruitment to the cytoplasmic domain of Lrp5/6 for

phosphorylation and signallosome formation (Bilic et al., 2007).

Previously reported mice genetic studies have demonstrated that expression of ectopic Norrin

can rescue pathological retinal vascularization (Ohlmann et al., 2005, 2010). In addition, the

pathological progresses of Norrie disease and familial exudative vitreoretinopathy are highly related

to age-related macular degeneration and diabetic retinopathy (Ye et al., 2010;Ohlmann and Tamm,

2012). Further investigation of the therapeutic possibilities for retinal diseases has been hampered

by the difficulty of producing recombinant Norrin proteins. In this study, we provide a method to

produce fully active untagged Norrin in mammalian cells (Figure 1). Our recombinant Norrin opens

up new avenues to explore for the treatment of genetic retinal diseases and other ophthalmic

disorders.

More generally, Norrin as a Wnt mimic, may have potential as a reagent in regenerative medicine

(Clevers et al., 2014).

Wnt signalling is important for tissue homeostasis throughout life (Clevers and Nusse, 2012).

Multiple Wnt extracellular antagonists function to modulate Wnt signalling (Malinauskas and

Jones, 2014), these include Dickkopf and Sclerostin, which bind to Lrp5/6, as well as Wnt

inhibitory 1 and sFRPs, which sequester Wnt. Aberrant Wnt signalling (insufficient or excessive) is

implicated in diseases such as neurodegeneration and tumorigenesis, respectively (Clevers and

Nusse, 2012; Anastas and Moon, 2013). Interestingly, our Norrin mutants (used to verify the

GAG and putative Lrp5/6 binding sites) retain Fz4CRD binding but lose the ability to activate

signalling. These properties are similar to those of the monoclonal antibody OMP-18R5 which can

bind to the CRDs of Fz1, 2, 5, 7 and 8. OMP-18R5 inhibits tumour growth (Gurney et al., 2012)

and has just completed phase I clinical trials (Kahn, 2014). Engineered Norrin mutants could

similarly serve as blocking agents, but with specificities tailored to target Fz4 or other individual Fz

receptors.
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Materials and methods

Construct design, cloning, and mutagenesis
Synthetic complementary DNA (cDNA) clones (codon-optimized for expression in mammalian cells)

of human Norrin (UniprotKB/Swiss-prot Q00604) were obtained from GeneArt (Life Technologies,

UK). The cDNA templates of human receptors Fz4 (IMAGE ID: 40082087), Fz7 (IMAGE ID:

4549389), Lrp6 (IMAGE ID: 40125687), and Tspan-12 (IMAGE ID: 5275953) and mouse receptors

Fz5 (IMAGE ID: 40088671) and Fz8 (IMAGE ID: 8861081) were purchased from SourceBioScience

(UK). All expression constructs reported here are derived from the pHLsec vector backbone

(Aricescu et al., 2006). The human Norrin wild-type (residues 25–133) construct of SUMO-Norrin

(Figure 1A) and Norrin mutant constructs for heparin affinity binding assays were tagged N-

terminally with the murine Igκ-chain secretion signal, followed by a Strep-II tag, 8xHis tag,

a mammalian expression codon-optimized Saccharomyces cerevisiae SUMO (UniprotKB/Swiss-prot

Q12306; residues 2–96) (Peroutka et al., 2008), and a Human Rhinovirus (HRV)-3C protease

cleavage site. They were tagged C-terminally with a TETSQVAPA sequence derived from bovine

rhodopsin (Rho-1D4) that is recognized by the Rho-1D4 monoclonal antibody (Molday and

MacKenzie, 1983). The construct of Norrin (residues 25–133) was cloned into the pHLsec vector

(Aricescu et al., 2006) in frame with a C-terminal Rho-1D4 (Figure 1A). For large-scale protein

expression, the CRD constructs for human Fz4 (residues 42–179) and Fz7 (residues 42–179) as well

as mouse Fz5 (residues 31–176) and Fz8 (residues 30–170) were cloned into a modified pHLsec

vector (pHLsec-mVenus-12H), containing a C-terminal HRV-3C protease cleavage site followed by

a linker, monoVenus (Nagai et al., 2002), and a tandem 6×His tag. Human Lrp6P1E1P2E2 (residues

1–631) construct was cloned into a modified vector for stable cell line generation, pNeoSec (Zhao

et al., 2014), in frame with a C-terminal 10×His tag. For luciferase reporter assays, the full-length

constructs of the human receptors Fz4 (residues 1–537), Lrp6 (residues 1–1613), and Tspan-12

(residues 1–305) were cloned into the pLEXm-1D4 vector carrying a C-terminal Rho-1D4 tag. Norrin

wild-type and mutants for biophysical and cellular assays were obtained from GeneArt (Life

Technologies, UK) and cloned into the pHL-Avitag3 vector encoding a C-terminal BirA recognition

sequence (Aricescu et al., 2006). Mutant proteins were secreted at similar levels to the wild-type

proteins. Constructs were verified by DNA sequencing (Source Bioscience, UK).

Western blot assays
For western blot, HEK293T (ATCC CRL-11268) cells were transfected with the DNA using

Lipofectamine 2000 (Life Technologies, UK) according to the manufacturer’s instructions. The

conditioned media were collected 2 days post transfection and were analysed by sodium dodecyl

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels transferred onto a nitrocellulose

membrane (GE Healthcare Life Sciences) with Rho-1D4 monoclonal antibodies (Flintbox, University

of British Columbia, Canada) as primary antibody and goat anti-mouse IgG-horseradish peroxidise

conjugate (Sigma). The signal was visualized by Enhanced Chemiluminescence western blotting

detection kit (ECL, GE Healthcare Life Sciences).

Protein production and purification
Norrin wild-type and mutants were expressed in HEK293T cells (Aricescu et al., 2006) in the presence

of 4 mM valproic acid (Backliwal et al., 2008). For crystallization experiments, Fz4CRD was produced

in HEK293T cells in the presence of 5 μM of the class I α-mannosidase inhibitor, kifunensine (Chang

et al., 2007). Norrin in complex with Fz4CRD was co-expressed in HEK293T cells in the presence of

kifunensine and valproic acid. For all other experiments, recombinant proteins were expressed in

HEK293T cells. The Norrin conditioned media were passed through 1D4-affinity beads covalently

coupling purified Rho-1D4 antibody to CnBr-activated Sepharose 4 Fast Flow (CnBr-1D4; GE

Healthcare Life Sciences) and eluted in 25 mM Tris, pH 7.5, 0.5 M NaCl, 10% (wt/vol) Glycerol, 0.5%

(wt/vol) CHAPS, 250 μM TETSQVAPA peptide (GenScript). The eluted sample was incubated with

Glutathione S-Transferase (GST)-tagged HRV-3C protease to remove the SUMO-tagged fusion

protein. The cleaved Norrin was purified by CnBr-1D4 followed by SEC (Superdex 200 10/300 GL High

Performance, GE Healthcare Life Sciences) in either 10 mM HEPES, pH 7.5, 0.7 M NaCl, 0.5% (wt/vol)

CHAPS or acetate buffer, pH 4.0, 0.5 M NaCl, 0.5% (wt/vol) CHAPS. For purification of Fz4CRD, the
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conditioned media were dialyzed and recombinant proteins were purified by IMAC (TALON beads,

Clontech, Mountain View, CA). The purified sample was dialyzed against 25 mM Tris, pH 7.5, 0.5 M

NaCl, 10% (wt/vol) Glycerol and treated with GST-tagged Flavobacterium meningosepticum

endoglycosidase-F1 (Endo-F1) (Chang et al., 2007) and His-tagged HRV 3C protease. The

deglycosylated and cleaved sample was further purified by IMAC and further polished by SEC

(Superdex 75 16/600 column, GE Healthcare Life Sciences) in 10 mM HEPES, pH 7.5, 0.15 M NaCl.

Purification of Fz5CRD, Fz7CRD, and Fz8CRD followed the same procedure to that described above,

except protein was expressed in HEK293T cells and the treatment by Endo-F1 was omitted.

Norrin–Fz4CRD complex was isolated from dialyzed conditioned media by IMAC. The eluted sample

was dialyzed and treated with GST-tagged HRV-3C protease and Endo-F1. The deglycosylated and

cleaved complex was further purified by IMAC and GST-affinity beads and subsequently isolated by

SEC (Superdex 200 16/600 column, GE Healthcare Life Sciences) in 10 mM HEPES, pH 7.5, 0.7 M

NaCl. For preparation of methylated proteins, the purified sample was subject to surface lysine

methylation (Walter et al., 2006) and further purified by SEC (Superdex 200 16/600 column, GE

Healthcare Life Sciences). The selenomethionine (Se-Met) labelled protein was prepared as described

previously (Aricescu et al., 2006). A stable HEK293 GnT1(−) cell line (Reeves et al., 2002) for

Lrp6P1E1P2E2 protein production was generated as reported previously (Zhao et al., 2014) and protein

was purified following our established procedure (Chen et al., 2011).

Crystallization and data collection
Concentrated proteins (Norrin, 5 mg/ml; Fz4CRD, 60 mg/ml; Norrin in complex with Fz4CRD including

native and methylated proteins, 10–12 mg/ml) were subjected to sitting drop vapor diffusion

crystallization trials in 96-well Greiner plates consisting of 100 nl protein solution and 100 nl reservoir

using a Cartesian Technologies dispensing instrument (Walter et al., 2005). Crystallization plates

were placed in a The Automation Partnership storage vault maintained at 294 K and imaged via

a Veeco visualization system. Methylated Norrin–Fz4CRD complex crystallized in 0.1 M Bicine, pH 9.0,

10% (wt/vol) PEG6000, Norrin crystal form I in 0.1 M sodium acetate, pH 5.0, 5% (wt/vol) PGA-LM,

30% (wt/vol) PEG550MME, Norrin crystal form II in 0.1 sodium acetate, pH 5.0, 5% (wt/vol) PGA-LM,

4% (wt/vol) PEG2000MME, 24% (wt/vol) PEG550MME, Norrin crystal form III in 0.1M citrate, pH 5.0,

30% (wt/vol) PEG6000, Fz4CRD crystal form I in 1.6 M tri-sodium citrate, pH 6.5, and Fz4CRD crystal

form II in 0.1 M HEPES, pH 7.5, 0.1 M NaCl, 1.6 M ammonium sulfate. For the Norrin–Fz4CRD–SOS

complex, protein complex was mixed with 10 mM SOS (Toronto Research Chemicals Inc.) prior to

crystallization and crystals were obtained in 0.1 M Tris, pH 8.0, 0.15 M NaCl, 8% (wt/vol) PEG8000. For

cryoprotection, crystals were soaked in mother liquor supplemented with 30% (vol/vol) glycerol for

methylated Norrin–Fz4CRD, with 20% (vol/vol) PEG200 and 10 mM SOS for Norrin–Fz4CRD–SOS, with

30% (vol/vol) PEG550MME for Norrin crystal form II, with 30% (vol/vol) glycerol for Norrin crystal

form III, with 1.8 M tri-sodium citrate, pH 6.5 for Fz4CRD crystal form I, and with 23% (vol/vol)

sucrose for Fz4CRD crystal form II and subsequently flash-cooled by dipping into liquid nitrogen.

The crystals of Norrin crystal form I were frozen directly. Data were collected at 100 K at Diamond

Light Source (Oxfordshire, UK) at beamlines I03 (Norrin Se-Met), I04 (methylated Norrin–Fz4CRD
and Norrin crystal form II and III), I04-1 (Norrin–Fz4CRD–SOS), and I24 (Norrin crystal form I and Fz4CRD
crystal form I and II). Diffraction data were indexed and integrated using XIA2 (Winter, 2010)

coupled with XDS or IMOSFLM, and scaled and merged using Aimless (Evans and Murshudov,

2013). A subset of 5% of randomly selected diffraction data were used for calculating Rfree (Brunger,

1993).

Structure determination and refinement
The structure of Norrin crystal form I was solved using highly redundant single-wavelength anomalous

dispersion data merged from four data sets and collected at the Se K absorption edge. HKL2MAP

(Sheldrick, 2010) was used to identify the Se sites, which were then fed into PHENIX AUTOSOL

(Adams et al., 2002), resulting in an interpretable density modified electron map generated by

RESOLVE (Terwilliger, 2003). An initial model generated by BUCCANEER (Cowtan, 2006) was used

to solve the high-resolution native structures. The structure of Fz4CRD was determined by molecular

replacement (MR) in PHASER (McCoy, 2007) using mouse Fz8CRD (PDB ID: 1IJY) as the search model,

which was modified by CHAINSAW. For the determination of methylated Norrin–Fz4CRD, Norrin was
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used as search model for MR in PHASER (McCoy, 2007) to obtain the initial phases. The additional

electron density corresponding to Fz4CRD was clearly discernible after density modification with

PARROT (Cowtan, 2010). Subsequently, the complex structure was solved by searching for Fz4CRD
with MR in PHASER (McCoy, 2007). All other structures were solved by MR in PHASER (McCoy, 2007)

using the refined Norrin and Fz4CRD structures as search models. The models were completed by

manual rebuilding in COOT (Emsley and Cowtan, 2004) and refinement in REFMAC5 (Murshudov

et al., 1997) and PHENIX (Adams et al., 2010). The crystallographic statistics are listed in Table 1.

All models were validated with MOLPROBITY (Chen et al., 2010).

Structure analysis
Amino acid sequence alignments were constructed using ClustalW (Thompson et al., 1994). Structure

superposition was performed within the CCP4 program suite using the SSM algorithm (Krissinel and

Henrick, 2004). Electrostatic potential calculations were generated using APBS tools (Baker et al.,

2001), surface sequence conservation was calculated using CONSURF (Ashkenazy et al., 2010) and

interface areas of proteins were analyzed with the PISA web server (Krissinel and Henrick, 2007).

High-quality images of the molecular structures were created with the PyMOL Molecular Graphics

System (Version 1.5, Schrödinger, LLC). Schematic figures and other illustrations were prepared using

Corel Draw (Corel Corporation).

Surface plasmon resonance equilibrium binding studies
SPR experiments were performed using a Biacore T200 machine (GE Healthcare Life Sciences) at 25˚C

in 10 mM HEPES, pH 7.5, 0.15 M NaCl, 0.005% (wt/vol) Tween20. For in vivo biotinylation (Penalva

and Keene, 2004), Norrin wild-type or mutants in the pHL-Avitag3 vector (Aricescu et al., 2006) were

co-transfected with a pHLsec construct of BirA-ER (the synthetic BirA gene with a C-terminal KDEL

sequence for retention in the endoplasmic reticulum) in HEK293T cells. Mutant proteins were secreted

at similar levels to the wild-type proteins. The mammalian cell secretory pathway uses stringent quality

control mechanisms to ensure that secreted proteins are correctly folded (Trombetta and Parodi,

2003). The biotinylated Norrin variants were immobilized onto the surface of a CM5 sensor chip

(GE Healthcare Life Sciences) on which approximately 8500 resonance units of streptavidin were coupled

via primary amines. Fz4CRD proteins used as analytes were expressed in HEK293T cells to ensure full

glycosylation and prepared as described above. The signal from SPR flow cells was corrected by

subtraction of a blank and reference signal from a mock-coupled flow cell. In all analyses, the experimental

trace returned to baseline line after a regeneration step with 100 mM phosphate pH 3.7, 2 M NaCl, 1%

(wt/vol) Tween20. The data were fitted to a 1:1 Langmuir adsorption model (B = BmaxC/(Kd + C), where B

is the amount of bound analyte and C is the concentration of analyte in the sample) for the calculation of

dissociation constant (Kd) values using Biacore Evaluation software (GE Healthcare Life Sciences). Data

points correspond to the average from two independent dilution series.

Small-angle x-ray scattering experiment
Solution scattering data were collected at beamline BM29 of the European Synchrotron Radiation

Facility (ESRF; Grenoble, France) at 293 K within a momentum transfer range of 0.01 Å−1 < q < 0.45 Å−1,

where q = 4πsin(θ)/λ and 2θ is the scattering angle (Pernot et al., 2013). X-ray wavelength was 0.995 Å

and data were collected on a Pilatus 1M detector. Fz4CRD was measured at 1.47 and 3.10 mg/ml

(deglycosylated form) and 0.97 and 1.45 mg/ml (glycosylated form) in 10 mM HEPES pH 7.5, 0.15 M

NaCl. Norrin was measured at 0.75 and 1.26 mg/ml in 10 mM HEPES, pH 7.5, 0.7 M NaCl, 0.5% (wt/vol)

CHAPS. The deglycosylated Norrin–Fz4CRD complex was measured at 1.02 and 2.14 mg/ml in 10 mM

HEPES, 0.5 M NaCl. Data reduction and calculation of invariants was carried out using standard

protocols implemented in the ATSAS software suite (Petoukhov et al., 2012). A merged dataset was

obtained by merging the low-angle part of the low-concentration dataset with the high-angle part of the

high-concentration dataset. The Radius of gyration (Rg) was obtained from Guinier plot using AutoRg

(Petoukhov et al., 2012). The maximum dimension of the particle (Dmax) and Volume Porod (Vp [nm3])

were calculated by GNOM (Svergun, 1992). Molecular weights were obtained by (a) comparison with

the reference bovine serum albumin (BSA) and (b) dividing the Porod Volume by 1.66 (Rambo and

Tainer, 2011). Theoretical X-ray scattering patterns of structural models were calculated and fitted to

experimental X-ray scattering curves using the program FoXS (Schneidman-Duhovny et al., 2010).
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The Norrin, Fz4CRD and the Norrin–Fz4CRD complex solution structures were modeled starting from their

respective crystal structures. Complex glycan structures and missing regions of N- and C-termini were

added using the program Modeller (Eswar et al., 2003). All-atom simulations, and calculation and

fitting of scattering patterns of Norrin, Fz4CRD and the Norrin–Fz4CRD complex were performed using

the automated AllosMod-FoXS procedure (Guttman et al., 2013).

Size-exclusion chromatography coupled to multi-angle light scattering
analysis
SEC-MALS experiments were performed by using SEC on an analytical Superdex S200 10/300 GL

column (GE Healthcare Life Sciences) connected to online static light-scattering (DAWN HELEOS II,

Wyatt Technology, Santa Barbara, CA), differential refractive index (Optilab rEX, Wyatt Technology,

Santa Barbara, CA) and Agilent 1200 UV (Agilent Technologies, Santa Clara, CA) detectors. Purified

sample (FzCRD proteins at 50 μM or Norrin–Fz4CRD complex at 25 μM) was injected into a column

equilibrated in 10 mM HEPES, pH 7.5, 0.15 mM NaCl. Molecular mass determination was performed

using an adapted RI increment value (dn/dc standard value; 0.186 ml/g) to account for the glycosylation

state. The theoretical molecular weight was predicated from amino acid sequence plus 2.35 kDa per N-

linked glycosylation site for full glycosylated protein produced from HEK293T cells or 203 Da per site for

deglycosylated protein produced from HEK293T cells in the presence of kifunensine (Chang et al.,

2007) with limited glycosylation and treated with Endo-F1. Data were analyzed using the ASTRA

software package (Wyatt Technology, Santa Barbara, CA).

Luciferase reporter assay
The stable HEK293STF cell lines (Xu et al., 2004) carrying the Super Top Flash firefly luciferase

reporter were split into 96-well plates and transfected 24 hr later with 200 ng DNA per well using

Lipofectamine 2000 (Life Technologies, UK) according to the manufacturer’s instructions. For

assessment of interface mutants used in SPR experiments, the DNA mix contained 80 ng Norrin

plasmid, 40 ng each of Fz4 and Lrp6 plasmids, 20 ng each of Tspan-12 and constitutive Renilla

luciferase plasmids (pRL-TK, Promega, Madison, WI). The firefly and Renilla luciferase activities were

measured 48 hr later with Dual-Glo luciferase reporter assay system (Promega, Madison, WI) using an

Ascent Lunimoskan luminometer (Labsystems). For evaluation of recombinant Norrin and SOS

inhibition, the DNA mix (80 ng pLEXm plasmid, 40 ng each of Fz4 and Lrp6 plasmids, 20 ng each of

Tspan-12 and pRL-TK plasmids) was used for transfection. Cells were stimulated 6 hr post transfection

with 9 μg/ml Norrin, 9 μg/ml Norrin preincubated with 2 mM SOS for 15 min, or control 9 μg/ml Fetal

Calf Serum (FCS). The Dual-Glo luciferase reporter assays were performed 48 hr later. The firefly

luciferase activity was normalized to Renilla luciferase activity (relative light unit, RLU). Luciferase

reporter assays were performed 3 times in triplicate.

Heparin affinity chromatography
Protein samples produced in HEK293T cells were freshly purified by SEC and then adjusted in 50 mM

Tris, pH 7.5, 0.25 M NaCl. Purified protein (0.5 mg) was loaded onto a 1 ml HiTrap heparin HP column

(GE Healthcare Life Sciences) equilibrated in 20 mM Tris, pH 7.5, 0.25 M NaCl and eluted with a linear

NaCl gradient to 20 mM Tris, pH 7.5, 2 M NaCl, 5% (wt/vol) glycerol over 10 column volumes. Notably,

we found that Norrin–Fz4CRD complex tends to partially disassemble (Fz4CRD detected in flow-through;

Figure 7A) during sample preparation for the heparin binding assay (NaCl concentration was reduced

from 0.5M to 0.25M).
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