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6Molecular Genetics Group, Neuropathologie, Universitätsklinikum Freiburg,
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Abstract ISG15 is an interferon-stimulated, linear di-ubiquitin-like protein, with anti-viral activity.

The role of ISG15 during bacterial infection remains elusive. We show that ISG15 expression in

nonphagocytic cells is dramatically induced upon Listeria infection. Surprisingly this induction can be

type I interferon independent and depends on the cytosolic surveillance pathway, which senses

bacterial DNA and signals through STING, TBK1, IRF3 and IRF7. Most importantly, we observed that

ISG15 expression restricts Listeria infection in vitro and in vivo. We made use of stable isotope

labeling in tissue culture (SILAC) to identify ISGylated proteins that could be responsible for the

protective effect. Strikingly, infection or overexpression of ISG15 leads to ISGylation of ER and Golgi

proteins, which correlates with increased secretion of cytokines known to counteract infection.

Together, our data reveal a previously uncharacterized ISG15-dependent restriction of Listeria

infection, reinforcing the view that ISG15 is a key component of the innate immune response.

DOI: 10.7554/eLife.06848.001

Introduction
Listeria monocytogenes is a food-borne pathogen that can cause enteric infections. In addition, in

immunocompromised individuals it can cross the blood–brain barrier and in pregnant women the

feto-placental barrier potentially leading to cases of meningitis and septicemia. To be fully virulent,

Listeria must evade macrophage killing, enter and replicate in epithelial cells and spread from cell to

cell. Towards these aims Listeria subverts a number of normal host cell functions in order to promote

its own replication and dissemination through a plethora of well-characterized virulence factors

(Cossart and Lebreton, 2014). Conversely, Listeria induces a rapid and sterilizing CD8+ T cell-

mediated adaptive immune response that has been extensively characterized (Lara-Tejero and

Pamer, 2004; Pamer, 2004). A more recent area of investigation has been the innate immune

response to the pathogen (Stavru et al., 2011).

Since Listeria is able to survive and replicate in the cytosol, several groups have sought to elucidate

how bacteria are sensed within macrophages and more recently within nonphagocytic cells. Once

Listeria has escaped from the phagosome, its multidrug efflux pumps secrete small molecules leading

to activation of an IRF3-dependent cytosolic surveillance pathway (CSP), resulting in type I interferon

activation (Crimmins et al., 2008). One of these small molecules, cyclic-di-AMP, is sufficient to

activate interferon β production in macrophages (Woodward et al., 2010). In nonphagocytic cells,
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type I interferon induction seems to emanate from sensing of triphosphorylated RNA molecules via

a RIG-I and MAVS-dependent pathway (Abdullah et al., 2012; Hagmann et al., 2013). Type I

interferon production subsequently leads to autocrine or paracrine activation of interferon-stimulated

genes (ISGs). We have recently shown that Listeria also activates the type III interferon pathway

(Lebreton et al., 2011; Bierne et al., 2012), a pathway which was discovered much later than type I

interferon (Kotenko et al., 2003; Sheppard et al., 2003). The type III interferon receptor has a more

limited tissue expression pattern than the receptor for type I interferon but activates a signaling

pathway similar to that of the type I interferon receptor. Several laboratories including ours have

recently contributed to the understanding of the type III interferon-dependent response to

intracellular viral and bacterial infections. Strikingly, the type III response occurs via peroxisomal

MAVS (Dixit et al., 2010; Odendall et al., 2014).

The role of one particular ISG, ISG15, during bacterial infection remains elusive. ISG15 is a linear

di-ubiquitin-like molecule (ubl) that is conserved from zebrafish to human; however, it is much less well

characterized than other ubls (Bogunovic et al., 2013). It can conjugate to over 300 cellular proteins and

can also function as a cytokine to induce interferon-γ production in peripheral blood mononuclear cells

(D’Cunha et al., 1996; Giannakopoulos et al., 2005; Zhao et al., 2005). Since Listeria, as other

pathogenic bacteria, often targets post-translational modifications during infection (Bonazzi et al., 2008;

Ribet and Cossart, 2010; Ribet et al., 2010), we were interested in investigating the interplay between

the interferon-stimulated ubl ISG15 and Listeria. ISG15 plays an important role in the innate immune

response to viruses. Isg15 expression becomes rapidly upregulated, and the protein is subsequently

conjugated to cellular and/or viral targets following type I interferon induction (Zhang and Zhang, 2011).

Mice deficient in ISG15 are susceptible to infection with Influenza, Sindbis, and Herpes viruses (D’Cunha

et al., 1996; Lenschow et al., 2005, 2007). Furthermore, many viruses encode proteins that specifically

impair ISGylation (Frias-Staheli et al., 2007). ISG15 seems to be unique among ubls, as it can both modify

specific target proteins and non-specifically modify proteins cotranslationally (Frias-Staheli et al., 2007;

Durfee et al., 2010; Zhao et al., 2010). Since ISG15 is strongly induced by type I interferon, which is

produced during bacterial infection, we aimed to decipher whether ISG15 is induced during Listeria

infection and if so whether ISGylation acts as a means of host defense against invading bacteria.

Here, we show that in nonphagocytic cells ISG15 is dramatically induced upon Listeria infection and

that, surprisingly, early induction can be type I interferon independent. Listeria-mediated ISG15

induction depends on the CSP, which senses bacterial DNA and signals through STING, TBK1, IRF3,

and IRF7. Most importantly, we demonstrate that ISG15 counteracts Listeria infection both in vitro and

eLife digest Listeria monocytogenes is a bacterium that can cause serious food poisoning in

humans. Infections with this bacterium can be particularly dangerous to young children, pregnant

women, the elderly, and individuals with weakened immune systems because they are more

susceptible to developing serious complications that can sometimes lead to death.

The bacteria infect cells in the lining of the human gut. Cells that detect the bacteria respond by

producing proteins called interferons and other signaling proteins that activate the body’s immune

system to fight the infection. One of the genes that the interferons activate encodes a protein called

ISG15, which helps to defend the body against viruses. However, it is not clear what role ISG15 plays

in fighting bacterial infections.

Here, Radoshevich et al. studied the role of ISG15 in human cells exposed to L. monocytogenes.

The experiments show that ISG15 levels increase in the cells, but that the initial increase does not

depend on Interferon proteins. Instead, ISG15 production is triggered by an alternative pathway

called the cytosolic surveillance pathway, which is activated by the presence of bacterial DNA inside

the cell.

Further experiments found that ISG15 can counteract the infections of L. monocytogenes both in

cells grown in cultures and in living mice. ISG15 modifies other proteins in the cell to promote the

release of proteins called cytokines that help the body to eliminate the bacteria. Radoshevich et al.’s

findings reveal a new role for ISG15 in fighting bacterial infections. A future challenge will be to

understand the molecular details of how ISG15 triggers the release of cytokines.

DOI: 10.7554/eLife.06848.002
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in vivo. We identified protein targets of ISGylation following overexpression of ISG15 using stable

isotope labeling in tissue culture (SILAC) analysis and uncovered a prominent enrichment in integral

membrane proteins of the endoplasmic reticulum and Golgi apparatus. This enrichment correlated

with an increase in canonical secretion of cytokines known to control infection, highlighting a new

mechanism of regulation of the host response to an intracytosolic pathogen.

Results

ISG15 is induced by L. monocytogenes infection both in vitro and in vivo
To test whether ISG15 and ISGylation are induced upon bacterial infection, we infected HeLa cells

with Listeria. Upon L. monocytogenes infection, ISG15 was massively induced, whereas incubation

with the related non-pathogenic bacterium, Listeria innocua, did not lead to an increase in ISG15

production (Figure 1A). We subsequently monitored ISG15 expression in cells infected with Listeria

over time. ISG15 protein levels increased relatively rapidly; the unconjugated protein was already

present at 6 hr post infection and accumulated steadily throughout the infection (Figure 1B). We next

investigated whether ISG15 induction following Listeria infection also occurs in vivo. After 72 hr of

systemic sub-lethal Listeria infection in mice, there was a robust induction of ISG15 and ISGylated

conjugates in infected liver tissue, revealing that Listeria infection leads to ISG15 induction both in

vitro and in vivo (Figure 1C).

ISG15 induction can be type I interferon independent
Since ISG15 protein levels increased relatively rapidly and ISG15 is known to be transcriptionally

induced in response to interferon, we monitored transcript levels of both ISG15 and IFNB1 by

quantitative real time PCR (qRT-PCR). Interestingly, we found that the two transcripts are

concomitantly induced after 3 hr of infection with Listeria (Figure 1D,E). This concomitant induction

led us to hypothesize that ISG15 could be induced in an interferon-independent manner during

Listeria infection. In order to test this hypothesis, we used the viral protein B18R to block signaling

from the interferon receptor (Chairatvit et al., 2012). The protein acts similarly to a blocking

antibody. When cells are pretreated with B18R, the viral protein inhibits binding of interferon to its

receptor, which is thus prevented from signaling. Following pretreatment with B18R, HeLa cells were

either stimulated with interferon or infected with Listeria to assess whether the bacterial-ISG15

induction was dependent on secreted interferon signaling in an autocrine or paracrine manner. We

observed that bacteria-induced ISG15 production was not diminished by B18R pretreatment in stark

contrast to the interferon-induced ISG15 signal, which was almost entirely abrogated by B18R

pretreatment (Figure 1F). To confirm the B18R results, we took advantage of a human fibrosarcoma

cell line, 2fTGH, from which interferon-unresponsive mutants have been isolated (Pellegrini et al.,

1989). The U5A clone lacks a functional IFNAR2 receptor (IFNAR2−/−) and thus is impaired in type I

interferon receptor signaling (Lutfalla et al., 1995). 2fTGH and U5A cells were both highly permissive

to Listeria infection (Figure 1—figure supplement 1). Strikingly in the U5A cells (defective for type I

interferon binding and signaling), as in 2fTGH cells, there is still a robust ISG15 response to Listeria

infection (Figure 1G).

Since B18R treatment does not inhibit type III interferon signaling, ISG15 induction could arise via

type III interferon receptor activation (Bandi et al., 2010). However, 2fTGH cells are unresponsive to

type III interferon (Zhou et al., 2007). Therefore, the ISG15 protein induction that we observed is

independent of both type I and type III interferon signaling. Taken together, our results show that

ISG15 can be induced by Listeria in an interferon-independent manner in human nonphagocytic cells.

We thus sought to determine how ISG15 was induced and what consequences ISG15 expression had

on the cell and on infection.

Cytosolic Listeria induces ISG15
To determine which signaling pathway was responsible for the Listeria-induced ISG15 transcript and

to help identify the cellular compartment in which bacteria are sensed, we made use of Listeria strains

that are impaired at different stages of infection. Incubation of cells with L. innocua, a non-pathogenic

Listeria species which cannot invade cells, did not induce ISG15 induction, demonstrating that

external pathogen recognition receptors were not involved (Figure 2A). We then used a strain of

Radoshevich et al. eLife 2015;4:e06848. DOI: 10.7554/eLife.06848 3 of 23

Research article Cell biology | Microbiology and infectious disease

http://dx.doi.org/10.7554/eLife.06848


Figure 1. ISG15 is induced by Listeria monocytogenes infection both in vitro and in vivo and ISG15 induction can be

type I interferon independent. (A) HeLa cells were lysed and immunoblotted with α-ISG15, α-EF-Tu (EF-Tu is

a prokaryotic translation elongation factor that we use as an indicator of infection level), and α-ACTIN following 12 or

24 hr of interferon β treatment at 1000 units/ml, infection with L. monocytogenes for 18 hr at multiplicity of infection

(MOI) of 10 or 25 bacteria per human cell, and incubation with Listeria innocua at MOI of 10 or 25 bacteria per human

cell. (B) HeLa cells were lysed and immunoblotted with α-ISG15, α-EF-Tu, and α-ACTIN following a time course of

L. monocytogenes infection from 3 to 24 hr, interferon β treatment for 24 hr was used as a positive control for

ISGylation. (C) Liver tissue from mice injected with saline or infected with Listeria for 72 hr was lysed and

immunoblotted with α-ISG15, each lane corresponds to a distinct animal (* indicates background band). (D) Relative

fold change by qRT-PCR of ISG15 transcript following time course of infection with Listeria. (E) Relative fold change

of ISG15 by qRT-PCR compared with the interferon β transcript over time course of infection with Listeria; data

represented in a logarithmic scale. (F) Cells were lysed and immunoblotted with α-ISG15 and α-ACTIN following pre-

treatment with the viral protein B18R followed by interferon α2 treatment (1000 μ/ml) or Listeria infection. (G) 2fTGH

and U5A (IFNAR2−/−) cells were lysed and immunoblotted with α-ISG15 and α-ACTIN following Listeria infection for

18 hr.

DOI: 10.7554/eLife.06848.003

The following figure supplement is available for figure 1:

Figure supplement 1. 2fTGH cells are permissive to L. monocytogenes infection.

DOI: 10.7554/eLife.06848.004
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Figure 2. Listeria induces ISG15 via the cytosolic surveillance pathway (CSP) which senses bacterial DNA. (A) Cells were lysed and immunoblotted with the

indicated antibodies following infection with various mutants of Listeria: Listeria strain EGD (MOI 10), Δhly (MOI 10), ΔactA (MOI of 50), and L. innocua +
InlB (MOI of 100). Different MOIs were used at the outset in an attempt to equalize Colony forming units (CFUs) at the end of the experiment. CFUs per ml

of intracellular bacteria following infection were determined by serial dilution after 18 hr of infection. (B) As before cells were lysed and immunoblotted

with the indicated antibodies following infection with Listeria strain EGD-e PrfA* (MOI 10), ΔplcA (MOI 10), Δhly (MOI of 10), and a triple mutant of

ΔhlyΔplcAΔplcB (MOI of 100). CFUs per ml of intracellular bacteria following infection were determined by serial dilution after 24 hr of infection. (C) HeLa

cells were treated with siRNA pools targeting the indicated mRNA or siControl for 72 hr. Cells were then infected for 18 hr (MOI 10), lysed, and

immunoblotted with α-ISG15 and α-ACTIN antibodies. Values were generated using ImageJ to quantify relative levels of induction of ISG15 compared to

ACTIN. Values from three independent experiments are displayed (average ± SEM). siRNA knockdown was confirmed with qRT-PCR from a well of

a technical replicate. Statistical significance calculated using ANOVA followed by Bonferonni’s multiple comparison test against siControl. (D) Cells were

lysed and immunoblotted with α-ISG15 and α-ACTIN following permeablization without Cyclic-diAMP, with 1 μM Cyclic-diAMP or with 10 μM Cyclic-

diAMP. Average ± SEM; fold change of ISG15 or interferon β normalized to GAPDH levels following permeablization without Cyclic-diAMP, with 1 μM
Cyclic-diAMP or with 10 μMCyclic-diAMP. (E) Cells were lysed and immunoblotted with α-ISG15 and α-ACTIN following transfection with 800 ng of Listeria

genomic DNA, Listeria genomic DNA treated with DNAase or total Listeria RNA for 24 hr; Average ± SEM; values were generated using ImageJ to

quantify relative levels of induction of ISG15 compared to ACTIN in three independent experiments. Statistical significance calculated using ANOVA

Figure 2. continued on next page

Radoshevich et al. eLife 2015;4:e06848. DOI: 10.7554/eLife.06848 5 of 23

Research article Cell biology | Microbiology and infectious disease

http://dx.doi.org/10.7554/eLife.06848


L. innocua that expresses Internalin B (InlB), a L. monocytogenes virulence factor that mediates entry

into nonphagocytic cells (Dramsi et al., 1995). These bacteria enter the cell and are entrapped in

a membrane-bound phagosome, but lack the required virulence factors to escape from it. This strain

was also unable to induce an ISG15 signal, suggesting that the pathogen recognition receptors that

survey the phagosome are not sufficient for ISG15 induction (Figure 2A). Listeria’s hemolysin,

listeriolysin O (LLO) is an extremely potent virulence factor, which triggers vacuolar escape of the

bacterium as well as a plethora of changes in the host cell (Hamon et al., 2012). Strikingly, we found

that the Δhly mutant was able to potently induce ISG15 (Figure 2A). Thus, LLO is not necessary for

ISG15 induction. However, in several human epithelial cell lines the mutant that lacks LLO (Δhly) can
still escape into the cytosol (Portnoy et al., 1988; Marquis et al., 1995). Listeria expresses two

phospholipases that can compensate for the lack of LLO in the Δhly mutant in order to free the

bacterium from the phagosome in human epithelial cells (Marquis et al., 1995; Smith et al., 1995).

To assess whether Listeria trapped in the phagosome could induce ISG15, we constructed a triple

mutant (lacking LLO, PLCA, and PLCB) of Listeria. This mutant is unable to escape the phagosome of

human epithelial cells (Figure 2—figure supplement 1). Single mutants (either in PLCA or LLO), which

escape into the cytosol, induce a strong ISG15 signal relative to non-infected cells (Figure 2B). In

contrast, the triple mutant that is confined to the phagosome does not induce ISG15 (Figure 2B). We

thus conclude that only cytoplasmic bacteria induce ISG15. In fact, the only other mutant to induce

less ISG15 production was the ΔactA mutant (Figure 2A). This mutant is unable to spread from cell to

cell and cannot escape autophagic recognition, degradation, and lysis (Gouin et al., 2005; Yoshikawa

et al., 2009). As a result bacterial load is much lower compared to wild-type bacteria, providing an

explanation for the reduced ISG15 signal (Figure 2A). Taken together, our results reveal that ISG15

induction stems from cytosolic bacteria.

ISG15 is induced via the CSP following sensing of cytosolic DNA
In order to determine which pathway was essential for ISG15 induction, we performed an siRNA

screen of innate immune molecules that are known to be involved in bacterial sensing (Figure 2C). As

for the experiments described above, we used HeLa cells for the siRNA screen. Although HeLa cells

are reported to lack STING (Burdette and Vance, 2013), the ATCC line we worked with expressed

STING mRNA, as evidenced by qRT-PCR. We were able to specifically extinguish this signal with

siRNA (Figure 2—figure supplement 2). Our data showed that the ISG15 signal was clearly

dependent on IRF3, IRF7, STING, and TBK1, implicating the CSP. In further support of an interferon-

independent signal, depleting STAT1, which is a critical mediator of type I and III interferon signaling

did not abrogate the ISG15 signal (Figure 2C). In non-immune cells interferon induction has been

linked to sensing of triphosphorylated RNA by RIG-I (Abdullah et al., 2012; Hagmann et al., 2013);

however, in our experimental conditions, RIG-I did not seem to be required for the ISG15 signal.

Instead, it seems that direct ISG15 induction occurs through a pathway similar to the CSP in

macrophages.

We next sought which PAMP was necessary and sufficient for ISG15 induction. We transfected cells

with either Listeria genomic DNA, Listeria genomic DNA pre-treated with DNAse, Listeria total RNA,

or we permeabilized cells in the presence of cyclic-di-AMP. To control whether the cyclic di-AMP was

biologically active and reached the cytosol of the cells, we assessed IFNB1 levels by qRT-PCR

(Figure 2D). As expected Listeria cyclic di-AMP led to an increase in IFNB1 transcript levels. Although

IFNB1 induction with cyclic di-AMP was lower than that reported for murine macrophages

Figure 2. Continued

followed by Bonferonni’s multiple comparison test against transfection control. Statistical significance is indicated as follows: NS, nonsignificant; *p < 0.05;

**p < 0.01; ***p < 0.001.

DOI: 10.7554/eLife.06848.005

The following figure supplements are available for figure 2:

Figure supplement 1. Listeria ΔhlyΔplcAΔplcB does not escape the vacuole.

DOI: 10.7554/eLife.06848.006

Figure supplement 2. HeLa cells express STING mRNA.

DOI: 10.7554/eLife.06848.007
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(Woodward et al., 2010), it was similar to that reported for human phagocytes and monocytes

(Hansen et al., 2014). Listeria genomic DNA was the only PAMP sufficient for an increase in ISG15

levels (Figure 2E), whereas ISG15 levels following cytosolic exposure to cyclic-di-AMP did not

increase (Figure 2D). Collectively, these data implicate that the CSP can directly induce ISG15

after sensing of bacterial DNA in the cytosol of cells in a pathway that requires STING, TBK1, IRF3,

and IRF7.

ISG15 protects against Listeria infection in vitro and in vivo
We next assessed whether ISG15 has a functional effect on infection. We created a retroviral construct

that expresses an epitope-tagged version of ISG15 (3XFlag-6His-ISG15). We then infected cells that

stably express 3XFlag-6His-ISG15 with Listeria. As a control, cells were retrovirally transduced with

pBabe puro empty vector. For the same multiplicity of infection (MOI) after 3 hr of infection, stable

overexpression of ISG15 resulted in 50% fewer cytosolic bacteria as compared to control cells

(Figure 3A). We then assessed bacterial uptake by differentiating between the bacteria that are inside

the cell or those that remain on the surface (inside-out staining) and did not observe a difference

between control and ISG15-overexpressing cells for invasion (Figure 3—figure supplement 1A).

During a time course of infection in these cells at 7 and 12 hr, there were still 50% fewer bacteria, and

by 24 hr, the levels of bacteria had equalized between the two cell lines (Figure 3—figure

supplement 1B). This time course suggests that ISG15 does not impact bacterial replication as an

active bacterial clearance mechanism would (Figure 3—figure supplement 1B). We then knocked

down ISG15 during infection. This increased bacterial load by nearly twofold after 15 hr (Figure 3B,

Figure 3—figure supplement 2). These data strongly suggest that ISG15 plays a role in protection

against Listeria infection following uptake. To further explore this phenotype in primary cells, we

isolated mouse embryonic fibroblasts (MEFs) from wild-type and Isg15−/− embryos. We infected

these cells with Listeria and we observed a fivefold increase in bacterial load in Isg15−/− MEFs

compared to wild-type MEFs for the same MOI (Figure 3C,D). Interestingly, Isg15−/− MEFs are not

susceptible to other intracellular pathogens such as Shigella flexneri and Salmonella typhimurium,

and in HeLa cells only Staphylococcus aureus is able to induce as much ISG15 as Listeria

(Figure 3—figure supplement 1C,D). Indeed, S. flexneri and S. typhimurium induce very little

ISG15. We next examined whether ISG15 could also play a role during Listeria infection in vivo by

assessing the susceptibility of Isg15−/− animals to the pathogen during systemic infection (Osiak

et al., 2005). ISG15-deficient mice exhibited a significant increase in bacterial load compared to

wild-type animals in both the spleen and liver after 72 hr of systemic sub-lethal Listeria infection

(Figure 3E,F). Taken together, these data demonstrate that ISG15 restricts Listeria infection both in

vitro and in vivo.

ISGylation machinery is induced by Listeria and ISGylation protects
against infection
Since ISG15 can mediate its protective effect through conjugation-dependent or conjugation-

independent mechanisms, we wanted to determine if conjugation contributed to ISG15’s role in

defense against Listeria. Therefore, we initially assessed whether Listeria could induce the enzymes

required for ISGylation. To this end, we performed RNASeq of Lovo cells infected with Listeria for

24 hr compared to uninfected cells. The RNASeq data has been uploaded to Array Express with the

accession E-MTAB-3649 (Radoshevich et al., 2015b). We found that UBE1L (E1), UBE2L6 (E2), HERC5

and TRIM25 (E3s) mRNA are all significantly upregulated following Listeria infection, as is the

deconjugating enzyme USP18 (Figure 3G). In order to assess whether UBE2L6 and TRIM25 are

induced as rapidly as ISG15 at the protein level, we monitored their expression by immunoblot at 3 hr

post infection (Figure 3H). Interestingly, TRIM25 already displayed increased expression relative to

loading control at 3 hr post infection. UBE2L6 was present in these cells at this time point as well. We

then sought to determine whether conjugation-incompetent MEFs would have a higher bacterial load

following Listeria infection. Primary MEFs that lack UBE1L, and thus can not form ISG15 conjugates,

have a much higher bacterial burden following Listeria infection than wild-type MEFs at 4 hr post

infection. This phenotype mirrors the bacterial burden of Isg15−/− MEFs, clearly indicating that

ISG15’s role in host defense against Listeria in vitro requires ISGylation (Figure 3I).
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Figure 3. ISG15 protects against Listeria infection in vitro and in vivo. (A) Percentage of bacteria inside HeLa cells,

infected at an MOI of 25, which were transduced with empty vector (Control) or stably express ISG15 after 3 hr of

infection; CFUs of bacteria within control cells were normalized to 100%, data shown is AVG ± SEM. Statistical

significance were determined using two tailed t-test. (B) Percentage of bacteria inside HeLa cells which have been

transfected with siControl or siISG15 (15 hr of infection, MOI 25). siControl cells were normalized to 100%, data is

shown as AVG ± SEM. Statistical significance determined using two tailed t-test. (C) Primary mouse embryonic

fibroblasts (MEFs, Isg15+/+ or Isg15−/−) were infected with Listeria for 4 hr at an MOI of 10. CFUs of bacteria within

Isg15+/+ cells were normalized to 100%, and error bars represent ± SEM. Statistical significance determined using

two tailed t-test. (D) Data shown is average CFUs per ml ± SEM in Isg15+/+MEFs vs Isg15−/−MEFs following 4 hr of

infection, MOI 10. (E) and (F) Isg15+/+ or Isg15−/− mice were infected intravenously with 5 × 105 of Listeria strain

EGD. The liver and spleen were isolated following 72 hr of infection, and CFUs per organ were calculated by serial

dilution and replating; circles or squares depict individual animals. The line denotes AVG ± SEM. Significance for in

vivo data determined using Mann–Whitney test. (G) RNASeq data of significantly upregulated ISG15-related genes

compared with non-infected controls in LoVo cells following Listeria infection for 24 hr. (H) Cells were lysed and

Figure 3. continued on next page
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ISGylation modifies ER and Golgi proteins and increases canonical
secretion
Since ISG15 is a ubiquitin-like modifier that is known to be covalently linked to hundreds of cellular

and several viral substrates (Giannakopoulos et al., 2005; Zhao et al., 2005), our goal was to identify

which substrates following overexpression of ISG15 could account for the protective effect detected

in the context of Listeria infection and used a proteomic approach. We made use of SILAC coupled

with LC-MS/MS and compared cells that express empty vector, cells that express ISG15 and cells that

express ISG15 that were treated with interferon, the primary inducer of ISGylation (Figure 4A,B). We

identified thirty ISGylated proteins modified following overexpression of ISG15 (Figure 4C–E,

Figure 4—source data 1, depicted in blue). The proteomics data have been deposited to the

ProteomeXchange Consortium (Vizcaino et al., 2014) via the PRIDE partner repository with the data

set identifier PXD001805 (Radoshevich et al., 2015a). Interestingly, these proteins have not yet been

reported to be targets of ISGylation. Following interferon treatment, ISG15 modified twelve

additional proteins distinct from those that were ISGylated after overexpression without treatment

(Figure 4C–E, Figure 4—source data 1, depicted in red). Three of these proteins are known targets

of ISGylation following interferon treatment in the aforementioned screens. The other nine are novel

substrates of ISGylation. To gain more insight into the role of ISGylation of the modified substrates

following overexpression, we performed a gene ontology (GO) analysis of the thirty ISGylated

proteins. To our surprise over 80% of ISG15-target proteins are integral membrane proteins

(Figure 5A). Even more intriguingly they are known to be primarily localized to the endoplasmic

reticulum and Golgi apparatus and/or are critical for glycosylation, ER morphology and ER to Golgi

trafficking (e.g., the oligosaccharyl-transferase (OST) complex, RTN4, ATL3, SEC22B, ERGIC1, and

ERGIC3; Figure 4C). One of the proteins enriched following ISG15 overexpression is Magnesium

Transporter 1 (MAGT1). MAGT1 is critical for T cell activation and patients with a deletion in the

MAGT1 gene are susceptible to viral and certain bacterial infections (Li et al., 2014). The protein is

localized to the cell surface or to the ER where it interacts with the OST complex, which is critical for

N-glycosylation (Pfeffer et al., 2014). Notably, we also identified multiple proteins from the OST

complex as targets of ISGylation (Figure 4C, inset). To validate that MAGT1 was modified by ISG15,

we affinity purified ISGylated proteins and performed immunoblot analysis (Figure 5B). Two higher

molecular weight ISG15-MAGT1 complexes appear that are absent in control cells (Figure 5B,

arrows). To assess whether MAGT1 was ISGylated following infection, we immunoprecipitated ISG15

and could show that there is a higher molecular weight MAGT1 complex that immunoprecipitates

with ISG15 (Figure 5—figure supplement 1A). Additionally, non-conjugated MAGT1 was enriched

following ISG15 immunoprecipitation as well. Whether the interaction is direct or indirect within

a multi-protein complex remains to be determined. Of note, MAGT1 is also induced by Listeria

infection (Figure 5—figure supplement 1A). A second target of ISGylation following ISG15

overexpression is Reticulon 4 (RTN4) (Figure 4C,D). It is known that RTN4 helps to determine the

morphology of the endoplasmic reticulum (Voeltz et al., 2006). We also validated that endogenous

RTN4 was modified by ISG15 by immunoblot (Figure 5B), and we detected an upshifted ladder of

modified RTN4 that was also recognized by the ISG15 antibody. ISG15 is not known to make chains so

the ladder most likely corresponds to either multiple ISGylations of RTN4 or concomitant

modifications of RTN4 by ISG15 together with other modifiers as opposed to a single modification.

Figure 3. Continued

immunoblotted with the indicated antibodies following infection with Listeria for 3 hr. (I) Data shown is average

CFUs per ml ±SEM in Isg15+/+ MEFs vs Isg15−/− MEFs and in Ube1L+/+ and Ube1L−/− MEFs following 4 hr of

infection, using an MOI of 10. Statistical significance is indicated as follows: NS, nonsignificant; *p < 0.05; **p < 0.01;

***p < 0.001.

DOI: 10.7554/eLife.06848.008

The following figure supplements are available for figure 3:

Figure supplement 1. ISG15 protects cells from Listeria infection at early time points.

DOI: 10.7554/eLife.06848.009

Figure supplement 2. siRNA-mediated knockdown effectively depletes ISG15 during Listeria infection.

DOI: 10.7554/eLife.06848.010
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Here again we could validate the endogenous modification of RTN4 by ISG15 following Listeria

infection (Figure 5—figure supplement 1A) by detecting multiple distinct slower migrating bands of

RTN4 and ISG15 (Figure 5—figure supplement 1A). Interestingly, Atlastin-3, another protein that

affects ER morphology was also identified as an ISG15 target. We attempted to validate this

interaction by immunoblot but were unable to identify an upshifted complex, in part due to

inadequate antibody sensitivity (data not shown). Atlastin-3 is an ER dynamin-like GTPase that can

alter the morphology of both the ER and the Golgi apparatus (Rismanchi et al., 2008; Hu et al.,

2009). RTN4 and Atlastin-3 can interact to help shape the tubular ER. When RTN4 is overexpressed it

increases protein disulphide-isomerase (PDI) clustering in the cell (Yang et al., 2009; Bernardoni

et al., 2013). We thus assessed PDI puncta formation following ISG15 overexpression and in line

with our hypothesis found a dramatic increase in puncta formed upon ISG15 expression (Figure 5C).

Figure 4. Schematic representation of ISG15 targets identified by proteomics. (A) Epitope-tagged ISG15 (3XFLAG-6His-ISG15) represented binding to an

unknown target via isopeptide linkage. ISG15 has a stop codon engineered following the LRLRGG motif truncating the amino acid sequence which in

wild-type ISG15 would be removed by USP18 during maturation. (B) Scheme for enrichment of ISGylated targets using SILAC. Equal protein amounts of

each condition were combined, nickel affinity purified, and then analyzed by LC-MS/MS. (C) Scatter plot of Log2 transformed ISGylated proteins. The X

axis displays the medium (M) condition over light (L), which is ISG15 overexpression over empty vector control (in blue), and the Y axis displays the heavy

(H) condition over medium (M), which is interferon treatment over ISG15 expression (in red). Cut-off was determined as M/L ratio of greater than or equal

to one for ISG15 targets and H/M ratio of greater than or equal to one for interferon ISGylation targets. Inset is a representation of ISG15 targets from the

OST Complex. Other targets identified are proteins involved in ER morphology or ER to Golgi transport. (D) Representative MS spectra from ISG15, RTN4

and IFIT5 peptides: 100LTQTVAHLK108 from ISG15, 2+; 58KPAAGLSAAPVPTAPAAGAPLMDFGNDFVPPAPR91 from RTN4, 3+ and 207AVTLNPDNSYIK218

from IFIT5, 2+. (E) Heat map of fold change of ISGylated proteins following ISG15 overexpression (in blue) and of ISGylated proteins following

interferon treatment (in red).

DOI: 10.7554/eLife.06848.011

The following source data is available for figure 4:

Source data 1. Enlarged heat map with protein identifiers related to Figure 4E.

DOI: 10.7554/eLife.06848.012
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Figure 5. ISGylation modifies ER and Golgi proteins and increases canonical secretion. (A) Gene ontology (GO)

analysis of ISGylated proteins enriched following ISG15 overexpression (blue) relative to all proteins identified in this

analysis (light gray) and all human proteins as annotated by the Uniprot/Swiss-prot database (dark gray). (B) Nickel

affinity purification of ISG15 in empty-vector control or ISG15 overexpression cells followed by α-ISG15, α-MAGT1,

and α-RTN4 immunoblot. Input is 0.1% of the initial affinity purification volume. Higher molecular weight species

corresponding to ISGylated RTN4 or MAGT1 are indicated. (C) Cells were fixed and immunostained with α-PDI
antibody (green), with α-TGN46 (red) and Hoechst (blue). Cells with four or more large puncta were enumerated as

cells with PDI clusters, a minimum of 100 cells were counted per experiment, and data are shown as percentage of

cells with PDI clusters; AVG ± SEM. Statistical significance determined using two-tailed t-test. (D) The indicated cells

were treated with 20 ng/ml TNF-α for 24 hr in a 96-well format. 100 μl of supernatant was collected for each ELISA

and assayed for the presence of IL-8 and IL-6. Statistical significance determined using two-tailed t-test. (E) The

indicated cells were infected for 3 or 7 hr with Listeria (MOI 25) in a 96-well format, supernatants were collected and

100 μl of supernatant was used for an IL-8 ELISA. Statistical significance determined using two-tailed t-test. (F) The

indicated cells were either infected with Listeria (MOI 25) for 24 hr in a 96-well format. 100 μl of supernatant was
collected for each ELISA and assayed for the presence of IL-6 or IL-8. Statistical significance determined using two-

tailed t-test. Statistical significance is indicated as follows: NS, nonsignificant; *p < 0.05; **p < 0.01; ***p < 0.001.

DOI: 10.7554/eLife.06848.013

The following figure supplements are available for figure 5:

Figure supplement 1. ISG15 covalently modifies RTN4 and MAGT1 following infection.

DOI: 10.7554/eLife.06848.014

Figure 5. continued on next page
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We further assessed the ERmorphology of ISG15-overexpressing cells by visualizing SEC61-GFP or KDEL-

BFP. Neither of these markers displayed an apparent redistribution in ISG15 overexpressing cells relative

to control cells (Figure 5—figure supplement 1B). We also assayed whether there was a difference in ER

mass using ER-tracker and FACS analysis (Figure 5—figure supplement 1C). There was no detectable

difference between the two cell lines in ER mean fluorescence intensity. Taken together, the most striking

effect of ISG15 overexpression on ER morphology is PDI clustering and distribution.

Certain UBL proteins, such as SUMO and ISG15, modify 1–5% of a given substrate; nevertheless,

this partial modification is sufficient to lead to a phenotypic effect on the substrate. We thus

investigated whether the enrichment of ER and Golgi proteins modified by ISG15 could have an effect

on the primary function of these organelles. Canonical secretion of cytokines and growth factors

involves translation and import of the proteins into the ER, folding and modification (e.g.,

glycosylation), within the ER, followed by sorting and trafficking within the Golgi culminating in

targeting to the plasma membrane. Since we found proteins implicated in many of these processes to

be ISGylated (Figure 4C), we thus hypothesized that canonical secretion could be altered in the

ISG15-overexpressing cells. As TNF-α is known to lead to canonical secretion of many cytokines, via

activation of NF-κB and MAPK pathways, we assessed secreted cytokine levels in ISG15-

overexpressing cells compared to control cells following TNF-α treatment. Among a panel of 31

human cytokines, we detected increased secretion of IL-8 and IL-6 in ISG15-expressing cells relative to

control cells (Figure 5—figure supplement 2). We validated these findings with quantitative ELISAs

for IL-6 and IL-8 (Figure 5D). ISG15-expressing cells secreted significantly more IL-6 and IL-8 following

TNF-α treatment than control cells (Figure 5D). As ISG15 itself has been reported to be able to act as

a secreted cytokine, we also assessed ISG15 in the supernatant. However, we did not observe

secreted ISG15 from either cell type (Figure 5—figure supplement 3).

Finally, based on the results observed following TNF-α treatment, it was of critical importance to

test whether a similar ISG15-dependent modulation of cytokine secretion occurred during Listeria

infection. As shown in Figure 5E, following infection, ISG15-overexpressing cells secreted significantly

more IL-8 than infected wild-type cells at both 3 and 7 hr post infection. The difference in IL-8

concentration in the media after 24 hr of infection was nearly threefold higher in ISG15-

overexpressing cells relative to control cells (Figure 5F). As with IL-8 the IL-6 concentration in the

media increased by threefold relative to control cells following 24 hr of infection. Moreover, we could

not detect ISG15 in the supernatant following infection in either cell line (Figure 5—figure

supplement 3). In order to confirm this effect on cytokine secretion under endogenous conditions, we

assayed whether ISG15 could modulate cytokine secretion following infection with L. monocytogenes

as opposed to L. innocua expressing InlB. Infection with L. monocytogenes led to significantly higher

IL-8 and IL-6 than L. innocua expressing InlB, which correlates with increased ISG15 expression

(Figure 5—figure supplement 1D). Furthermore, we assessed cytokine secretion in transformed

MEFs that lack ISG15, relative to their wild type counterparts following Listeria infection. Despite

significantly higher levels of bacteria in the Isg15−/− MEFs, the cells secreted significantly less IL-6

than wild-type cells (Figure 5—figure supplement 1E). Therefore, ISG15 appears to be a critical

modulator of cytokine secretion following Listeria infection. Collectively, our data reveal that during

Listeria infection ISG15 modification of distinct ER and Golgi proteins increases secretion of cytokines

which are known to counteract infection in vivo.

Discussion
ISG15 has primarily been characterized, in the context of infection, as an antiviral protein induced by

type I interferon. Here, we show for the first time, to our knowledge, that Listeria infection can lead to

Figure 5. Continued

Figure supplement 2. Non-biased assay of 31 cytokines following TNFα treatment in control vs ISG15-

overexpressing cells.

DOI: 10.7554/eLife.06848.015

Figure supplement 3. ISG15 is not secreted as a cytokine from HeLa cells following TNFα treatment or Listeria

infection.

DOI: 10.7554/eLife.06848.016
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the direct induction of an interferon-stimulated gene, ISG15, in a type I interferon-independent

manner in nonphagocytic cells. This induction requires STING, TBK1, IRF3 and IRF7 and Listeria DNA

is necessary and sufficient to induce the signal required to produce ISG15. We have demonstrated

that ISG15 restricts infection of nonphagocytic cells. Furthermore, primary fibroblasts that lack ISG15

or UBE1L are more susceptible to infection and animals deficient in ISG15 have a higher bacterial

burden both in the liver and spleen. Finally, our proteomic analysis has helped to reveal a novel

mechanism through which ISG15 and ISGylation can restrict Listeria infection. Furthermore, we

demonstrated a previously unidentified ISGylation of integral ER and Golgi proteins, which in turn

correlates with increased cytokine secretion upon infection.

Interferon-independent induction of ISG15 during Listeria infection
Listeria has long been used as a model organism to understand the adaptive immune response,

however more recently interest in the field has focused on the innate immune pathways required to

produce type I and type III interferons and bacterial modulators of type I and type III interferons

during Listeria infection of nonphagocytic cells (Lebreton et al., 2011; Abdullah et al., 2012; Bierne

et al., 2012; Hagmann et al., 2013; Odendall et al., 2014). In phagocytic cells, the primary type I

interferon response to Listeria is mediated by Listeria cyclic-di-AMP (Woodward et al., 2010). In

nonphagocytic cells, type I interferon is produced downstream of RIG-I sensing of triphosphorylated

RNA molecules (Abdullah et al., 2012; Hagmann et al., 2013). Here, we highlight a complementary

pathway, which can lead to rapid and direct interferon-independent induction of ISG15, and

potentially other ISGs, emanating from sensing of bacterial DNA. Notably, we implicate the same

molecular players required for the CSP in macrophages. However cyclic-di-AMP, the PAMP sensed by

the CSP in mouse macrophages, was not sufficient to directly induce ISG15 in an interferon-

independent manner in nonphagocytic cells. Interestingly, a similar pathway was implicated in sensing

the cytosolic bacterial DNA of Mycobacterium tuberculosis in macrophages (Manzanillo et al., 2012)

and sensing viral DNA in nonphagocytic cells (Hasan et al., 2013). Our study complements and

supports these findings as it also alludes to the importance of this response in nonphagocytic cells

during Listeria infection.

ISG15 as a novel modulator of canonical secretion
It is still an open question whether specific ISGs can contribute to a functional antibacterial state

similar to an antiviral state. We hypothesized that the massive induction of ISG15 following Listeria

infection must have a phenotypic effect on host cells. Indeed, we have demonstrated that ISG15

counteracts Listeria infection both in vitro and in vivo. The in vitro susceptibility is clearly conjugation-

dependent and we have preliminary data suggesting that the conjugation incompetent mutant of

ISG15 does not protect cells from infection (data not shown). During viral infections ISG15 can restrict

infection by direct modification of viral proteins (Zhao et al., 2010), by modification of host proteins

that are important to viral replication (Pincetic et al., 2010), by non-specific modification of newly

translated proteins to target viral capsid (Durfee et al., 2010) and finally in the context of infection in

vivo it can have non-conjugation dependent roles either within the cell or as a cytokine when secreted

from polymorphonuclear leukocytes (D’Cunha et al., 1996; Werneke et al., 2011; Bogunovic et al.,

2012). Here, we highlight a novel mode of action of ISG15 on canonical cytokine secretion that

correlates with modification of ER and Golgi proteins. Interestingly, ubiquitin itself can have an effect

on secretion by playing a role in determining COPII vesicle size and cargo through specific Cullin E3

ligases (Lu and Pfeffer, 2014). To our knowledge, a link between the intracellular function of ISG15

and canonical secretion of other cytokines has not been reported, thus our work identifies a novel

function of ISG15, which could also play a role in other bacterial and viral infections.

Two recent studies have underscored the importance of ISG15 in the human innate immune

response to pathogens by characterizing patients who lack a functional ISG15 protein (Bogunovic

et al., 2012; Zhang et al., 2014). ISG15-deficient patients were susceptible to Mycobacterium bovis

Bacille Calmette-Guérin (BCG). These individuals were shown to have reduced production of

interferon γ, which was linked to ISG15’s extracellular role as a cytokine. In light of our results, ISG15’s

intracellular role as a modulator of cytokine secretion in nonphagocytic cells could also be responsible

for reduced production of interferon γ.
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Role of cytokine secretion during Listeria infection in vivo
Increased cytokine secretion mediated by ISG15 is a previously uncharacterized way for the host to

engage the immune system to combat both bacterial and viral infection; the first cells that encounter

Listeria, (i.e., nonphagocytic cells) which are able to induce ISG15 at early time points could raise the alarm

against an invading pathogen and as a result help alert innate immune cells to the site of infection. In

particular, IL-6 and IL-8 are key mediators of neutrophil and monocyte recruitment in vivo and IL-6 has

been repeatedly characterized as a critical mediator of the innate immune response to Listeria (Baggiolini

and Clark-Lewis, 1992; Dalrymple et al., 1995; Personnic et al., 2010). If cytokine secretion in the

absence of ISG15 is less efficient, it could help to explain the moderate but statistically significant

susceptibility of Isg15−/−mice to systemic Listeria infection. These data coupled with the aforementioned

human ISG15-deficient patient susceptibility to BCG infection highlight the in vivo relevance of ISG15 as an

antibacterial factor (Bogunovic et al., 2012). Finally, the interferon-independent induction of ISG15 and

potentially other ISGs may help to explain the still perplexing phenotype of interferon receptor-deficient

mice (Ifnar−/−). IFNAR-deficient mice are highly resistant to Listeria infection when infected intravenously

(Auerbuch et al., 2004; Carrero et al., 2004; O’Connell et al., 2004; Stockinger et al., 2004). If certain

subsets of cells are in fact able to induce ISGs in the absence of interferon and if these ISGs like ISG15

could contribute to an antibacterial state, this may explain why these mice are resistant to Listeria infection.

Materials and methods

Materials
Dr Sandra Pellegrini (Institut Pasteur) kindly provided the 2fTGH and U5A (IFNAR2−/−) cell lines along with

an α-ISG15 antibody (gift from A Haas). Dr Matthew Albert and Dr Scott Werneke (Institut Pasteur)

generously provided the Ube1L−/− MEFs. Dr Gia Voeltz (University of Colorado) generously provided

SEC61-GFP and KDEL-BFP constructs. Dr Sabrina Jabs generously provided a plasmid expressing SV40

large T antigen. Full-length Listeria EF-Tu was used to generate α-EF-Tu antisera (Archambaud et al.,

2005). We used α-ISG15 antibodies from Abcam, UK (ISG15 3E5, ab48020), from Cell Signaling, Danvers,

Massachusetts (2743S) and from Santa Cruz, Dallas, Texas (ISG15 F-9, sc-166755). We used an α-Reticulon
4 antibody from Santa Cruz (RTN4 Nogo4 C-4, sc-271878) and an α-Atlastin-3 antibody from Millipore,

Billerica, Massachusetts (ABT20). We used α-TRIM25 (ab167154) and α-UBE2L6 (ab115524) antibodies

from Abcam. We used an α-ACTIN antibody from Sigma, Saint Louis, Missouri (AC-15, A5441). For

immunofluorescence, we used an α-TGN46 antibody from Abcam (ab50595), an α-PDI antibody from

Stressgen, Enzo Lifesciences, Farmingdale, New York (PDI (1D3) ADI-SPA-891-F) and an α-GM130

antibody from BD Transduction Laboratories, Franklin Lakes, New Jersey (610823). We used recombinant

B18R (34-8185-81) and ELISA kits for human IL-8 (88-8086-88), human IL-6 (88-7066-88) and mouse IL-6

(88-7064-88) from eBiosciences, San Diego, California. We used a human Pro-ISG15 ELISA kit from EMD

Millipore (CBA107) and a human cytokine array from Signosis, Sunnyvale, California (EA-4002).

Bacterial and mammalian growth conditions and infections
Bacterial strains used in this study are shown in Table 1. Mutant strains of Listeria generated for this

study were deleted from start to stop codon leaving intergenic regions intact (BUG3646, BUG3647,

and BUG3648). The triple mutant (LLO, PLCA, PLCB) was constructed sequentially starting from

a single mutant (as opposed to a deletion of the entire operon). Genes were deleted in Listeria strain

EGD-e prfA* (BUG 3057) by double recombination as previously described (Arnaud et al., 2004).

Listeria strains and S. aureus were grown in brain–heart infusion media (BD). S. typhimurium was

grown in Luria broth and S. flexneri in Tryptic Soy broth (BD). Prior to infection overnight cultures of

bacterial strains were diluted in new media and grown to exponential phase (OD 0.8 to 1), washed

three times in serum-free mammalian cell culture media and resuspended in mammalian cell culture

media at the indicated MOI. A fixed volume was then added to each well. Cells were centrifuged for

1 min at 1000 rpm to synchronize infection. The cells were then incubated with the bacteria for 1 hr at

37˚C, 10% CO2. Following this incubation, the cells were washed with room temperature 1× PBS and

cell growth medium with 10% serum was added with 20 μg/ml gentamicin to kill extracellular bacteria.

The cells were then harvested at the time point indicated in each figure.

HeLa cells (ATCC, CCL-2) were grown in MEM with Glutamax (Gibco, Waltham, Massachusetts)

supplemented with 10% fetal bovine serum, non-essential amino acids (Gibco) and sodium pyruvate
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(Gibco). 2fTGH cell lines and MEFs were grown in DMEM with 2 mM Glutamax supplemented with 10%

fetal bovine serum. When indicated primary MEFs were transformed with a plasmid expressing SV40 Large

T antigen (BUG 3790). Prior to infection, cells were seeded to attain 80% confluence on the day of infection.

In vivo infections
Female C57BL/6 mice (Isg15+/+ or Isg15−/−) were infected intravenously between 8 and 12 weeks of

age with 5 × 105 bacteria per animal and sacrificed 72 hr following infection. Colony forming units per

organ (liver or spleen) were enumerated after tissue dissociation and serial dilutions in sterile saline.

For the SDS-PAGE of animal samples, wild-type mice were infected intravenously with Listeria or

injected with sterile saline solution and sacrificed after 72 hr. The liver and spleen were isolated and

dissociated. Tissue homogenates were then centrifuged at 14,000 rpm for 10 min at 4˚C. For liver

tissue, an aliquot of the soluble fraction below the layer of fat was removed and resuspended in 2×
Laemmli buffer. For the spleen an aliquot of the supernatant was resuspended in 2× Laemmli buffer.

The samples were then run on an SDS-PAGE gel and blotted for ISG15 levels.

Ethics statement
This study was carried out in strict accordance with the French national and European laws and

conformed to the Council Directive on the approximation of laws, regulations and administrative

provisions of the Member States regarding the protection of animals used for experimental and other

scientific purposes (86/609/Eec). Experiments that relied on laboratory animals were performed in

strict accordance with the Institut Pasteur’s regulations for animal care and use protocol, which was

approved by the Animal experiment Committee of the Institut Pasteur (approval number n˚03–49).

SILAC and His-affinity purification
For SILAC labeling, DMEM without L-Lysine, L-Arginine, and L-Glutamine (Silantes, Germany) was

supplemented with 10% dialyzed serum (Invitrogen, Waltham, Massachusetts), 2 mM Glutamax

(Invitrogen) and naturally occurring L-Lysine HCl and L-Arginine HCl (K0R0, Light condition, Sigma),

4,4,5,5-D4-L-Lysine HCl and 13C6-L-Arginine HCl (K4,R6, Medium condition, Silantes) or 13C6,
15N2-L-

Lysine HCl and 13C6,
15N4-L-Arginine HCl (K8, R10, Heavy condition, Silantes). Lysine was added at its

normal concentration in DMEM (146 mg/l); however, arginine was added at 30% of its normal

concentration (25 mg/l) to prevent metabolic arginine to proline conversion. Stably transduced cell

lines were labeled for a minimum of seven passages in their respective medium prior to treatment.

Control cells (pBabe plasmid empty vector) were labeled light while Flag-His ISG15 ectopic

expression cells (pBabe-Flag-His ISG15 mature) were labeled medium or heavy.

Table 1. Bacterial strains used in this study

Bacterial species Strain

Listeria monocytogenes EGD BUG600

Listeria monocytogenes Δhly EGD BUG2132

Listeria monocytogenes ΔactA EGD BUG2140

Listeria innocua Clip11262 BUG499

Listeria innocua (InlB) Clip11262 BUG1642

Staphylococcus aureus SH1000

Salmonella typhimurium SR-11

Shigella flexneri M90T

Listeria monocytogenes EGD-e PrfA* BUG3057

Listeria monocytogenes ΔplcA EGD-e PrfA* BUG3646

Listeria monocytogenes Δhly EGD-e PrfA* BUG3647

Listeria monocytogenes Δhly ΔplcA
ΔplcB

EGD-e PrfA* BUG3648

Listeria monocytogenes EGD-e BUG1600

DOI: 10.7554/eLife.06848.017
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The nickel affinity purification was performed as described previously (Tatham et al., 2009), but

adapted for mass-spectrometry (Impens et al., 2014). We expanded the SILAC labeled cells to two large

500 cm2 per condition (approximately 10 × 107 cells per condition). We then treated the heavy-labeled

ISG15-expressing cells with type I interferon (interferon α2) at 1000 units per ml for 40 hr while the medium

and light-labeled cells were not treated. At 40 hr, post-treatment cells were lysed in 8 ml lysis buffer per

500-cm2 dish (6 M Guanidium-HCl, 10 mM Tris, 100 mM sodium phosphate buffer pH 8.0). The lysates

from two dishes were combined for each condition, sonicated and centrifuged. The pellet was discarded

and the protein concentration in the lysate was measured using a Bradford assay (Biorad, Hercules,

California). Equal protein amounts of each condition were mixed and proteins were reduced and alkylated

by incubation with 5 mM tris(2-carboxyethyl)phosphine (TCEP) and 10 mM chloroacetamide for 30 min at

37˚C in the dark. Excess chloroacetamide was quenched with 20 mM dithriothreitol prior to incubation of

the lysates overnight on a rotating wheel at 4˚C with 1 ml of packed NiNTA agarose beads that were pre-

equilibrated in lysis buffer (Qiagen, Netherlands). The following day, the agarose beads were washed once

in lysis buffer supplemented with 0.1% Triton X-100 and 5 mM β-mercaptoethanol. They were then

washed once in pH 8.0 wash buffer (8 M Urea, 10 mM Tris, 100 mM sodium phosphate buffer pH 8.0, 0.1%

Triton X-100, 5 mM β-mercaptoethanol), three times in pH 6.3 wash buffer (8 M Urea, 10 mM Tris, 100 mM

sodium phosphate buffer pH 6.3, 0.1% Triton X-100, 5 mM β-mercaptoethanol), and eluted in 1.5 ml 100

mM sodium phosphate buffer pH 6.8, 200 mM imidazole for 20 min at room temperature. The eluate

contained approximately 500 μg of protein and was further analyzed by LC-MS/MS.

LC-MS/MS
The eluate from the His-affinity purification was further diluted with 8.5 ml 50 mM ammonium

bicarbonate and proteins were digested with 20 μg trypsin overnight at 37˚C (Promega, Madison,

Wisconsin). Peptides were then purified on a Sep-Pak C18 cartridge (Waters, Milford, Massachusetts),

and 2 μg was injected for LC-MS/MS analysis on an Easy-nLC 1000 UHPLC system (Thermo Fisher

Scientific, Waltham, Massachusetts) in line connected to a Q Exactive mass spectrometer with

a NanoFlex source (Thermo Fisher Scientific). The sample was loaded on a reverse-phase column

(made in-house, 75 μm I.D. × 300 mm, 1.9 μm beads C18 Reprosil-Pur, Dr Maisch GmbH, Germany)

placed in a column oven (Sonation GmbH, Biberach, Germany) maintaining a constant temperature of

55˚C. Peptides were eluted by a linear increase from 5 to 28% acetonitrile in 0.1% formic acid over

130 min followed by a 55 min linear increase to 45% acetonitrile in 0.1% formic acid at a constant flow

rate of 250 nl/min. The mass spectrometer was operated in data-dependent mode, automatically

switching between MS and MS/MS acquisition for the 15 most abundant ion peaks per MS spectrum.

Full-scan MS spectra (300–1800 m/z) were acquired at a resolution of 70,000 after accumulation to

a target value of 1,000,000 with a maximum fill time of 120 ms. The 15 most intense ions above

a threshold value of 100,000 were isolated (window of 2.5 Th) for fragmentation by CID at

a normalized collision energy of 25% after filling the trap at a target value of 500,000 for maximum

120 ms with an underfill ratio of 2.5%. The S-lens RF level was set at 55, and we excluded precursor

ions with single, unassigned, and charge states above eight from fragmentation selection.

Data analysis was performed with MaxQuant (version 1.4.1.2) (Cox and Mann, 2008) using the

Andromeda search engine (Cox et al., 2011) with default search settings including a false discovery

rate set at 1% on both the peptide and protein level. Spectra were searched against the human

proteins in the Uniprot/Swiss-Prot database (database release version of January 2014 containing

20,272 human protein sequences, www.uniprot.org) with a mass tolerance for precursor and fragment

ions of 4.5 and 20 ppm, respectively, during the main search. To enable the identification of SILAC-

labeled peptides, the multiplicity was set to three with Lys4 and Arg6 settings in the medium channel

and Lys8 and Arg10 in the heavy channel, allowing for a maximum of 3 labeled amino acids per

peptide. Enzyme specificity was set as C-terminal to arginine and lysine, also allowing cleavage at

proline bonds and a maximum of three missed cleavages. Variable modifications were set to GlyGly

modification of lysine residues, oxidation of methionine residues, and pyroglutamate formation of

N-terminal glutamine residues. Carbamidomethyl formation of cysteine residues was set as a fixed

modification. In total, 692 proteins were quantified, and for each protein, the log2 values of the

normalized heavy/medium and normalized medium/light ratios were plotted against each other to

generate the scatter plot depicted in Figure 4, proteins listed in Figure 4E and Figure 4—source

data 1. Proteins with log2 medium/light ratios >1 were considered to be upregulated upon ISG15
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expression, while proteins with log2 heavy/medium ratios >1 were classified to be upregulated after

interferon treatment. The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium (Vizcaino et al., 2014) via the PRIDE partner repository with the

dataset identifier PXD001805. GO terms enrichment analyses were performed using Database for

Annotation, Visualization and Integrated Discovery (DAVID) bioinformatics resources (Huang da

et al., 2009).

qRT-PCR, RNASeq, and SDS-PAGE
Total RNA was isolated using an RNAeasy kit (Qiagen). 1 μg of RNA from each condition was reverse

transcribed using the iScript cDNA synthesis kit (Biorad), and qRT-PCR was performed using SsoFast

EvaGreen supermix (Biorad) on a CFX384 Real-Time System with a C1000 Touch Cycler (Biorad). Data

were then analyzed using the ΔΔCT method relative to GAPDH levels for each sample.

For RNASeq uninfected LoVo cells were compared to LoVo cells infected with L. monocytogenes

strain EGD-e for 24 hr. The experiment was performed in triplicate, and total RNA following infection

was isolated using an RNeasy kit (Qiagen). Samples were subsequently checked for quality and sent to

Fasteris for library preparation and analysis. The RNASeq data has been uploaded to Array Express

with the accession E-MTAB-3649 (Radoshevich et al., 2015b; https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-3649/) entitled ‘ISG15 counteracts Listeria monocytogenes infection’.

For SDS-PAGE analysis, samples were lysed following one wash in 1× PBS with 2× Laemmli buffer.

The cells were scraped in the sample buffer, resuspended and boiled at 95˚C for 5 min. Prior to

running the samples on a gel, they were sonicated two times for 8 s each to disrupt DNA. For SDS-

PAGE following a nickel-affinity purification, proteins were eluted with the following buffer (200 mM

imidazole, 5% SDS, 150 mM Tris-HCl pH 6.7, 30% glycerol, 720 mM β-mercaptoethanol, and 0.0025%

bromophenol blue). Gels were transferred using an iBLOT transfer system (Invitrogen), blocked in 5%

milk for 1 hr at RT, incubated with primary antibody overnight at 4˚C, washed with 0.1% Tween in 1×
PBS three times (each wash for 7 min), and incubated for an hour at room temperature with secondary

antibody coupled to HRP. Blots were washed again three times with 0.1% Tween in 1× PBS and

revealed using ECL-2 (Pierce, Waltham, Massachusetts).

Cloning, transfection, viral transduction, and permeabilization
Sandra Pellegrini provided us with a plasmid containing a 3XFlag-6His-tagged mature human ISG15 in

pCDNA3, which was a kind gift of Jon Huibregtse. This plasmid was used to clone a 3XFlag-6His-

ISG15 into pBabe-Puro (kindly provided by Jayanta Debnath) using BamHI and SalI (BUG3354).

Retroviral particles were then generated by co-transfection of viral GagPol MoMLV (BUG2666) and

VSV-G (BUG2667, both plasmids generously provided by Thierry Heidmann) and pBabe-puro 3xFlag-

6His-ISG15 in 293T cells. Cells were transfected using Fugene HD according to manufacturer’s

instructions (Promega). Supernatants were collected and applied to HeLa cells in the presence of

polybrene (Millipore) as described (in the protocol ‘Production of retroviruses using Fugene 6’ from

the Weinberg lab on Addgene). Cells were then selected using 2 μg/ml puromycin for 3 days. The

population of cells that survived puromycin treatment was expanded and tested for ISG15 expression.

For maintenance, cells were grown without puromycin and checked periodically for ISG15 expression.

In order to deliver Cyclic diAMP to the cytosol, cells were permeabilized with saponin according to the

protocol described in Johnson et al. (1996) with the indicated concentrations of Cyclic diAMP

(Biolog, Germany).

siRNA treatment
For siRNA treatment of cells, reverse transfection was used to minimize the siRNA concentration

required for knockdown. siGenome Smartpools (Dharmacon, Lafayette, Colorado) were resuspended

and aliquoted as per manufacturer’s instructions at a 20 μM concentration. Prior to transfection, stocks

were further diluted 1:2 with RNAase-free water, and 1.5 μl siRNA pool was added to 25 μl serum-free

media per well for a 24-well format. The final concentration per well was 60 nM. Equal volumes of

Lipofectamine RNAiMax (Invitrogen, 1.5 μl) were added to a second tube of 25 μl serum-free media,

and master mixes were made where possible to minimize pipetting error. After mixing the smart pool

tube with the RNAiMax tube and incubating for 15 min, 53 μl of mix was added to each well.

Subsequently, 450 μl of cell suspension was added to each well at a concentration of 222,000 cells/ml
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(100,000 cells per well). For larger scale knock down, the same concentrations were used but smart

pools, RNAiMax, and cell concentrations were scaled up accordingly. Since ISG15 is induced by

infection, we delivered siRNA during cell seeding and infected 24 hr later to make sure that the RNAi

complexes were still present in the cells while ISG15 was induced. For the siRNA screen, cells were

treated with siRNA pools for 72 hr and then infected with Listeria using the siControl condition as

a positive control for ISG15 induction and uninfected/untransfected cells as the baseline for normal

levels of ISG15 (since we show that nucleic acids alone can lead to ISG15 induction). Blots were

quantified using ImageJ relative to actin as a loading control.

Immunofluorescence, microscopy, and FACS
Cells were plated on coverslips the day prior to an experiment. Cells were fixed in 4% PFA (Electron

Microscopy Sciences, Hatfield, Pennsylvania) for 10 min at room temperature and permeabilized in

0.5% Triton X-100 (Sigma). Coverslips processed for immunofluorescence were mounted on

microscopy glass slides using Fluoromount G (Interchim, France), and images were acquired using

an inverted wide-field fluorescence microscope (AxioVert 200M, Carl Zeiss Microscopy, Germany)

equipped with an EMCCD Neo camera (Andor, Ireland) and the software MetaMorph (Molecular

Devices, Sunnyvale, California). FACS samples were labeled with 100 nM ER-Tracker Blue-White DPX

(Life Technologies) for 30 min, trypsinized, washed, and analyzed on a BD LSRFortessa.

Acknowledgements
We thank Drs Sandra Pellegrini, Jon Huibregtse, Gia Voeltz, Sabrina Jabs, Matthew Albert, Scott

Werneke, Jayanta Debnath, and Thierry Heidmann for generously providing reagents, and Dr Sandra

Pellegrini for critically reading the manuscript. We thank Edith Gouin for production of antibodies, Dr

Christophe Bécavin for generating the heat map for the proteomics data and for help uploading the

RNASeq data. We thank Mikael Koutero and Andrzej Prokop for help with the RNASeq data. We

thank Dr Georges Azar for help with FACS. We thank Drs Nathalie Rohlion, Alessandro Pagliuso, and

Fabrizia Stavru for helpful discussions and the Pasteur Proteomics Platform.

Additional information
Competing interests

PC: Reviewing editor, eLife. The other authors declare that no competing interests exist.

Funding

Funder Grant reference Author

Howard Hughes Medical
Institute (HHMI)

Senior International
Research Fellow

Pascale Cossart

Institut Pasteur Bourse Roux Lilliana Radoshevich,
Francis Impens

Institut national de la santé
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KE, Kerr IM, Uzé G. 1995. Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit
generated by alternative processing of a new member of a cytokine receptor gene cluster. The EMBO Journal 14:
5100–5108.

Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. 2012. Mycobacterium tuberculosis activates the DNA-dependent
cytosolic surveillance pathway within macrophages. Cell Host & Microbe 11:469–480. doi: 10.1016/j.chom.2012.
03.007.

Marquis H, Doshi V, Portnoy DA. 1995. The broad-range phospholipase C and a metalloprotease mediate
listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells.
Infection and Immunity 63:4531–4534.

O’Connell RM, Saha SK, Vaidya SA, Bruhn KW, Miranda GA, Zarnegar B, Perry AK, Nguyen BO, Lane TF, Taniguchi
T, Miller JF, Cheng G. 2004. Type I interferon production enhances susceptibility to Listeria monocytogenes
infection. The Journal of Experimental Medicine 200:437–445. doi: 10.1084/jem.20040712.

Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, Boulant S, Gehrke L, Cossart P, Kagan JC. 2014.
Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nature Immunology 15:
717–726. doi: 10.1038/ni.2915.

Osiak A, Utermohlen O, Niendorf S, Horak I, Knobeloch KP. 2005. ISG15, an interferon-stimulated ubiquitin-like
protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic
choriomeningitis virus. Molecular and Cellular Biology 25:6338–6345. doi: 10.1128/MCB.25.15.6338-6345.2005.

Pamer EG. 2004. Immune responses to Listeria monocytogenes. Nature Reviews. Immunology 4:812–823. doi: 10.
1038/nri1461.

Radoshevich et al. eLife 2015;4:e06848. DOI: 10.7554/eLife.06848 21 of 23

Research article Cell biology | Microbiology and infectious disease

http://dx.doi.org/10.1016/j.bbrc.2005.08.132
http://dx.doi.org/10.1016/j.mib.2004.12.013
http://dx.doi.org/10.1371/journal.pone.0062872
http://dx.doi.org/10.1016/j.tim.2012.04.006
http://dx.doi.org/10.15252/embj.201488029
http://dx.doi.org/10.1038/ni.2475
http://dx.doi.org/10.1016/j.cell.2009.05.025
http://dx.doi.org/10.1038/nprot.2008.211
http://dx.doi.org/10.1073/pnas.1413825111
http://dx.doi.org/10.1073/pnas.1413825111
http://dx.doi.org/10.1161/01.RES.79.6.1086
http://dx.doi.org/10.1038/ni875
http://dx.doi.org/10.1016/j.mib.2003.12.002
http://dx.doi.org/10.1126/science.1200120
http://dx.doi.org/10.1128/JVI.79.22.13974-13983.2005
http://dx.doi.org/10.1073/pnas.0607038104
http://dx.doi.org/10.1182/blood-2013-11-538686
http://dx.doi.org/10.1016/j.tcb.2014.02.001
http://dx.doi.org/10.1016/j.chom.2012.03.007
http://dx.doi.org/10.1016/j.chom.2012.03.007
http://dx.doi.org/10.1084/jem.20040712
http://dx.doi.org/10.1038/ni.2915
http://dx.doi.org/10.1128/MCB.25.15.6338-6345.2005
http://dx.doi.org/10.1038/nri1461
http://dx.doi.org/10.1038/nri1461
http://dx.doi.org/10.7554/eLife.06848


Pellegrini S, John J, Shearer M, Kerr IM, Stark GR. 1989. Use of a selectable marker regulated by alpha interferon
to obtain mutations in the signaling pathway. Molecular and Cellular Biology 9:4605–4612.

Personnic N, Bruck S, Nahori MA, Toledo-Arana A, Nikitas G, Lecuit M, Dussurget O, Cossart P, Bierne H. 2010.
The stress-induced virulence protein InlH controls interleukin-6 production during murine listeriosis. Infection and
Immunity 78:1979–1989. doi: 10.1128/IAI.01096-09.

Pfeffer S, Dudek J, Gogala M, Schorr S, Linxweiler J, Lang S, Becker T, Beckmann R, Zimmermann R, Forster F.
2014. Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon. Nature
Communications 5:3072. doi: 10.1038/ncomms4072.

Pincetic A, Kuang Z, Seo EJ, Leis J. 2010. The interferon-induced gene ISG15 blocks retrovirus release from cells
late in the budding process. Journal of Virology 84:4725–4736. doi: 10.1128/JVI.02478-09.

Portnoy DA, Jacks PS, Hinrichs DJ. 1988. Role of hemolysin for the intracellular growth of Listeria monocytogenes.
The Journal of Experimental Medicine 167:1459–1471. doi: 10.1084/jem.167.4.1459.

Radoshevich L, Impens F, Ribet D, Nahori MA, Knobeloch KP, Cossart P. 2015a. Data from: ISG15 counteracts
Listeria monocytogenes infection. ProteomeXchange PXD001805. http://proteomecentral.proteomexchange.
org/cgi/GetDataset?ID=PXD001805.

Radoshevich L, Impens F, Ribet D, Quereda JJ, Nahori MA, Bierne H, Dussurget O, Pizarro-Cerda J, Knobeloch
KP, Cossart P. 2015b. Data from ‘ISG15 counteracts Listeria monocytogenes infection’. ArrayExpress E-MTAB-
3649. https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3649/.

Ribet D, Cossart P. 2010. Pathogen-mediated posttranslational modifications: a re-emerging field. Cell 143:
694–702. doi: 10.1016/j.cell.2010.11.019.

Ribet D, Hamon M, Gouin E, Nahori MA, Impens F, Neyret-Kahn H, Gevaert K, Vandekerckhove J, Dejean A,
Cossart P. 2010. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464:1192–1195.
doi: 10.1038/nature08963.

Rismanchi N, Soderblom C, Stadler J, Zhu PP, Blackstone C. 2008. Atlastin GTPases are required for Golgi
apparatus and ER morphogenesis. Human Molecular Genetics 17:1591–1604. doi: 10.1093/hmg/ddn046.

Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, Kuestner R, Garrigues U, Birks C,
Roraback J, Ostrander C, Dong D, Shin J, Presnell S, Fox B, Haldeman B, Cooper E, Taft D, Gilbert T, Grant FJ,
Tackett M, Krivan W, McKnight G, Clegg C, Foster D, Klucher KM. 2003. IL-28, IL-29 and their class II cytokine
receptor IL-28R. Nature Immunology 4:63–68. doi: 10.1038/ni873.

Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H. 1995. The two distinct phospholipases C of
Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infection and
Immunity 63:4231–4237.

Stavru F, Archambaud C, Cossart P. 2011. Cell biology and immunology of Listeria monocytogenes infections:
novel insights. Immunological Reviews 240:160–184. doi: 10.1111/j.1600-065X.2010.00993.x.

Stockinger S, Reutterer B, Schaljo B, Schellack C, Brunner S, Materna T, Yamamoto M, Akira S, Taniguchi T, Murray
PJ, Müller M, Decker T. 2004. IFN regulatory factor 3-dependent induction of type I IFNs by intracellular bacteria
is mediated by a TLR- and Nod2-independent mechanism. Journal of Immunology 173:7416–7425. doi: 10.4049/
jimmunol.173.12.7416.

Tatham MH, Rodriguez MS, Xirodimas DP, Hay RT. 2009. Detection of protein SUMOylation in vivo. Nature
Protocols 4:1363–1371. doi: 10.1038/nprot.2009.128.

Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA,
Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolomé S,
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