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Abstract Proteins of the secretin family form large macromolecular complexes, which assemble in

the outer membrane of Gram-negative bacteria. Secretins are major components of type II and III

secretion systems and are linked to extrusion of type IV pili (T4P) and to DNA uptake. By electron

cryo-tomography of whole Thermus thermophilus cells, we determined the in situ structure of a T4P

molecular machine in the open and the closed state. Comparison reveals a major conformational

change whereby the N-terminal domains of the central secretin PilQ shift by ∼30 Å, and two

periplasmic gates open to make way for pilus extrusion. Furthermore, we determine the structure of

the assembled pilus.

DOI: 10.7554/eLife.07380.001

Introduction
Secretins form multimeric pores through the outer membrane of Gram-negative bacteria (Averhoff,

2009; Korotkov et al., 2011; Burkhardt et al., 2012). They are the central secretion conduits for

proteins and virulence factors in type II and III secretion systems (T2SS/T3SS) and are essential for

extrusion of type IV pili (T4P) (Martin et al., 1993) and transport of some bacteriophages (Korotkov

et al., 2011). In addition, secretins are key components of DNA transport systems, which mediate

uptake of free DNA from the environment, referred to as natural transformation (Schwarzenlander

et al., 2009). The ability to take up DNA is one of the major mechanisms of horizontal gene transfer

(Domingues et al., 2012) and enables organisms to adapt rapidly to changing environments

(Averhoff, 2009). This process is also fundamental for adaptation of pathogenic bacteria to human

hosts and the acquisition of multi-drug resistance (Domingues et al., 2012).

In many Gram-negative bacteria, such as Thermus, and also in many major human pathogens such

as Neisseria, Pseudomonas, and Vibrio, DNA uptake is linked to the T4P machinery (Wolfgang et al.,

1998; Graupner et al., 2000; Seitz and Blokesch, 2013) (Figure 1). To investigate the structure and

function of this system, we chose the thermophilic bacterium Thermus thermophilus HB27, which

exhibits the highest transformation rates known to date (Koyama et al., 1986), and due to the

thermostability of its proteins is a convenient model for structural studies.

Pili are several micron-long flexible filaments (Craig and Li, 2008) that can generate forces of over

100 pN (Maier et al., 2004). T4P are grouped together in a class based on the production and

secretion of the major pilin protein PilA4 (Thermus nomenclature), thousands of copies of which form

the helical pilus (Craig et al., 2004; Schwarzenlander et al., 2009). The T4P is the only known

bacterial pilus that can be retracted rapidly (Maier et al., 2004) to enable motility and adherence

(Merz et al., 2000), major contributors to bacterial virulence (Hahn, 1997). Assembly and disassembly

of the pilus is driven by the AAA-ATPases (ATPases associated with diverse cellular activities) PilF

(extension) and PilT1/PilT2 (retraction) (Salzer et al., 2014b). It has been suggested that mature

PilA4 assembles into pili extending from the inner membrane by action of PilF (Collins et al., 2013;

Salzer et al., 2014b). The outer membrane channel of the T4P machinery is formed by the
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dodacemeric ∼1 MDa secretin complex PilQ (Burkhardt et al., 2011) (Figure 1). Other proteins, in

particular PilM, PilN, and PilO, are hypothesized to be a central part of the pilus assembly platform

and may couple the cytoplasmic and periplasmic sides of the T4P machinery (Karuppiah et al., 2013).

Some proteins of the complex have been implicated to play a dual role in both pilus assembly and

natural competence (Friedrich et al., 2002; Averhoff and Friedrich, 2003; Friedrich et al., 2003;

Rumszauer et al., 2006). Recent results indicate that T4P themselves are not directly involved in DNA

uptake (Burkhardt et al., 2012; Salzer et al., 2014a).

T4P are essential for pathogenesis by mediating adhesion, biofilm formation, and twitching motility

(Burrows, 2012). Thus, both secretins and T4P play important roles in virulence of different

pathogenic bacteria, which has fostered their use as new targets for drug development (Baron, 2010).

To date, there is no information on the in situ structure of either the T4P machinery or DNA translocator.

Determining structures of T4P complexes in whole bacterial cells is therefore of paramount importance

and will enable further study of bacterial resistance and disease. Electron cryo-tomography (cryoET)

has the unique ability to determine protein structures in cells at molecular resolution. We have

applied cryoET to whole T. thermophilus HB27 cells, in order to visualize the T4P machinery in situ.

We determine the helical structure of the pilus and find that the secretin complex PilQ is a central

dynamic component of this system. CryoET and subtomogram averaging of the T4P machinery with

and without pili reveal a ∼30 Å conformational change as the gates in the complex open.

Results and discussion
T. thermophilus has an unusual cell architecture with deep surface clefts, formed by invaginations of

the outer membrane (Figure 2A). By cryoET, these clefts are seen to be constrictions that run around

the cell body (Figure 2D). Distal to the most polar outer membrane ring, numerous fibrous and

straight pili extend from the cell (Figure 2A–D). The pili are clearly associated with large protein

complexes crossing the ∼70 nm periplasm (Figure 2B,C). This distribution is in line with previous

fluorescence and electron microscopy data, which demonstrate the polar localization of PilQ (Seitz

and Blokesch, 2013) and pili (Salzer et al., 2014c).

eLife digest Gram-negative bacteria can cause serious diseases in humans, such as cholera and

bacterial meningitis. These bacteria are surrounded by two membranes: an inner membrane and an

outer membrane. Proteins called secretins are components of several large molecular complexes

that are embedded within the outer membrane. Some secretin-containing complexes form pores in

the bacterial membranes and allow molecules to pass in or out of the cell.

Some secretins also form part of the machinery that allow Gram-negative bacteria to grow fibre-

like structures called type IV pili. These pili help bacteria that cause infections to move and stick to

host cells, where they can also trigger massive changes in the host cells’ architecture. Multiple copies

of a secretin protein called PilQ form a channel in the outer membrane of the bacteria that allows

a type IV pilus to grow out of the surface of the cell. The pilus can then hook the bacteria onto

surfaces and other cells. There is evidence to suggest the type IV pilus machinery is involved in the

uptake of DNA from other bacteria, an important but poorly understood process that has

contributed to the spread of multi-drug resistance.

Now, Gold et al. have used a cutting-edge technique called ‘electron cryo-tomography’ to analyse

the three-dimensional structure of the machinery that builds the type IV pili in the membranes of

a bacterium called Thermus thermophilus. This analysis revealed that, similar to many other channel

complexes, the PilQ channel can be ‘open’ or ‘closed’. When pili are absent, the channel is closed,

but the channel opens when pili are present. Further analysis also revealed the structure of an

assembled pilus.

Next, Gold et al. studied the open state of the type IV pilus in more detail and observed that

a region of each of the PilQ proteins moves a considerable distance to make way for the pilus to

enter the central pore. These results will pave the way for future studies of type IV pili and other

secretin-containing complexes and underpin efforts to investigate new drug targets to combat

bacterial infections.

DOI: 10.7554/eLife.07380.002
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The periplasm of T. thermophilus cells is

extraordinarily wide (Quintela et al., 1995;

Castan et al., 2002) and too dense to select

subvolumes for subtomogram averaging reliably.

Therefore, cells were treated with 100 mM

ethylenediaminetetraacetic acid (EDTA) and

pipetted in order to render the outer membrane

leaky (Caston et al., 1988). This had the desired

effect of depleting the periplasm of most small

proteins. Sample preparation by this method also

removed the pilus from the complex, the empty

T4P machinery was nonetheless still clearly visible

(Figure 3A,B). We determined by subtomogram

averaging the structure of the entire complex

and found features distinct from those of the

T2SS and T3SS secretins (Marlovits et al., 2006;

Hodgkinson et al., 2009; Reichow et al., 2010).

The resolution obtained by averaging ∼4000
particle subvolumes was ∼35 Å

(Figure 3—figure supplement 1), most likely

limited by the inherent flexibility of the complex

(Burkhardt et al., 2011) and the difficulty of

correcting precisely the contrast transfer function

(CTF) for thick specimens.

Subtomogram average maps show the central

protein channel (∼35 nm long and ∼15 nm wide)

made up of several ring-shaped domains inserted

into the outer membrane (Figure 3C, left panel).

We compared a 2D projection of the channel part

of the subtomogram average with projections of

purified, negatively stained PilQ only (Burkhardt

et al., 2011) (Figure 3C, central and right

panels). PilQ was seen to consist of a C-terminal

trapezoid ‘cone structure’ with staggered rings in

the N-terminal domain (Burkhardt et al., 2011),

in excellent agreement with our in situ structure.

Moreover, the new cryoET structure shows

additional protein densities extending from the

putative N0 domain of PilQ through the pepti-

doglycan layer (P1 and P2) to the cytoplasmic

membrane (C1) (Figure 3D). Candidate proteins

include PilW, which is associated with the inner

and outer membranes and is essential for the

outer membrane localization of PilQ (Rumszauer

et al., 2006), and PilO/PilN heterodimers that

could connect PilQ to the ATPases by PilM in the

cytoplasm (Karuppiah and Derrick, 2011; Karuppiah et al., 2013) (Figure 1). These proteins are

most likely connected to one another by flexible domains that are not well contrasted in the

subtomogram average. A longitudinal slice through the complex reveals that PilQ has two gates,

which are closed in the absence of a pilus (Figure 3C, left panel and Figure 3D, right panel). Gate 1 is

formed by the ‘cone’ in the outer membrane and gate 2 by the N1 domain at the base of PilQ,

enclosing an empty periplasmic vestibule (Figure 3D, right panel). The C-terminal ‘cone’ has been

shown to form a sodium dodecyl sulfate (SDS)-stable sub-domain (Burkhardt et al., 2011), thus, it is

plausible that gate 1 is responsible for maintaining the integrity of the cell membrane in the closed

state. A second gate formed by the N-terminal domains has not been observed in other secretins

(Korotkov et al., 2011). The N-terminus of PilQ forms an unusual βββαββ fold, different from the

Figure 1. Schematic of the T4P machinery in T.

thermophilus. The type IV pilus machinery is a heter-

ooligomer, formed from at least 10 different pro-

teins. The PilQ secretin (orange) forms a channel in

the outer membrane for secretion of the pilus-

forming protein PilA4 (green), which is processed by

the prepillin peptidase PilD (grey) (Friedrich et al.,

2002; Schwarzenlander et al., 2009). The mem-

brane protein PilW (light orange) plays a role in

DNA transport, PilQ assembly, and pilus extrusion

(Rumszauer et al., 2006; Schwarzenlander et al.,

2009). The dimeric complex PilC (red) is located in

the inner membrane and is essential for pilus

formation (Friedrich et al., 2002; Karuppiah et al.,

2010). PilM (light brown), PilN (dark brown), and PilO

(beige) are suggested to form the inner membrane

assembly platform and connect the periplasmic and

cytoplasmic sides of the complex (Rumszauer et al.,

2006; Schwarzenlander et al., 2009; Karuppiah

and Derrick, 2011; Karuppiah et al., 2013).

The cytoplasmic ATPases PilF (bright yellow) and

PilT1/PilT2 (pale yellow) drive pilus extension and

retraction, respectively (indicated with red arrows)

(Rose et al., 2011; Salzer et al., 2014b).

DOI: 10.7554/eLife.07380.003
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conserved ring-building βαββα folds (Burkhardt et al., 2012). Thus, we hypothesize that this motif may

form part of gate 2.

To determine the structure of the T4P machinery in the open state, the pipetting step during

sample preparation was omitted (‘Materials and methods’), which reduced the shearing forces and

kept the assembled pilus intact (Figure 4A,B). Close inspection of the pilus shows a periodic structure

(Figure 4C), which was suitable for subtomogram averaging. Since the ice surrounding the pili was

thin (∼100 nm), it was possible to apply CTF-correction. The structure of the pilus was determined

at ∼32 Å resolution by averaging 740 subvolumes (Figure 3—figure supplement 1). Power spectra

calculated from a single tomographic slice or from the subtomogram average revealed a repeat

distance of ∼4.9 nm (Figure 4C, lower panels). The T. thermophilus pilus forms a right-handed helix

of ∼3 nm diameter (Figure 4D), which is different from the previously determined electron cryo-

microscopy structure of the isolated Neisseria gonorrhoeae T4P (Craig et al., 2006). Diameters of

pili can vary considerably and pilin proteins have limited sequence similarity (Craig and Li, 2008),

which likely accounts for this difference. The result may prompt a reassessment of the functional

roles of different T4P in cells. Due to the more challenging sample preparation method, the

structure of the open T4P machinery with the pilus extended was determined from only ∼300
particles at ∼45 Å resolution (Figure 3—figure supplement 1). This resolution is sufficient to reveal

the central protein channel complex with the ∼3 nm pilus protein density in the centre (Figure 4E).

An extensive conformational change is evident that shifts PilQ domains N0–N3 away from N4/N5

by ∼30 Å towards the cytoplasmic membrane. This change opens the periplasmic vestibule to make

way for the pilus (Figures 4E, 5A,B and Video 1). The shape and dimensions of the pore change

from a tapered form ranging in width from ∼4 nm (at N5) to ∼8 nm (at N2/N3) in the closed state

(Figure 3C), to a roughly constant 7 nm-wide channel in the open state (Figure 4E). In comparison,

the closed state of Neisseria meningitidis PilQ is ∼9 nm wide tapering to a point (Collins et al.,

2004), which would be sufficient to accommodate the wider Neisseria pilus (Collins et al., 2003;

Craig et al., 2006) after a comparably large conformational change. Additional conformational

changes and shifts also occur in protein densities P1, P2, and C1 (Figure 5A). In the open state, we

observe an extra protein density in the cytoplasm (Figure 4E, yellow arrowheads and Video 1),

which we speculate could be PilF, linked to the inner membrane platform via PilM (Karuppiah and

Derrick, 2011) (Figure 1). Homologous proteins have been shown to interact with the cytoplasmic

ATPases, stimulating their activity (Lu et al., 2013, 2014). Because EDTA treatment caused

a depletion of periplasmic protein, we cannot exclude the possibility that some proteins may have

been removed from the T4P machinery. However, we also averaged complexes from a tomogram of

the two cells shown in Figure 2, which contained both open (with pili) and closed (without pili)

Figure 2. Cell morphology and pili of T. thermophilus. (A–C) Tomographic slices through T. thermophilus cells show invaginations in the outer membrane

and large protein complexes crossing the periplasm (white arrowheads), which are associated with pili. Scale bar = 500 nm in A, 100 nm in B and C.

(D) Volume rendering shows the distribution of pili (multi-coloured), protruding from the outer membrane (pale yellow). A concentric invagination of the

outer membrane is indicated (white arrowheads).

DOI: 10.7554/eLife.07380.004
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Figure 3. Structure of the T4P machinery in the closed state. (A and B) Tomographic slices of T. thermophilus cells show

large protein complexes crossing the periplasm in the absence of pili (white arrowheads). Scale bars = 100 nm.

(C) Resulting subtomogram average (left panel) and its 2D projection (centre) are compared to the previously determined

projection map of isolated and stained PilQ (right panel) (Burkhardt et al., 2011). The contrast of the stained PilQ has

been inverted. This image was originally published in The Journal of Biological Chemistry. Janin Burkhardt, Janet Vonck,

and Beate Averhoff. Structure and Function of PilQ, a Secretin of the DNA Transporter from the Thermophilic Bacterium

T. thermophilus HB27. JBC. 2011; 286:9977–9984, the American Society for Biochemistry and Molecular Biology. The

putative N0–N5 domains of PilQ (Burkhardt et al., 2012) are marked. (D) 3D surface rendering of the average reveals

Figure 3. continued on next page
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complexes and where the periplasmic protein density was considerably higher. These subtomogram

averages (Figure 5—figure supplement 1) show clearly that the same large conformational changes

occur in the T4P machinery, irrespective of the degree of periplasmic protein depletion, and hence

of the effect of EDTA.

Docking the structures of the closed complex back into the tomographic volume reveals their

three-dimensional distribution in the cell (Figure 5C,D and Video 2). We find that the T4P

machinery tends to be tightly packed, with an inter-particle distance of 30–40 nm (Figure 5E). When

the pili were depleted by pipetting, each cell contained on average 33 ± 19 closed complexes.

However, T. thermophilus assembles ∼6 pili per cell (Salzer et al., 2014a, 2015), suggesting

that ∼80% of the complexes are not involved in pilus formation under standard growth conditions

(Salzer et al., 2014c). We speculate that these idle complexes may form a second class of

transporter, which may be active in DNA uptake or protein secretion.

Taken together, our results demonstrate that the DNA translocator protein PilQ forms a dynamic

central component of the T4P machinery in T. thermophilus. The length of the complex across the

wide periplasm may be an adaptation to the thermophilic environment that Thermus thrives in.

However, core components of the T4P machinery are conserved in bacteria (Nudleman and Kaiser,

2004), and thus, we speculate that the overall architecture may be similar. Our findings will enable

further structure-function studies of the proteins that comprise this elaborate and important

macromolecular machine.

Materials and methods

Strains and culture conditions
T. thermophilus HB27 was grown in TM+ medium (8 g/l tryptone, 4 g/l yeast extract, 3 g/l NaCl,

0.6 mM MgCl2 0.17 CaCl2) (Oshima and Imahori, 1971). Cells from a 24-hr pre-culture were

transferred onto TM+ plates (containing 2% [wt/vol] agar) and incubated under humid conditions for

48 hr at 68˚C.

Sample preparation
To determine the structure of the closed complex, cubes of agar with growing T. thermophilus cells

were cut out and placed into buffer containing 20 mM Tris pH 7.4, 100 mM EDTA and gently agitated

for 1 hr at room temperature. Samples were mixed 1:1 with 10 nm protein A-gold (Aurion,

Wageningen, The Netherlands) as fiducial markers and applied to glow-discharged R2/2 Cu 300 mesh

holey carbon-coated support grids (Quantifoil, Jena, Germany) by gentle pipetting. For the structure of

the open complex, cells were treated with EDTA as above, then protein A-gold was added and grids

dipped into the solution without the pipetting step. Grids were blotted for ∼4 s in a humidified

atmosphere and plunge-frozen in liquid ethane in a home-made device. Grids were maintained under

liquid nitrogen and transferred into the electron microscope at liquid nitrogen temperature.

CryoET
Tomograms were typically collected from +60˚ to −60˚ at tilt steps of 2˚ and 5–7 μm underfocus, using

either a Tecnai Polara or Titan Krios microscope (FEI, Hillsboro, USA), both equipped with field-emission

guns operating at 300 kV and Quantum energy filters (Gatan, Pleasanton, USA) operated at a slit width

of 20 eV. Both instruments were fitted with K2 Summit direct electron detector cameras (Gatan,

Pleasanton, USA). Dose fractionated data (3–5 frames per projection image) were collected using Digital

Micrograph (Gatan, Pleasanton, USA) at a nominal magnification of 34,000× (corresponding to a pixel

Figure 3. Continued

that PilQ has a periplasmic vestibule closed at both ends by two gates. Additional protein densities distinct from PilQ

(green arrowheads; C1 = proximal to the cytoplasmic membrane, P1 = central periplasmic ring 1, P2 = central

periplasmic ring 2) are also shown. OM, outer membrane; PG, peptidoglycan; CM, cytoplasmic membrane.

DOI: 10.7554/eLife.07380.005

The following figure supplement is available for figure 3:

Figure supplement 1. Fourier shell correlation curves for subtomogram averages.

DOI: 10.7554/eLife.07380.006
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size of 0.66 nm) in the Polara or at 33,000× (corresponding to a pixel size of 0.42 nm) in the Krios. The

total dose per tomogram was ∼140e−/Å2. Tomograms were aligned using gold fiducial markers and

volumes reconstructed by weighted back-projection using the IMOD software (Boulder Laboratory,

Boulder, USA) (Kremer et al., 1996). Contrast was enhanced by non-linear anisotropic diffusion (NAD)

filtering in IMOD (Frangakis and Hegerl, 2001). Segmentation was performed using AMIRA (FEI,

Hillsboro, USA).

Subtomogram averaging
Data collected at 34,000× and 8 μm underfocus on the Tecnai Polara were used to calculate the

subtomogram averages shown in Figure 5—figure supplement 1. Subtomogram averages of the T4P

Figure 4. Structure of the T4P and the assembled machinery in the open state. (A and B) Tomographic slices show close-

up views of the T4Pmachinery with assembled pili (white arrowheads). Scale bar = 50 nm. (C) Upper panel, a tomographic

slice of the pilus shows that the structure is periodic. Scale bar = 20 nm. A slice through the subtomogram average (inset)

shows the repeat more clearly. Scale bar = 5 nm. Lower panels, power spectra of the tomographic slice (left) and the

average (right) depict layer lines (orange arrows) at a distance of 1/(49 Å) from the equator (green arrow), corresponding

to a helical pitch of 4.9 nm. The contrast has been inverted. (D) Subtomogram average of the ∼3 nm wide T. thermophilus

pilus (green, top panel), compared to the previously determined ∼6 nm wide structure from N. gonorrhoeae (blue,

bottom panel, EMDB 1236) (Craig et al., 2006). (E) Subtomogram average (left panel) and 3D surface rendering (right

panel) of the T4P machinery in the open state with the central pilus (green). The putative N0–N5 (Burkhardt et al., 2012)

domains of PilQ are marked. Additional protein densities distinct from PilQ (green arrowheads; C1 = proximal to the

cytoplasmic membrane, P1 = central periplasmic ring 1, P2 = central periplasmic ring 2) are also shown. Compared to the

closed state of the complex, additional protein densities (left panel, yellow arrowheads) are visible in the cytoplasm. See

Video 1 for details. OM, outer membrane; PG, peptidoglycan; CM, cytoplasmic membrane.

DOI: 10.7554/eLife.07380.007
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machinery shown in all other figures were calculated from data collected at 33,000× and 7 μm
underfocus on the Titan Krios microscope. Coordinates corresponding to the outer membrane and

inner membrane domains of the complex were marked manually in IMOD (Kremer et al., 1996).

Subvolumes from twice-binned tomograms were then extracted from NAD filtered (Frangakis and

Hegerl, 2001) data and an initial alignment and averaging performed in SPIDER (Frank et al., 1996).

This average was used as a reference for alignment and refinement using PEET (Nicastro et al., 2006).

We have previously shown that T. thermophilus PilQ is a dodecamer by biochemical analysis

(Burkhardt et al., 2011), which is supported by single-particle electron microscopy of

N. meningitidis PilQ (Collins et al., 2003, 2004). Therefore, 12-fold symmetry was applied to the

core complex by 30˚ (360˚/12 subunits) rotation of each subvolume prior to the alignment search. The

final averages were obtained from 3984 particles for the closed complex and 312 particles for the open

complex, using a mask drawn around PilQ. Any duplicates due to oversampling were removed in PEET

(Nicastro et al., 2006). Due to the larger sample size, data for the closed complex were replaced by

unfiltered tomograms. For 2D comparisons between states (Figure 3C, left panel and Video 1), the

NAD filtered version with low-contrast noise removed is shown. For the pilus, 740 subvolumes of ∼2 nm

length were selected in IMOD (Kremer et al., 1996), from unbinned CTF-corrected tomograms

collected at 5 μm underfocus on the Titan Krios microscope. Subvolumes were aligned and

averaged with a cylindrical mask and any duplicates due to oversampling were removed in PEET

Figure 5. Changes between the open and closed state of the T4P machinery and its distribution in situ. (A and B)

Comparisons between the PilQ components of the T4P machinery reveal large conformational changes whereby

both gates open and domains N0–N3 (now shown in blue for both states) shift by ∼30 Å towards the cytoplasm on

pilus extrusion. Green arrowheads indicate additional protein densities (C1 = proximal to the cytoplasmic

membrane, P1 = central periplasmic ring 1, P2 = central periplasmic ring 2). In (B) the structure of the T4P has been

docked into the open state. OM, outer membrane; PG, peptidoglycan; CM, cytoplasmic membrane. (C and D)

Docking subtomogram averages (purple) into the tomographic volume of a cell reveals the distribution of the closed

T4P machinery in situ with respect to the outer membrane (pale yellow) and cytoplasmic membrane (blue). See

Video 2 for details. (E) Averaged histogram of nearest-neighbour distance between protein complexes, calculated

from 9 cells, with a total of 332 data points. Error bars indicate the standard deviation of the frequency distribution

for each minimal distance.

DOI: 10.7554/eLife.07380.008

The following figure supplement is available for figure 5:

Figure supplement 1. Subtomogram averages from cells with high periplasmic protein content.

DOI: 10.7554/eLife.07380.009
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(Nicastro et al., 2006). Resolution estimates

were obtained using conventional ‘even/odd’

Fourier shell correlation (FSC), applying the

0.5 FSC criterion. A mask was drawn around

the protein to exclude membrane and

peptidoglycan from this estimate. The averages

in Figure 5—figure supplement 1 were

smoothed by Gaussian filtering in UCSF

Chimera, which was used to draw all surface

views and remove low-contrast background

noise using the ‘hide dust’ tool (Pettersen

et al., 2004). The morph shown in Video 1 was

produced in ImageJ (Schneider et al., 2012).

All subtomogram averages were uploaded to

the EMDataBank (http://www.emdatabank.org)

with ID codes 3021 (closed state, filtered), 3022

(closed state, unfiltered), 3023 (open state,

filtered) and 3024 (pilus).

Calculation of power spectra
Images of pili were cut out of a twice-binned

tomographic slice and the unbinned subtomo-

gram average (shown in Figure 4C) using

helixboxer in EMAN2 (Tang et al., 2007). Power spectra were then calculated using the Iterative

Helical Real Space Reconstruction (IHRSR++) software (Egelman, 2007).

Calculation of the distribution of PilQ complexes in the closed state
The distance between PilQ complexes was determined with a MATLAB (Mathworks, California, USA)

script (Gold et al., 2014). The centroid coordinates of complexes selected for subtomogram

averaging were loaded into MATLAB and the distances calculated in an iterative for for-loop

according to Pythagoras’ theorem. This was performed for 332 closed PilQ complexes, combined

from 9 different cells. Averaged histograms were calculated to depict the mean frequency of

occurrence for each minimal distance. To account for the different numbers of PilQ complexes in each

data set, the mean frequency was calculated as a percentage.

Video 1. Comparison of the T4P machinery in the

open and closed state. The video was generated by

morphing the two subtomogram averages in ImageJ.

DOI: 10.7554/eLife.07380.010

Video 2. Distribution of T4P complexes in situ. The

video shows the rendered tomographic volume of

a T. thermophilus cell. The outer membrane (pale

yellow), peptidoglycan (orange), and cytoplasmic

membrane (blue) are shown with the closed T4P

complexes (purple).

DOI: 10.7554/eLife.07380.011
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complexes by electron cryotomography. Nature Communications 5:4129. doi: 10.1038/ncomms5129.

Graupner S, Frey V, Hashemi R, Lorenz MG, Brandes G, Wackernagel W. 2000. Type IV pilus genes pilA and pilC of
Pseudomonas stutzeri are required for natural genetic transformation, and pilA can be replaced by
corresponding genes from nontransformable species. Journal of Bacteriology 182:2184–2190. doi: 10.1128/JB.
182.8.2184-2190.2000.

Hahn HP. 1997. The type-4 pilus is the major virulence-associated adhesin of Pseudomonas aeruginosa–a review.
Gene 192:99–108. doi: 10.1016/S0378-1119(97)00116-9.

Hodgkinson JL, Horsley A, Stabat D, Simon M, Johnson S, da Fonseca PC, Morris EP, Wall JS, Lea SM, Blocker AJ.
2009. Three-dimensional reconstruction of the Shigella T3SS transmembrane regions reveals 12-fold symmetry
and novel features throughout. Nature Structural & Molecular Biology 16:477–485. doi: 10.1038/nsmb.1599.

Karuppiah V, Collins RF, Thistlethwaite A, Gao Y, Derrick JP. 2013. Structure and assembly of an inner membrane
platform for initiation of type IV pilus biogenesis. Proceedings of the National Academy of Sciences of USA 110:
E4638–E4647. doi: 10.1073/pnas.1312313110.

Karuppiah V, Derrick JP. 2011. Structure of the PilM-PilN inner membrane type IV pilus biogenesis complex
from Thermus thermophilus. The Journal of Biological Chemistry 286:24434–24442. doi: 10.1074/jbc.
M111.243535.

Karuppiah V, Hassan D, Saleem M, Derrick JP. 2010. Structure and oligomerization of the PilC type IV pilus
biogenesis protein from Thermus thermophilus. Proteins 78:2049–2057. doi: 10.1002/prot.22720.

Korotkov KV, Gonen T, Hol WG. 2011. Secretins: dynamic channels for protein transport across membranes.
Trends in Biochemical Sciences 36:433–443. doi: 10.1016/j.tibs.2011.04.002.

Koyama Y, Hoshino T, Tomizuka N, Furukawa K. 1986. Genetic transformation of the extreme thermophile
Thermus thermophilus and of other Thermus spp. Journal of Bacteriology 166:338–340.

Gold et al. eLife 2015;4:e07380. DOI: 10.7554/eLife.07380 11 of 12

Short report Biophysics and structural biology

http://dx.doi.org/10.1074/jbc.M110.212688
http://dx.doi.org/10.1074/jbc.M111.334912
http://dx.doi.org/10.1146/annurev-micro-092611-150055
http://dx.doi.org/10.1007/s00792-001-0246-3
http://dx.doi.org/10.1111/J.1574-6968.1988.Tb03001
http://dx.doi.org/10.1128/JB.185.8.2611-2617.2003
http://dx.doi.org/10.1074/jbc.M405971200
http://dx.doi.org/10.1042/BJ20121599
http://dx.doi.org/10.1016/j.sbi.2007.12.009
http://dx.doi.org/10.1038/nrmicro885
http://dx.doi.org/10.1016/j.molcel.2006.07.004
http://dx.doi.org/10.4161/mge.23089
http://dx.doi.org/10.1016/j.jsb.2006.05.015
http://dx.doi.org/10.1006/jsbi.2001.4406
http://dx.doi.org/10.1006/jsbi.1996.0030
http://dx.doi.org/10.1128/AEM.68.2.745-755.2002
http://dx.doi.org/10.1128/AEM.69.7.3695-3700.2003
http://dx.doi.org/10.1038/ncomms5129
http://dx.doi.org/10.1128/JB.182.8.2184-2190.2000
http://dx.doi.org/10.1128/JB.182.8.2184-2190.2000
http://dx.doi.org/10.1016/S0378-1119(97)00116-9
http://dx.doi.org/10.1038/nsmb.1599
http://dx.doi.org/10.1073/pnas.1312313110
http://dx.doi.org/10.1074/jbc.M111.243535
http://dx.doi.org/10.1074/jbc.M111.243535
http://dx.doi.org/10.1002/prot.22720
http://dx.doi.org/10.1016/j.tibs.2011.04.002
http://dx.doi.org/10.7554/eLife.07380


Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer visualization of three-dimensional image data using
IMOD. Journal of Structural Biology 116:71–76. doi: 10.1006/jsbi.1996.0013.

Lu C, Korotkov KV, Hol WG. 2014. Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II
secretion system in complex with the cytoplasmic domain of GspL. Journal of Structural Biology 187:223–235.
doi: 10.1016/j.jsb.2014.07.006.

Lu C, Turley S, Marionni ST, Park YJ, Lee KK, Patrick M, Shah R, Sandkvist M, Bush MF, Hol WG. 2013. Hexamers of
the type II secretion ATPase GspE from Vibrio cholerae with increased ATPase activity. Structure 21:1707–1717.
doi: 10.1016/j.str.2013.06.027.

Maier B, Koomey M, Sheetz MP. 2004. A force-dependent switch reverses type IV pilus retraction. Proceedings of
the National Academy of Sciences of USA 101:10961–10966. doi: 10.1073/pnas.0402305101.

Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, Galán JE. 2006. Assembly of the inner rod
determines needle length in the type III secretion injectisome. Nature 441:637–640. doi: 10.1038/nature04822.

Martin PR, Hobbs M, Free PD, Jeske Y, Mattick JS. 1993. Characterization of pilQ, a new gene required for the
biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Molecular Microbiology 9:857–868. doi: 10.1111/j.
1365-2958.1993.tb01744.

Merz AJ, So M, Sheetz MP. 2000. Pilus retraction powers bacterial twitching motility. Nature 407:98–102. doi: 10.
1038/35024105.

Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR. 2006. The molecular architecture of
axonemes revealed by cryoelectron tomography. Science 313:944–948. doi: 10.1126/science.1128618.

Nudleman E, Kaiser D. 2004. Pulling together with type IV pili. Journal of Molecular Microbiology and
Biotechnology 7:52–62. doi: 10.1159/000077869.

Oshima T, Imahori K. 1971. Isolation of an extreme thermophile and thermostability of its transfer ribonucleic-acid
and ribosomes. The Journal of General and Applied Microbiology 17:513. doi: 10.2323/Jgam.17.513.

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF chimera–a
visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605–1612.
doi: 10.1002/jcc.20084.

Quintela JC, Pittenauer E, Allmaier G, Aran V, de Pedro MA. 1995. Structure of peptidoglycan from Thermus
thermophilus HB8. Journal of Bacteriology 177:4947–4962.

Reichow SL, Korotkov KV, Hol WG, Gonen T. 2010. Structure of the cholera toxin secretion channel in its closed
state. Nature Structural & Molecular Biology 17:1226–1232. doi: 10.1038/nsmb.1910.
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