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Abstract Kinetochore fibers (K-fibers) of the mitotic spindle are force-generating units that power

chromosome movement during mitosis. K-fibers are composed of many microtubules that are held

together throughout their length. Here, we show, using 3D electron microscopy, that K-fiber

microtubules (MTs) are connected by a network of MT connectors. We term this network ‘the mesh’.

The K-fiber mesh is made of linked multipolar connectors. Each connector has up to four struts, so

that a single connector can link up to four MTs. Molecular manipulation of the mesh by

overexpression of TACC3 causes disorganization of the K-fiber MTs. Optimal stabilization of K-fibers

by the mesh is required for normal progression through mitosis. We propose that the mesh stabilizes

K-fibers by pulling MTs together and thereby maintaining the integrity of the fiber. Our work thus

identifies the K-fiber meshwork of linked multipolar connectors as a key integrator and determinant

of K-fiber structure and function.

DOI: 10.7554/eLife.07635.001

Introduction
Accurate mitosis is essential to eukaryotic life. It requires the correct assembly of a bipolar array of

microtubules (MTs) into a mitotic spindle which, in concert with hundreds of different motors and non-

motor proteins, segregates the duplicated sister chromatids to the two daughter cells. Many of the

chromosome movements in mitosis are governed by the kinetochore fibers (K-fibers) of the spindle

apparatus. In human cells, K-fibers are bundles of 20–40 parallel MTs that typically run from the

kinetochore to the spindle pole (McDonald et al., 1992; Mastronarde et al., 1993; McEwen et al.,

1997; Booth et al., 2011; Sikirzhytski et al., 2014). K-fibers can be thought of as coherent units: their

constituent MTs are held together throughout their length, as well as being focused at either end

(Rieder, 1981; Spurck et al., 1997). The coherence of the K-fiber is thought to be crucial for accurate

chromosome segregation in mitosis. However, the ultrastructural and molecular basis of K-fiber

coherence is not well understood.

Lateral MT connectors are important for the function of MT arrays, such as K-fibers, in cells

(Brangwynne et al., 2006; Ward et al., 2014). Classic electron microscopy (EM) studies uncovered

the presence of electron density between MTs of the K-fibers (Wilson, 1969; Hepler et al., 1970;

Witt et al., 1981; Bastmeyer and Fuge, 1986). These inter-MT bridges appear as bipolar struts

laterally connecting two MTs in 2D electron micrographs. The bridges are typically ∼5 nm thick and

range from 6–20 nm in length. The morphology of bridges is heterogeneous, and they are likely

composed of a variety of proteins (Booth et al., 2011). The mitotic spindle is an ensemble of

hundreds of MT-associated proteins (Sauer et al., 2005), some of which are candidates for inter-MT

bridges (Manning and Compton, 2008). The number of inter-MT bridges scales with the number of
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MTs and also with the number of paired MTs in a bundle (Bastmeyer and Fuge, 1986), and it was

proposed that it is the inter-MT bridges that hold K-fiber MTs together (Witt et al., 1981). The

connection between the kinetochore and K-fiber MTs has been studied by 3D-EM (Dong et al., 2007;

McIntosh et al., 2008). However, a similar 3D investigation of inter-MT connections away from the

kinetochore has not been reported.

One molecular candidate for inter-MT bridges in K-fibers is TACC3–ch-TOG–clathrin. The assembly

of this complex is regulated by phosphorylation of TACC3 at serine 558 by Aurora-A kinase (Fu et al.,

2010; Hubner et al., 2010; Lin et al., 2010; Booth et al., 2011). This allows two domains from

TACC3 and clathrin to come together in space, making a single, composite MT interaction surface

(Booth et al., 2011; Cheeseman et al., 2011; Hood et al., 2013). Previous work showed that this

complex is necessary for K-fiber stabilization (Royle et al., 2005; Booth et al., 2011; Cheeseman

et al., 2013) and that the complex forms a distinct class of short inter-MT bridges (Booth et al., 2011).

In this study, we set out to examine the 3D ultrastructure of K-fiber inter-MT bridges. Surprisingly,

we found that inter-MT bridges are not simply bipolar connections between two MTs but are

a network of interconnected struts that contact multiple MTs. We term this structure ‘the mesh’. This

novel subcellular structure positions MTs within the K-fiber and is required for normal mitosis.

Results

Inter-MT connectors in K-fibers are ‘bridges’ in 2D and a ‘mesh’ in 3D
Inter-MT bridges were first described in 2D electron micrographs as faintly stained fine threads projecting

from the surface of the tubules (Hepler et al., 1970). For example, 2D views of inter-MT bridges

connecting adjacent MTs within a K-fiber are shown in Figure 1A. The morphology of inter-MT bridges is

heterogeneous (Booth et al., 2011), as noted in the original report (Hepler et al., 1970). In order to

examine the morphology of bridges in more detail, we used electron tomography of sections taken from

mitotic HeLa cells fixed by high-pressure freezing/freeze substitution (HPF/FS). This gave a 3D view of the

K-fiber MTs and the material that connected them (Figure 1B, Video 1). Careful examination of the

eLife digest Before a cell divides, its genetic material must be copied and then equally

distributed between the newly formed daughter cells. In the cells of plants, animals, and fungi,

a structure known as the spindle pulls the two copies of the chromosomes apart. The spindle is made

up of a network of long, protein filaments called microtubules, and the bundles of microtubules that

attach to the chromosomes are referred to as ‘K-fibers’.

K-fibers are organized in a way that provides strength. These bundles of microtubules are held

together throughout their entire length and, in 2011, it was suggested that a group of proteins

including one called TACC3 could cross-link adjacent microtubules within K-fibers. However, it

remained unclear how these proteins achieved this.

Now, Nixon et al.—including several of the researchers involved in the 2011 work—have used

a technique called 3D electron tomography to analyze what holds the K-fibers together in human

cells. This analysis revealed struts or connectors that hold together adjacent microtubules within

K-fibers. These connectors can vary in size and a single connector can link up to four microtubules.

This means that, in a three-dimensional view, the connectors appear as a ‘mesh’ between the

microtubules in the bundle.

Nixon et al. then increased the levels of the TACC3 protein and found that the K-fibers became

disorganized. The spacing of the microtubules with the K-fibers was reduced so that they were more

tightly packed than normal. These observations suggest that ‘the mesh’ influences the microtubule

spacing within a K-fiber.

Nixon et al. analyzed how disorganized K-fibers affected dividing cells and found that it took

longer for the chromosomes to move to the newly forming daughter cells. This suggests that cells

must maintain optimal levels of TACC3 to ensure that the K-fibers can effectively separate the

chromosomes. Further work is needed to identify the other proteins and molecules that make up the

mesh.

DOI: 10.7554/eLife.07635.002
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tomograms revealed that inter-MT bridges are not just simple bipolar struts connecting two adjacent

MTs: they are interconnected and can contact multiple MTs within the K-fiber. This network of inter-MT

connectors is best illustrated by rendering the densities seen in the tomogram and visualizing the

resultant computer model (Figure 1B). We term the interconnecting material ‘the mesh’.

To obtain an unbiased view of the mesh, we developed a semi-automated segmentation method

for 3D model building (Figure 1B, Video 1). This method was used for all subsequent quantification.

Figure 1. Intermicrotubule connectors in K-fibers are ‘bridges’ in 2D and a ‘mesh’ in 3D. (A) 2D views of inter-MT bridges in sections taken orthogonally or

longitudinally to the spindle axis. In the annotated version, MTs (green) and inter-MT bridges (yellow) are shown on a blue background. Zoom of

longitudinal section is a 2× expansion of the lower part of the 2D EM view. (B) Orthoslice of a tomogram generated from a tilt series of a single section

through a K-fiber preserved using HPF/FS (i). Overlaid is a hand-rendered 3D representation of MTs (green) (ii) and associated mesh (yellow) (iii). The

model is shown alone (iv). For (v–viii), the tomogram is tilted to show the MT axis. In v and vi, the overlay and model are shown. In vii and viii, the same

view is shown but with the mesh detected by the automated segmentation method. Note that sections taken >1 μm away from the kinetochore are shown

in this and all subsequent figures. Tomogram thickness, 45.6 nm. For scale, MTs are 25 nm in diameter.

DOI: 10.7554/eLife.07635.003

The following figure supplements are available for figure 1:

Figure supplement 1. The mesh is visible, but not well preserved, in chemically-fixed K-fibers.

DOI: 10.7554/eLife.07635.004

Figure supplement 2. The mesh is associated with K-fiber MTs.

DOI: 10.7554/eLife.07635.005
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We found that mesh preservation was superior

using HPF/FS compared with chemical fixation

(Figure 1—figure supplement 1). Moreover, the

mesh was associated with K-fiber MTs. In

contrast, segmentation of non-K-fiber areas

resulted in distinct, particulate density and trans-

lating MTs to a non-K-fiber area meant that

globular density, which passed through the MTs,

was detected (Figure 1—figure supplement 2).

Ultrastructural morphology of the
mesh
Having established a detection method, we next

explored the anatomy of this novel subcellular

structure. Three types of connectors within the

mesh could be distinguished in these 3D models. Bipolar, tripolar, or quadrupolar connectors could

be selected using the criterion of uninterrupted density that connects two, three, or four MTs,

respectively (Figure 2A). These connectors were highly heterogeneous in size. Where the volumes of

individual connectors could be determined easily, we found that bipolar, tripolar, and quadrupolar

connectors had mean volumes of 6,689, 17,370, and 32,376 nm3, respectively (Figure 2B). Therefore,

there is not a linear relationship between the number of struts in a connector and the connector

volume. The volume of mesh within each fiber was, on average, equivalent to the volume of MTs that

it encapsulates and larger than the volume of MT walls alone (Figure 2C). This observation establishes

that the mesh is a major component of every K-fiber.

We next examined the contacts made between the mesh and MTs to determine if there were

preferred locations on the MT for mesh attachment, for example, on the seams of MTs. We found that

mesh-MT contacts were highly heterogeneous (Figure 2D). For example, a crosslink between two

MTs could be a simple bipolar strut with a small footprint on both connected MTs, or at the other

extreme, the crosslink could be a network of multiple-linked struts, with large mesh contact areas on

both MT surfaces. These larger, composite footprints extended for some distance along both linked

MTs, but these were not confined to a co-axial line on the MT wall. Moreover, several mesh

connectors could contact the same MT at the same axial position (e.g., Figure 1B), which further

argues that the mesh has no preference for the MT seam.

Manipulating the mesh influences K-fiber organization
Previous work indicated that one component of the mesh is a complex of TACC3–ch-TOG–clathrin

whose assembly is regulated by Aurora-A kinase (Booth et al., 2011; Hood et al., 2013). Moreover,

the amount of this complex on K-fibers can be increased simply by overexpressing TACC3 (Booth

et al., 2011). In order to experimentally manipulate the mesh, we therefore made a stable inducible

HeLa cell line where GFP-TACC3 could be overexpressed in a controlled manner (Figure 3—figure

supplement 1). The most obvious effect of this manipulation was to alter MT organization. K-fibers in

cells expressing GFP-TACC3 had more MTs per fiber, and the cross-sectional area that those MTs

occupied was larger, compared to fibers in control uninduced HeLa cells (Figure 3A). The MT density

was similar between the two groups suggesting that the fiber area scaled with the number of MTs

(Figure 3A).

To look in more detail at MT packing within a K-fiber, we analyzed the distance from each MT to its

nearest neighbor, and the number of neighboring MTs found within 80 nm. Both analyses showed that

local MT packing density within the fiber had increased substantially in TACC3 overexpressing

cells compared to uninduced controls (Figure 3B), although the fibers themselves were larger overall.

A simple manifestation of this tighter local packing was the increased frequency of doublet and triplet

MTs within TACC3 overexpressing K-fibers (Figure 3B). The median distance to the nearest

neighboring MT had decreased from 56.1 to 48.1 nm (Figure 3C), a change in edge-to-edge

proximity from 31.1 to 23.1 nm. This means that in TACC3 overexpressing cells, the average nearest

neighboring MT is less than the width of one MT away. Because the overexpression of TACC3 alters

the MT packing within the K-fiber, these experiments suggested to us that the mesh might influence

Video 1. Example of the K-fiber mesh from a normal

HeLa cell at metaphase. Tomogram of a K-fiber. The

mesh (yellow) is shown by manual rendering and by

automated rendering. MTs (green) were rendered by

hand. All segmentation was smoothed in Amira.

DOI: 10.7554/eLife.07635.006
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Figure 2. Inter-MT linkages are defined connectors with heterogeneous MT-mesh contacts. (A) Examples of bipolar,

tripolar, and quadrupolar connectors within the mesh. Single orthoslices from tomograms showing examples of

different connectors. MTs are hand-rendered (green), mesh is automatically detected (yellow, see ‘Materials and

methods’), and example connectors are highlighted orange. Tomogram thickness, 51.3 nm (bipolar) and

Figure 2. continued on next page
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MT spacing within the K-fiber. We return to the hypothesis that the mesh has an important role in MT

spacing below.

Are the additional MTs in TACC3 overexpressing K-fibers stably attached to the kinetochore? To

address this question, we used a 3D confocal microscopy assay of tubulin staining in the vicinity of

kinetochores (Cheeseman et al., 2013). In agreement with the EM analysis, we detected a higher

tubulin signal in cells expressing GFP-TACC3 compared to those expressing GFP alone. Following

cold treatment, the tubulin intensity in the vicinity of kinetochores was reduced to comparable levels

in both conditions, suggesting that the additional MTs in TACC3 overexpressing K-fibers are attached

by mesh to the rest of the K-fiber but were not stably attached to the kinetochore (Figure 3D).

Overexpression of TACC3 also increased the volume of mesh between K-fiber MTs in a tomogram

to 5.2 ± 1.0 × 106 nm3 (mean ± s.e.m.). This corresponds to 9.1 ± 0.01% of the fiber volume in the

tomogram, whereas control mesh was 5.7 ± 0.01%. This change is somewhat difficult to interpret

because of the significant increase in the number of MTs per fiber and the tighter local packing. More

MTs per fiber might push up the volume of mesh, but the closer proximity of MTs limits the space

available for mesh to be present.

Overexpression of TACC3 increases MT interconnectivity in K-fibers
One defining characteristic of the mesh is that it connects multiple MTs within K-fibers. This

interconnectivity means that a MT that is contacted by the mesh is connected to one or more MTs and

each of these, in turn, may be connected to one or more MTs and so on. We defined these connected

MTs as ‘chains’. In uninduced cells, chain sizes were small, containing at most 6 MTs (Figure 4A). By

contrast, cells overexpressing TACC3 had chains containing up to 12 MTs (Figure 4A), suggesting

that the MTs were more interconnected as a result of TACC3 overexpression. Although MTs in TACC3

overexpressing K-fibers were more interconnected, the constitution of the connectors within the

mesh was not noticeably altered (Figure 4B). In both conditions, the mesh was composed of

a predominance of bipolar connectors and similar proportions of tripolar and quadrupolar connectors

(Figure 4B).

We next wondered if the larger chains in TACC3 overexpressing cells were the result of the

tighter local MT packing. Accordingly, we constructed 2D MT maps, where each MT’s chain

membership was displayed, and we compared these to the heat maps of local packing as previously

described (Figure 4C). The entire dataset was analyzed computationally in order to test the idea

that chain membership depended on MT proximity. For each MT, we calculated the number of

neighboring MTs within a given search radius and compared these values for single (‘unchained’)

MTs and those that were part of a chain (Figure 4D). This analysis showed that in controls, the single

MTs and chained MTs had similar numbers of neighbors, that is, meshed MTs were not more likely

to be in tightly packed regions of the fiber. However, in the TACC3 overexpressing fibers, the MTs

that were part of a chain had significantly more neighbors than single MTs (Figure 4D), this pattern

was seen for search radii >50 nm and was not seen if the dataset was randomized (Figure 4D, inset,

see ‘Materials and methods’). The closer proximity of chained MTs vs single MTs indicates that the

mesh influences MT positioning, effectively pulling them closer together. An alternative possibility is

that the mesh is passive and only encapsulates MTs if they are in close proximity. However, this

possibility is less likely because MTs in control fibers exhibit no difference in their proximity relative

to their chain status.

Figure 2. Continued

35.2 nm (tripolar and quadrupolar). (B) Box plots to show the volume of bipolar, tripolar, and quadrupolar

connectors within the mesh from multiple tomograms. (C) Box plot to show the ratio of the volume of mesh relative

to MTs (walls only) or MTs + lumens (‘filled-in’ MTs). Box plots show the median, 75th and 25th percentile, and

whiskers show 90th and 10th percentile. (D) Heterogeneity of contacts between mesh and MTs. Two pairs of MTs are

shown with a simple bipolar connector (above) or with a more complex connection (below). MTs (green) are shown

with a single component of the mesh (orange). The contact points between the selected mesh and the MTs are

shown in pink. Note the extensive mesh-MT contacts in the lower example. Tomogram thickness, 66.4 nm (simple)

64.8 nm (network). For scale, MTs are 25 nm in diameter.

DOI: 10.7554/eLife.07635.007
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Figure 3. Analysis of MT packing within a K-fiber. (A) Box plots showing the number of MTs per K-fiber, the cross-

sectional K-fiber area, and the density of MTs in the K-fiber. Nfiber = 26 (control), 37 (TACC3 OE). Box plots show the

median, 75th and 25th percentile, and whiskers show 90th and 10th percentile. p values from Welch’s t-test are

shown. (B) Spatial maps of MTs (circles) in a representative K-fiber from a control (left) or TACC3 overexpressing cell

Figure 3. continued on next page
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Bundling of MTs by mesh components
The two possibilities for mesh stabilization of K-fibers are shown in (Figure 5A). To test the possibility

that the mesh can influence MT positioning in K-fibers, we turned to an in vitro assay. Fluorescently

labeled MTs assembled in vitro and stabilized with taxol were incubated with proteins, and any effect

on MT bundling was observed by light or EM. To reconstitute the mesh component containing

TACC3, a protein mixture comprising clathrin, TACC3, ch-TOG, and GTSE1 was prepared and

phosphorylated by Aurora-A kinase (see ‘Materials and methods’). As a positive control, we used

PRC1, which is known to bundle MTs (Mollinari et al., 2002). As a negative control, we used an

equivalent amount of GST and MBP-His6 protein as in the test condition, phosphorylated by Aurora-A

kinase. Thick bundles of MTs could be seen by fluorescence microscopy for the TACC3-containing

complex and for PRC1 but not for the negative control (Figure 5B). These images indicated specific

bundling activity for the TACC3 complex.

To look in more detail at the bundled MTs, we analyzed the control, PRC1, and TACC3 complex

conditions by EM. In the PRC1 and TACC3 complex conditions, pairs of MTs were interconnected by

short electron dense connectors (Figure 5C). In control conditions, MTs were randomly oriented, but

on occasions when they were in close proximity, no density was seen.

These MT-bundling experiments were complicated by the purification of several large proteins

(Figure 5—figure supplement 1). As an alternative source, we immunoprecipitated protein

complexes, which contained clathrin and TACC3 directly from mitotic spindle of HeLa cells at

metaphase (Figure 5—figure supplement 2A,B). We observed bundling of Taxol-stabilized MTs in

vitro, using this complex specifically (Figure 5—figure supplement 2C).

Together these experiments indicate that the TACC3 complex can crosslink MTs and drive the

recruitment of stabilized MTs into bundles. They are not compatible with a passive role for the mesh in

responding to MT positioning. In the context of the K-fiber, this suggests a role for the mesh in

maintaining fiber integrity by tethering MTs together and influencing MT positioning.

Overexpression of TACC3 influences MT trajectories within K-fibers
To look further for any evidence of a role for the mesh in MT positioning, we examined the trajectories

of MTs within each fiber. K-fibers are bundles of parallel MTs, and we sought to characterize how

parallel the MTs are and to test if this is altered by TACC3 overexpression. Deviations from parallel

would suggest that the mesh tethers MTs closer together and interferes with their trajectory.

Qualitatively, we could see that MTs in TACC3 overexpressing K-fibers were more disorganized

(Figure 6A, Video 2 and Video 3). To measure parallelism more rigorously and to allow comparison

of multiple K-fibers, we used several computational approaches (described in ‘Materials and

methods’), which allowed us to normalize the 3D trajectory of each fiber and then examine the

deviation of MT trajectories from this vector. K-fibers in cells overexpressing TACC3 had a higher

proportion of MTs that deviate from parallel. They frequently had significantly larger polar angles

compared to MTs in K-fibers from control cells (Figure 6B,C). The deviation of MTs from a completely

Figure 3. Continued

(right) color-coded to show (i) the distance to the nearest neighbor or (ii) overlaid on a heatmap to show the number

of MTs within 105 nm (center-to-center distance), 80 nm (edge-to-edge distance). (C) Histogram to show the

frequency of distances to the nearest neighboring MT (i). A representation of the change in average (median) MT

spacing to the nearest neighboring MT that is caused by TACC3 overexpression (ii). NMTs = 500–1324. (D) Analysis of

tubulin intensity in the vicinity of kinetochores by confocal microscopy. Box plot to show the distribution of median

values per cell of tubulin intensities in a sphere surrounding the kinetochore (i). Box plots show the median, 75th and

25th percentile, and whiskers show 90th and 10th percentile. p values from one-way Anova with Tukey’s post hoc test

are shown. Ncell = 20–25, Nkinetochore = 2823–3533. Schematic diagram of the changes in K-fibers induced by TACC3

overexpression (ii). K-fibers are thicker because MTs that are not stably attached to the kinetochore are recruited to

the K-fiber bundle.

DOI: 10.7554/eLife.07635.008

The following figure supplement is available for figure 3:

Figure supplement 1. Inducible expression of GFP-TACC3 in HeLa cells to alter the composition of mesh.

DOI: 10.7554/eLife.07635.009
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Figure 4. Analysis of MTs captured by mesh, their connectivity, and proximity. (A) Histogram to show frequency of

MT chain sizes detected in single section tomograms. MT chains are collections of MTs that are connected by mesh

within a section. Note that single MTs do not feature. (B) Bar chart to show the proportion of mesh that is bipolar,

tripolar, and tetrapolar, as a percentage of total mesh connections. (C) Analysis of MT connectivity and proximity.

(i) Spatial maps of MTs (circles) in a representative K-fiber from a control (left) or TACC3 overexpressing cell (right).

Chains of MTs are shown in color, gray circles show MTs that are not detectably connected to other MTs by mesh.

Orange lines represent the mesh connections schematically (see Figure 4—figure supplement 1). (ii) Spatial maps

are shown overlaid on heatmaps for the same fibers to show the number of MTs within 105 nm (center-to-center

distance), 80 nm (edge-to-edge distance). Note that single (unchained) MTs are attached to the mesh, but that

the MT to which they are attached is outside of the section. Tomogram thickness, 43.6 nm (Control),

Figure 4. continued on next page
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parallel condition is easier to visualize, by examining the Cartesian intersection coordinates of each

MT vector with an x-y plane at a given distance (z) from a common origin (see ‘Materials and

methods’). These scatter plots show that MTs in TACC3 overexpressing cells deviate further from

parallel than those in control cells (Figure 6D). The fraction of MT vectors intersecting this plane at

radial distances of <10 nm from the center is 0.39 and 0.18 in control and TACC3 overexpressing cells,

respectively. In other words, there are half as many parallel MTs after TACC3 overexpression.

Where are these deviant MTs? If they resided towards the periphery of the fiber, they may

represent ‘extra MTs’, perhaps non-kinetochore MTs, that became enmeshed in the fiber when

TACC3 was overexpressed. Alternatively, if the deviant MTs are throughout the fiber, this could be

evidence for a role of the mesh in influencing MT spacing and packing within the fiber. To assess this,

we plotted the polar and azimuthal angles as a function of distance from the K-fiber center

(Figure 6E). These plots show that deviant MTs in TACC3 overexpressing cells are distributed at all

distances from the center of the fiber. In controls, there was a weak tendency for deviant MTs to be at

the fiber periphery, but the overall extent of trajectory deviancy was lower than in TACC3

overexpressing cells (Figure 6C,E). The lack of relation between distance from the fiber center and

the deviancy from the fiber trajectory of MTs in fibers from TACC3 overexpressing cells indicates that

the mesh plays an influential role in organizing MTs within the fiber. Together our results show that the

change in composition of the mesh, caused by TACC3 overexpression, results in tighter local packing

of MTs, more interconnectivity and disruption of the parallel organization of MTs within a K-fiber.

Mitotic problems associated with TACC3 overexpression
What are the functional consequences of the ultrastructural changes in MT organization within

K-fibers? To address this question, we used live-cell imaging of our stable inducible cells expressing

H2B-mCherry, growing asynchronously and compared mitotic progression in cells, where GFP-TACC3

expression was induced vs not induced. Figure 7 shows that TACC3 overexpression increases the

time taken for cells to congress all chromosomes to the metaphase plate (prometaphase-to-

metaphase). In addition, the time from last chromosome alignment to the onset of anaphase

(metaphase-to-anaphase) is also longer (Figure 7). No change was seen in the duration of anaphase

(anaphase-to-telophase). Interestingly, these changes in mitotic progression are similar to those seen

following depletion of TACC3 (Lin et al., 2010; Cheeseman et al., 2013) (Figure 7—figure

supplement 1). We conclude from these experiments that mitosis is sensitive to the levels of TACC3

and that this sensitivity correlates to changes in MT organization within the K-fiber.

Discussion
In this paper, we described the mesh: a network of MT connectors in K-fibers. We showed that the

mesh is comprised of different connector types and is a major component of the K-fiber.

Overexpression of TACC3 alters the mesh and changes the trajectory of MTs within the fiber,

indicating that the mesh is a determinant of K-fiber structural integrity. This manipulation causes

defects in mitosis and establishes that TACC3 levels at the spindle must be regulated for optimal

mitosis.

Since the first EM studies of mitotic spindles, it has been clear that K-fiber MTs are held together

throughout their length, presumably to function as an integrated unit (Hepler et al., 1970; Rieder,

1981; Witt et al., 1981). The importance of inter-MT connections along the length of the K-fiber was

Figure 4. Continued

28.8 nm (TACC3 OE). (D) Histogram to show frequency of MTs with a given number of neighboring MTs within

100 nm (center-to-center distance). MTs connected to others by mesh are shown in color, and single MTs are

shown in white. Inset shows the p-value for comparisons calculated using search radii from 20 nm to

120 nm (center-to-center distance). Dotted lines show the same analysis following randomization of the chain

membership data.

DOI: 10.7554/eLife.07635.010

The following figure supplement is available for figure 4:

Figure supplement 1. Examples of MTs chains and associated mesh.

DOI: 10.7554/eLife.07635.011
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Figure 5. Bundling of MTs in vitro by mesh components. (A) Cartoon to illustrate two potential models for mesh

function. In the passive model (left), MT distances are set by some other factor, and the mesh fills in the gaps to connect

MTs. In the influential model (right), the mesh bundles MTs by favoring close spacing, this in turn influences MT spacing.

(B) Representative fluorescence micrographs of rhodamine-labeled MTs incubated with the indicated proteins. Control

(210 nMMBP-His6, 100 nMGST), PRC1 (2 μMHis6-PRC1), and Mesh complex (10 nMMBP-ch-TOG-His6, 100 nM clathrin,

100 nM GST-TACC3-His6, 100 nM MBP-GTSE1-His6), all phosphorylated by TPX2(1–43)/Aurora-A. Scale bar, 10 μm.

(C) Representative electron micrographs of MTs incubated with the indicated proteins as described in A. Pelleted

material was chemically fixed, embedded in resin, sectioned, and imaged. Scale bar, 50 nm.

DOI: 10.7554/eLife.07635.012

The following figure supplements are available for figure 5:

Figure supplement 1. MT bundling using purified components.

DOI: 10.7554/eLife.07635.013

Figure supplement 2. MT bundling using mesh complex immunoisolated from mitotic HeLa cells.

DOI: 10.7554/eLife.07635.014
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Figure 6. Analysis of MT trajectories within a K-fiber. (A) Representative ‘side views’ of rendered MTs in single

tomograms of individual K-fibers from control (left, red, Video 2) or TACC3 OE (right, blue, Video 3) cells.

Tomogram thickness, 66.4 nm (Control) trimmed to 34.2 nm, 34.2 nm (TACC3 OE). For scale, MTs are 25 nm in

diameter. (B) Aide memoire of the spherical coordinate system. Trajectories of MTs (green line) in K-fibers were

defined and normalized via Euler’s rotation (see ‘Materials and methods’) such that the overall trajectory of all fibers

pointed to the zenith. Measurements of polar angle (θ) and azimuthal angle (φ) were made from the normalized sets

and are presented in C–E. (C) Violin plots of the polar angles for MTs in K-fibers from control and TACC3

Figure 6. continued on next page
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demonstrated by severing K-fibers at their midpoint (Spurck et al., 1997). This resulted in two K-fiber

stubs attached to the pole and kinetochore. The stubs do not immediately collapse but instead

maintain their structural integrity. Our work identifying the mesh suggests that it is the structure that

holds MTs together. This makes sense structurally, but there is a possibility that the mesh is passive

and simply connects MTs in the fiber, wherever they may be. However, our work points to a role for

the mesh in influencing MT position within the K-fiber. The evidence for this is: first, in K-fibers

overexpressing TACC3, interconnected MTs are closer together than those not contacted by mesh.

Second, a complex containing TACC3 was able to bundle MTs in vitro. Third, mesh in TACC3

overexpressing fibers pulls MTs out of alignment. In this way, the mesh plays an active role in MT

positioning in K-fibers by favoring inter-MT interactions of defined distances. An extension of this is

that the mesh can actively pull MTs together, in an energy-consuming process. We have no evidence

for this intriguing possibility, which is compatible with our findings.

It seems counterintuitive that overexpression of a mesh component results in skewed MTs; shouldn’t

it make the MTs in the fiber ‘more parallel’? However, it is likely that the mesh is made of other proteins,

besides the TACC3–ch-TOG–clathrin complex, for example, CHD4, HURP/DLGAP5, and HSET/KIFC1

(Mountain et al., 1999; Sharp et al., 1999; Koffa et al., 2006; Yokoyama et al., 2013). We favor the

idea that because we have increased only one component of the mesh experimentally and not others,

we do not see uniform changes in spacing and packing. This seems plausible as previous analysis

determined TACC3–ch-TOG–clathrin was the shortest crosslinks in K-fibers (Booth et al., 2011), and so

an imbalance of connector sizes in the mesh is predicted to skew MT trajectories.

The spindle matrix was originally proposed as a microtrabecular lattice that assists the motors and

MTs of the mitotic spindle during chromosome movement (Pickett-Heaps et al., 1982). The existence

Figure 6. Continued

overexpressing cells. Box plots show the median, 75th and 25th percentile, and whiskers show the minimum and

maximum. Violins show a kernel density estimate of the data and are trimmed to the minima and maxima.

Comparison of the median MT angle from each K-fiber, Wilcoxon Rank Sum Test, p = 0.007, Nfiber = 12–15.

(D) Illustration of the deviation of MTs from the fiber axis caused by TACC3 overexpression. Cartesian coordinates of

the intersection of individual MT vectors that start from a common origin (0, 0, 0), with an x-y plane at z = 100 nm.

To account for the difference in number of MTs, the insets show a normalized 2D histogram of these coordinates

cropped to a 40 × 40 nm square centered at 0, 0, 100. (E) Plots of azimuthal angle (above) and polar angle (below) as

a function of distance from the fiber center (defined as described in the ‘Materials and methods’). Line of best fit is

shown with 95% confidence bands (dashed line), r2 = 0.07 (control), and 0.007 (TACC3 overexpression).

DOI: 10.7554/eLife.07635.015

Video 2. Example of MT organization in a K-fiber from

a control cell. Tomogram of a K-fiber. MTs (green) were

rendered by hand. All segmentation was smoothed in

Amira.

DOI: 10.7554/eLife.07635.016

Video 3. Example of MT organization in a K-fiber from

a GFP-TACC3 expressing cell. Tomogram of a K-fiber.

MTs (green) were rendered by hand. Pale green is used

to highlight two highly deviant MTs. All segmentation

was smoothed in Amira.

DOI: 10.7554/eLife.07635.017
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of the matrix has been elusive, although several large macromolecular complexes have been

proposed as matrix components (Pickett-Heaps et al., 1984; Chang et al., 2004; Ma et al., 2009;

Johansen et al., 2011; Schweizer et al., 2014). Although superficially similar, we do not think that the

K-fiber mesh is the ultrastructural correlate of the spindle matrix. The mesh that we have observed

Figure 7. Mitotic consequences of TACC3 overexpression. (A) Cartoon representation of the stages of mitosis

captured in live-cell imaging experiments. Cells expressing H2B-mCherry were staged as indicated with the

transition to prometaphase marked by nuclear envelope breakdown; transition to metaphase marked by alignment

of the last chromosome to the metaphase plate; to anaphase marked by first sign of chromosome segregation and

transition to telophase marked by decondensation of H2B-mCherry. These events allowed us to assign prometaphase-

to-metaphase (PM-M, dark green), metaphase-to-anaphase (M-A, light green), and anaphase-to-telophase (A-T, light

blue). (B) Mitotic stage duration for individual cells. Time taken to go from prometaphase-to-metaphase (PM-M),

metaphase-to-anaphase (M-A), or anaphase-to-telophase (A-T) is shown for control (red, above) or GFP-TACC3

overexpressing (blue, below) cells expressing H2B-mCherry. Each line represents a single cell. The time when the last

chromosome aligned was set as 0 (metaphase). Cells that did not achieve metaphase halt at 0. Note that the time axis is

truncated to show a 4 hr window centered on metaphase. Ncell = 163–169, Nexp = 4. (C) Still images of example cells from

live-cell imaging experiments to determine mitotic progression. Detection of H2B-mCherry is shown on an inverted

grayscale. Time in min is shown and the colored bars represent the staging, as in A and B. (D) Box plots to summarize

mitotic progression experiments. Time taken to go from prometaphase-to-metaphase (PM-M), metaphase-to-anaphase

(M-A), or anaphase-to-telophase (A-T) is shown for control (red) or GFP-TACC3 overexpressing (blue) cells. Whiskers

show 90th and 10th percentiles.

DOI: 10.7554/eLife.07635.018

The following figure supplement is available for figure 7:

Figure supplement 1. Mitotic consequences of TACC3 depletion.

DOI: 10.7554/eLife.07635.019
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exists between MTs within K-fibers (rather than between K-fibers) and is most likely composed of MT-

associated proteins that function on K-fiber MTs. Most models of the spindle matrix envisage an

elastic milieu that encompasses the entire spindle, yet is independent of the MTs (Scholey et al.,

2001; Yao et al., 2012). Despite this, micromanipulation experiments have left open the possibility

that an anisotropic matrix could exist along K-fibers (Gatlin et al., 2010), and this would be

compatible with our observations. The K-fiber mesh is in agreement with theoretical and experimental

work showing that lateral MT connectors are important for MT arrays to sustain physical forces in cells

(Brangwynne et al., 2006).

We used overexpression of TACC3 as our primary tool to manipulate the mesh. Progression

through mitosis is slower under these conditions due to problems in chromosome congression and

satisfying the spindle assembly checkpoint. Interestingly, a similar phenotype is observed when

TACC3 is depleted from the spindle (Lin et al., 2010; Booth et al., 2011; Cheeseman et al., 2013).

This indicates that mitosis is sensitive to TACC3 levels. We propose that this sensitivity reflects the

robustness of the K-fibers. Too little TACC3–ch-TOG–clathrin and the mesh cannot strengthen the

fibers adequately. Too much, and the MTs within the fibers become less parallel and oversupported.

Previous work has suggested that hyperstabilization of K-fibers is counter-productive, leading to

errors in mitosis (Bakhoum et al., 2009). TACC3 levels are altered in several human cancers, for

example, ovarian, non-small cell lung cancer, and bladder (Schmidt et al., 2010), and fusions between

TACC3 and FGFR3 are reported in glioblastoma and bladder cancer (Singh et al., 2012; Williams

et al., 2013). Moreover, the amount of TACC3–ch-TOG–clathrin at the spindle is limited by the

availability of phosphorylated TACC3 (LeRoy et al., 2007; Hood et al., 2013), and since Aurora-A

kinase is amplified or upregulated in a wide range of cancers (Nikonova et al., 2013), it is possible

that hyperstabilization of K-fibers occurs in these cells. Under any of these conditions, erroneous

mitosis leading to aneuploidy may contribute to cancer initiation or progression. While we favor the

idea that normal mitosis requires optimal K-fiber stabilization by the mesh, it must be noted that

TACC3 has at least one additional function in mitosis (Gutiérrez-Caballero et al., 2015), and future

work will seek to delineate the role of TACC3 in the mesh vs at the MT plus-ends.

Identifying and locating proteins within the mesh is the next challenge. Potentially, 3D views of

K-fibers in situ will allow us to dock molecular structures of mesh components as has been achieved for

other cellular systems (Lucic et al., 2013). Methods to unambiguously assign specific electron density to

a particular protein will enable us to achieve this, and efforts are currently underway in our lab to do this.

Materials and methods

Cell Biology
HeLa cells (HPA/ECACC #93021013) were maintained in Dulbecco’s Modified Eagle’s Medium

(DMEM) plus 10% fetal bovine serum (FBS) and 100 U/ml penicillin/streptomycin, in a humidified

incubator at 37˚C and 5% CO2.

For TACC3 overexpression, HeLa Tet-On cells (Clontech, Takara, Saint-Germain-en-Laye, France)

were used to inducibly express GFP-TACC3. HeLa Tet-On cells were maintained in full DMEM with

300 μg/ml G418, and HeLa Tet-On cells with stably integrated pTRE2hyg-GFP-TACC3(KDP) plasmid

were maintained with 300 μg/ml G418 and 200 μg/ml Hygromycin B. Expression of GFP-TACC3 was

induced with 0.5 μg/ml doxycycline, 24 hr before analysis (EM analysis or mitotic progression

experiments). For TACC3 knockdown, cells were transfected with plasmids to co-express GFP and

shRNA using GeneJuice according to the manufacturer’s instructions 2 days before imaging.

For immunofluorescence, HeLa cells on coverslips transfected to express GFP or GFP-TACC3 were

either kept at 37˚C or cold-treated for 5 min then fixed with ice-cold methanol for 10 min. Cells were

then blocked (PBS with 5% BSA and 5% goat serum) before immunostaining with rabbit anti-alpha-

tubulin (Thermo, PA5-19489, 1:500) and mouse anti-CENPA (Abcam, ab13939, 1:500) and Alexa568/

Alexa633-conjugated secondary antibodies.

For EM analysis, cells were synchronized using 2 mM thymidine block for 16 hr, release for 6 hr,

followed by 9 μM RO-3306 for 16 hr (see Figure 3—figure supplement 1). After 30–40 min release,

mitotic cells were collected by shake-off and centrifugation at 300×g for 2 min at 37˚C and

resuspended in DMEM containing 20% FBS. Cell synchronization was necessary to harvest sufficient

numbers of cells for our analysis. Similar results were obtained with cells synchronized using
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nocodazole, and with no synchronization, using a correlative light-EM approach, where a single cell

was targeted for freezing.

Molecular biology
For inducible expression, GFP-TACC3KDP (Booth et al., 2011) was inserted into pTRE2hyg vector at

NheI and NotI sites. Plasmids for expression of GST-TACC3-His6 and GST-TPX2(1–43) were available

from previous work (Hood et al., 2013). To make MBP-ch-TOG-His6, the coding sequence of full-

length human ch-TOG was amplified by PCR to add BamHI and EagI sites before subcloning into

pMALPreHis vector. For MBP-GTSE1-His6, the coding sequence of human G-2 and S-phase expressed

1 was amplified from an IMAGE clone (4138532) to add EcoRI and BamHI sites. For His6-PRC1, the

coding sequence of human Protein Regulator of Cytokinesis 1 was amplified from an IMAGE clone

(2958690) and inserted into pRSETB at NheI and EcoRI sites. Plasmids to co-express GFP with shRNA

targeting GL2 or TACC3 (pBrain-GFP-shGL2 and pBrain-GFP-shTACC3) were available from previous

work (Booth et al., 2011; Lopez-Murcia et al., 2014).

Protein biochemistry
Clathrin was purified from rat liver as described previously (Hood et al., 2013; Lopez-Murcia et al.,

2014). Recombinant human Aurora-A kinase was purchased from EMD Millipore (Watford, UK).

Reagents for in vitro MT assembly were from Cytoskeleton Inc (Bioquote, York, UK). All proteins were

purified from BL21pLysS bacteria as described previously (Hood et al., 2013).

For in vitro MT bundling experiments, the following conditions were used: Control (210 nM MBP-

His6, 100 nM GST), PRC1 (2 μM His6-PRC1), and Mesh Complex (10 nM MBP-ch-TOG-His6, 100 nM

clathrin, 100 nM GST-TACC3-His6, 100 nM MBP-GTSE1-His6), and visualized by fluorescence

microscopy and EM. Concentrations refer to the final concentration with MTs. Proteins were

incubated at 30˚C for 90 min to allow for phosphorylation by TPX2(1–43)/Aurora-A, 2 μg/ml each. MTs

were polymerized from 100 μM tubulin (1:10 labeled to unlabeled) in general tubulin buffer (80 mM

K-Pipes, 2 mM MgCl2, 0.5 mM EGTA, pH 7.0) with 1 mM GTP and 6% glycerol for 15 min at 37˚C.

Diluted 1:20 in general tubulin buffer supplemented with 10 μM taxol (paclitaxel, Sigma) and 1 mM

GTP, incubated for a further 5 min at 37˚C. To 92.4 μl of protein mixture, 69.9 μl of MTs were added

and incubated at RT for 10 min. Then 7.25 μl of this was fixed with glutaraldehyde in BRB80 (1.45 μl;
0.1% final), then diluted with 10 μl 70% glycerol/BRB80. 6 μl was spotted onto glass slides, overlaid

with a cover slip, and sealed with nail varnish. The remainder was split into two and spun for 90 min RT

21,000×g and the pellets fixed in 1% glutaraldehyde for 2 hr RT, followed by post-fixing with 3%

glutaraldehyde, 15 min RT. Following three washes in PBS, samples were osmicated in 1% osmium

tetroxide, 1 hr RT, washed in PBS (3 × 20 min), then dH2O (2 × 20 min), and into 30% ethanol for

20 min. Samples were incubated in 0.5% uranyl acetate in 30% ethanol for 40 min. Samples were

dehydrated and infused with resin and cured at 60˚C for 2 days. Sections were cut and visualized by

transmission EM. The MT bundling assay by fluorescence microscopy alone was carried out more than

five times. The experiment where the same samples were visualized by fluorescence microscopy and

EM was performed twice using different protein preparations.

Immunopurification of the mesh complex was as described previously (Booth et al., 2011). Beads

from this procedure were used directly for MT-bundling experiments as described above.

Light microscopy
For the mitotic progression assays, 6.8 × 104 cells/ml were seeded in 12 well plates and transfected

with H2B-mCherry. GFP-TACC3 expression was induced the day after transfection. 24 hr later, the cells

were imaged on a Nikon Ti epifluorescence microscope with 40× ELWD objective (0.6 NA) and

a Coolsnap Myo camera (Photometrics (Tucson, AZ)) for 14 hr using NIS Elements AR software; H2B-

mCherry was imaged once every 3 min, and GFP-TACC3 monitored once every 30 min. Cells were kept

at 37˚C, in supplemented CO2-independent medium containing doxycycline (0.5 μg/ml) for cells with

GFP-TACC3 induction. Light intensity and exposure were minimized to avoid light-induced cell

damage. Analysis of mitotic staging was by manual inspection of videos, with automated time look-up.

The same microscope was used to assay the bundling of fluorescent MTs.

For analysis of MTs in the proximity of kinetochores, a similar method to that previously described

was used (Cheeseman et al., 2013). Briefly, confocal imaging was performed on a spinning disc

Nixon et al. eLife 2015;4:e07635. DOI: 10.7554/eLife.07635 16 of 21

Research article Cell biology

http://dx.doi.org/10.7554/eLife.07635


confocal system (Ultraview Vox, Perkin Elmer) using a 100× ∼1.4 NA oil immersion objective lens with

a Hamamatsu C10600-10B ORCA-R2 camera. Fixed cells expressing GFP or GFP-TACC3, stained as

described above, were excited at 488 nm, 561 nm, 405 nm, and 640 nm, and z-sections were taken

every 0.25 μm. OME-TIFF image stacks were transferred to IMARIS (Bitplane) and subjected to spot

detection in the CREST/CENP-A channel with a minimal spot size of 0.58 μm to detect kinetochores.

Spots that were not properly assigned (∼5%) were corrected manually. The mean pixel densities in this

sphere were background subtracted, and the median intensity per cell was found using IgorPro.

Electron microscopy
HPF was performed using either EM PACT2 or EM HPM100 (Leica Microsystems, Milton Keynes, UK).

Mitotic cells were transferred to 100 μm-depth membrane carriers or Type A 100 μm-depth carriers

for the EM PACT2 or EM HPM100, respectively. Once frozen, carriers were transferred in liquid

nitrogen to the EM AFS2 (Leica Microsystems) FS machine, which was precooled to −90˚C. Carriers
were immersed in a FS medium of 1% osmium tetroxide, 0.5% uranyl acetate, and 5% H2O in acetone.

Cells were brought to RT over 67 hr: 27 hr at −90˚C; ramp to −60˚C over 15 hr; 8 hr at −60˚C; ramp to

−30˚C over 15 hr; 1 hr at −30˚C; ramp to 4˚C over 1 hr; cells were taken to the fume hood to reach RT.

Cells were embedded in epoxy resin (TAAB) and polymerized at 60˚C for 48 hr. Sections (70 nm) were

cut using an EM UC6 (Leica Microsystems) and post-stained using uranyl acetate and Reynold’s lead

citrate. Sections were imaged using the FEI Tecnai G2 Spirit BioTWIN microscope at 100 kV. Putative

K-fibers were identified as bundles of more than 10 MTs in sections taken orthogonal to the spindle

axis. K-fibers were imaged 1 μm away from the kinetochore, so as not to include any kinetochore-MT

linkages (Dong et al., 2007). Each tilt series was taken using TIA software (TEM imaging and Analysis,

FEI) from +50˚ to −50˚ in 1˚ steps. The IMOD etomo package was used to generate tomograms from

these tilt series (Mastronarde, 1997). Tomogram thickness ranged from 28.8 to 66.4 nm.

Data analysis
For visualization, 3D rendering of tomograms was done in Amira 5.6.0 (Visualization Sciences Group,

FEI, Eindhoven, Netherlands) using a combination of manual and automated detection. Each MT was

rendered individually by hand, and then any 3D density connecting the MTs was automatically

detected throughout the volume of the tomogram, using the average gray value of the MTs as an initial

threshold for segmentation. The space between MTs in a K-fiber is less granular than the surrounding

cytoplasm, which improves mesh detection. This unbiased method superseded our initial attempts at

hand-rendering the mesh and allowed for unbiased quantification and visualization of the mesh. Note

that measurements are taken from the unsmoothed segmentation maps. The segmentation method

detects unbroken density connected to MTs. However, after smoothing for visualization, breaks in the

mesh appear. In Amira, MTs were smoothed using unconstrained smoothing, and the mesh was rendered

with smooth surface (50 iterations, 0.6 lambda). Hand-rendered mesh in Figure 1B was smoothed with

constrained smoothing and then smooth surface generated (20 iterations, 0.6 lambda).

In longitudinal sections, K-fibers were defined as bundles of MTs contacting both the kinetochore

and the pole (McDonald et al., 1992; Booth et al., 2013). In orthogonal sections, K-fiber bundles

were defined as collections of 10 or more MTs, using an 80 nm boundary around each MT

(105 nm from the MT center). This distance corresponds to the longest inter-MT bridges visualized

previously by 2D EM (Booth et al., 2011).

For analysis of MT packing, coordinates of each MT at the midpoint of the tomogram were

collected, and the area of a convex hull that enclosed the coordinates was found. The distance to the

nearest neighboring MT and the number of MTs within 80 nm (105 nm from the MT center) were

calculated. Heat maps were generated by Voronoi interpolation of 3D coordinate sets that comprised

the x-y coordinates together with the number of MTs within 80 nm in the z dimension.

To analyze the mesh connections and MT chaining, individual connections in rendered tomograms

were classified and recorded together with the chain sizes for each K-fiber. Coordinate sets were

supplemented with chain membership data. This was used for an automated comparison of the number

of neighboring MTs within a given search radius, comparing chained vs single MTs. The analysis was

performed from 20 to 120 nm, and non-parametric Wilcoxon–Mann–Whitney two-sample rank test used

to test the hypothesis that there was no difference in the number of neighboring MTs. Chain

membership data were then randomized and the analysis repeated. Note that chain membership is
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probabilistic and is a function of tomogram thickness and mesh density/MT interconnectivity. ‘Single

MTs’ are those that are not detected to be attached to another but are likely to be attached to other

MTs in a subsequent slab of K-fiber.

For analysis of MT trajectories, 3D coordinates for each MT at the bottom and top of the tomogram

were logged in ImageJ and fed into IgorPro. Custom-written procedures ran through the following steps.

First, coordinates were compiled into individual MT matrices. Second, the center of the bundle was found

using farthest-point clustering, and then the distance of each MT from this point was calculated. Third, the

fiber direction was ‘normalized’, that is, rotated through 3D space so that most MTs pointed towards the

zenith. This was necessary because of the variability in the axes of different K-fibers relative to sectioning

and the resultant tomograms. To do normalization, all MTs were multiplied by rotation matrices

R =RzðαÞRyðβÞRxðγÞ;
for (in radians) 0 ≤ α ≤ 2π, 0 ≤ β ≤ π/2, γ = 0 in 180/π increments. The Cartesian distance of the

orthogonal projection of each MT on the reference plane after rotation was summed, to find the

rotation that produced the minimum value. The spherical coordinates, given by

r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2 + z2

q
;

θ= cos−1

 
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + y2 + z2
p

!
;

φ= tan−1
�y
x

�
;

of the MTs set at optimal rotation, were used for plotting. Fourth, a 2D plot to visualize the degree of

MT deviancy was generated. To do this, the point at which each 3D MT vector starting at the origin

intersects an x-y plane that was set arbitrarily at z = 100 nm was calculated and plotted. Note that the

even radial dispersal in Figure 6D and the even spread of azimuthal angles in Figure 6E show that

capture of tilt series was randomized, and the data set has no bias towards a particular trajectory.

Several other strategies were explored to analyze deviations in trajectory vs the fiber axis. These were:

examining the variance in trajectory angles, pairwise comparison of all MTs in the bundle, and

comparison to a reference MT that represented the fiber axis, using spherical rotation and rotating by

an average value. These produced similar results, however, the one described here was the most

robust and represents our best method for this kind of spatial statistical analysis. The computer code

used in the main analysis pipeline can be found as a Source code 1.

Images were cropped in Photoshop, and figures were assembled in Illustrator CS5.1. IgorPro 6.36

(Wavemetrics, Portland, OR) was used for all analysis and plotting.
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