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Abstract We present a novel mass spectrometry-based high-throughput workflow and an

open-source computational and data resource to reproducibly identify and quantify HLA-associated

peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay

libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps

of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry

(MS). This study represents the first community-based effort to develop a robust platform for the

reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA

molecules, an essential step towards the design of efficient immunotherapies.

DOI: 10.7554/eLife.07661.001

Introduction
Next-generation immune-based therapies are expected to facilitate the eradication of intractable

pathogens, cancer and autoimmune diseases (Koff et al., 2013). T cells play a critical role in such

therapies by their ability to detect the presence of disease-specific antigens/peptides presented by

major histocompatibility complex (MHC) molecules (human leukocyte antigen [HLA] molecules in

humans). Under steady-state or pathological conditions, thousands of HLA class I-associated peptides

of 8–12 amino acids in length are displayed on the surface of virtually all nucleated cells for scrutiny by
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CD8+ T cells. HLA class II-associated peptides are 10–25 amino acids in length and are normally found

on the surface of specialized antigen-presenting cells including macrophages and dendritic cells for

presentation to CD4+ T cells. Collectively, HLA class I and class II peptides are referred to as the

immunopeptidome, also known as HLA ligandome/peptidome (Caron et al., 2011; Kowalewski

et al., 2014). The composition of the immunopeptidome in the human population is complicated by

the presence of more than 3000 HLA alleles, resulting in a high diversity of peptide repertoires

characterized by the presence of HLA allele-specific binding motifs (Falk et al., 1991). To be

successful in designing efficient immunotherapies against autoimmunity, cancer and infectious

diseases, it is becoming increasingly important to comprehensively map the complexity of the human

immunopeptidome and to gain a more quantitative understanding of its dynamics in various disease

states.

Mass spectrometry (MS) has evolved as the method of choice for the exploration of the human

immunopeptidome (Hunt et al., 1992; Admon and Bassani-Sternberg, 2011; Granados et al.,

2015). The largest HLA peptidomes reported to date using MS contain more than 10,000 class I or

class II peptides (Hassan et al., 2013; Bergseng et al., 2014; Bassani-Sternberg et al., 2015).

Estimates from various analytical and cell-based techniques also indicate that individual peptides are

expressed on average at 50 copies per cell with extremes ranging from 1 to 10,000 copies per cell

(Granados et al., 2015). Until recently, the most common strategy for the analysis of

immunopeptidomes by MS has focused on the isolation of HLA-bound peptides by immunoaffinity

chromatography and the collection of fragment ion spectra of selected peptides through automated

MS operated in data-dependent acquisition (DDA) mode. Although DDA is a powerful strategy for

exploring the peptidomic content of various cell and tissue types, it is not a reliable platform for

solving problems that require the comparison of comprehensive, quantitative, and reproducible data

sets across many samples or conditions. In fact, analyses of complex/unfractionated digests of cell

lysate using DDA have shown that as many as 84% of peptides may remain unselected for

fragmentation even though they are clearly detectable by the mass spectrometer (Michalski et al.,

2011). Although the complexity of isolated HLA peptides is hardly comparable with that of cell lysate

digests, as many as 20% of the selected HLA peptides can vary between replicate analyses of the

same sample (Granados et al., 2014) (Figure 1—figure supplement 1A). A second strategy, referred

eLife digest The cells of the immune system protect us by recognizing telltale molecules

produced by damaged and diseased cells, or by infection-causing microorganisms (which are also

called pathogens). To help with this process, the cells in our bodies display small fragments of

proteins (called peptides) on their surface that are then checked by the immune cells. Collectively,

these peptides are referred to as the ‘immunopeptidome’, and deciphering the complexity of the

human immunopeptidome is important for both basic research and medical science. Such an

achievement would help to guide the development of next-generation vaccines and therapies

against autoimmune disorders, infectious diseases and cancers.

In the past, immune peptides were mostly identified using a technique that is commonly called

‘shotgun’ mass spectrometry. However, this approach doesn’t always provide reproducible results.

In 2012, researchers reported the development of a new approach—which they called ‘SWATH’ mass

spectrometry—that could yield more reproducible data.

Now, Caron et al.—including many of the researchers involved in the 2012 study—have

developed a large collection of standardized tests that use SWATH mass spectrometry to analyze the

human immunopeptidome. The workflow and the computational and data resources developed as

part of this international effort are the first steps toward highly reproducible and measurable

analyses of the immunopeptidome across many samples. Moreover, the large repository of assays

generated by the project has been made public and will serve a large community of researchers,

which should enable better collaborations.

In the future, SWATH mass spectrometry could be used as a robust technology for the

reproducible detection and measurement of pathogen-specific or cancer-specific immune peptides.

This could greatly help in the design of personalized immune-based therapies.

DOI: 10.7554/eLife.07661.002

Caron et al. eLife 2015;4:e07661. DOI: 10.7554/eLife.07661 2 of 17

Tools and resources Computational and systems biology | Immunology

http://dx.doi.org/10.7554/eLife.07661.002
http://dx.doi.org/10.7554/eLife.07661


to as selected/multiple reaction monitoring (S/MRM), is a targeting MS technique capable of

generating highly reproducible, quantitatively accurate and sensitive datasets (Picotti and

Aebersold, 2012). S/MRM is, however, limited by its capacity to detect only tens to hundreds of

peptides per sample injection and thus is not ideally suited to comprehensively quantify HLA

peptidomes. To overcome this limitation, we recently introduced SWATH-MS, a new mass

spectrometric technique that combines data-independent acquisition (DIA) with a targeted data

extraction strategy (Gillet et al., 2012; Röst et al., 2014). In DIA mode, all peptides in a sample are

fragmented and the corresponding fragment ion spectra are acquired, resulting in a digital recording

of the peptide sample. DIA is an unbiased MS technique and therefore represents a suitable strategy

for efficiently generating consistent, reproducible and quantitatively accurate measurements of

peptides across multiple samples (Gillet et al., 2012; Collins et al., 2013; Rosenberger et al., 2014;

Röst et al., 2014; Guo et al., 2015; Liu et al., 2015; Schubert et al., 2015a).

To extract quantitative information from digital SWATH-MS data, high-quality assay libraries are

required. Such libraries contain retention-time and fragmentation information of the peptides to be

targeted. Assay libraries are generated from native and/or synthetic peptides using a SWATH

compatible mass spectrometer operated in DDA mode. To date, several generic SWATH assay

libraries were generated for the analysis of proteomes in various species. These include

Mycobacterium tuberculosis (Schubert et al., 2015a), Saccharomyces cerevisiae (Selevsek et al.,

2015), and Homo sapiens (Rosenberger et al., 2014). Assay libraries were successfully employed to

measure a limited number of MHC class I peptides by S/MRM in various contexts—that is, viral

infection (Croft et al., 2013), autoimmunity (Schittenhelm et al., 2014a) and cancer (Gubin et al.,

2014)—but have never been created for robust quantitative and high-throughput measurement of

HLA-associated peptides by SWATH-MS.

For the SWATH-MS technology to meet its potential to support rapid advances in the design of

next-generation vaccines and immunotherapies, comprehensive HLA peptide assay libraries have

to be created and made readily available to basic and translational scientists. Generating such assay

libraries could ultimately enable the fast and reproducible quantification of the entire repertoire of

HLA peptides across many samples. Towards this end, we developed a workflow to (1) generate

a pilot repository of HLA allele-specific peptide spectral and assay libraries, and to (2) analyze

SWATH-MS HLA peptidomic data acquired from multiple international laboratories (Figure 1). In

this study, libraries were created from natural and/or synthetic HLA class I and II peptides whereas

analysis of SWATH-MS HLA peptidomic data focused mainly on naturally presented class I

peptides.

Results and discussion
Large-scale DDA-based identification of immunoaffinity purified HLA class I peptides is supported by

several software tools (e.g., MaxQuant, Perseus or X-PRESIDENT) and results in thousands of

unclassified peptides of various lengths. Since large HLA peptidomic datasets are generated at an

increasing pace, additional computational frameworks facilitating the HLA annotation and storage of

such datasets need to be developed. Here, we first created a computational workflow to support the

identification, classification/annotation, visualization and storage of HLA peptidomic data in an allele-

dependent manner. The software tools described in the section below enable (1) systematic

annotation of peptides to their respective HLA allele, (2) visualization of HLA peptidomic datasets,

and (3) generation of HLA class I allele-specific peptide spectral libraries, which can be converted into

high quality assay libraries for the processing of SWATH-data (Figure 2, Figure 2—figure

supplement 1, Figure 2—source data 2 and Supplementary file 1).

To test our workflow, the generated data and computational resources, we first assessed the

feasibility of generating HLA class I allele-specific peptide spectral libraries from a panel of fourteen

PBMC samples (PBMC #1–14) expressing different combinations of HLA class I alleles. HLA class I-

bound peptides were isolated from HLA-typed PBMC’s by immunoaffinity chromatography and

analyzed by DDA on an Orbitrap-XL mass spectrometer (Figure 2 and Figure 2—source data 1).

Peptides were identified using multiple open-source database search engines. The search

identifications were combined and statistically scored using PeptideProphet and iProphet within

the Trans-Proteomic Pipeline (TPP) as shown previously (Figure 1) (Shteynberg et al., 2011, 2013).

We next annotated the identified peptides to their respective HLA allele. Previously, HLA binding

prediction algorithms such as SYFPETHI, NetMHC and SMM were used for manual or semi-automated
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annotation of HLA peptides (Fortier et al., 2008; Berlin et al., 2014; Granados et al., 2014). Here,

we designed a fully automated annotation strategy integrating the stand-alone software package of

the HLA binding prediction algorithm NetMHC 3.4 with a set of in-house software tools

(Figure 2—figure supplement 1). The in-house software tools enable an automated, consistent

and effective annotation of the majority of the identified peptides to their respective HLA allele

Figure 1. General workflow for building HLA allele-specific peptide assay libraries and for analyzing SWATH-MS

HLA peptidomic data. (Left panel) A community-based repository of HLA class I allele-specific peptide spectral and

assay libraries was created and stored in the SWATHAtlas database. HLA typed-biological samples and synthetic

HLA peptides were used to build the repository. Our workflow integrates (1) data-dependent acquisition (DDA) of

HLA peptidomic data, (2) multiple open-source database search engines and statistical validation tools, (3) HLA

allele annotation of the identified peptides, and (4) spectral and assay library generation tools. (Right panel) HLA

peptidomic data from HLA-typed biological samples were acquired in data-independent acquisition (DIA) mode.

The matching HLA class I allele-specific peptide assay libraries were combined and DIA data were analyzed using

the OpenSWATH and the Skyline software.

DOI: 10.7554/eLife.07661.003

The following source data and figure supplements are available for figure 1:

Source data 1. Comparative analysis of DDA and SWATH-MS for the identification of HLA class I peptides.

DOI: 10.7554/eLife.07661.004

Figure supplement 1. Reproducibility of DDA and SWATH-MS for the identification of HLA class I peptides.

DOI: 10.7554/eLife.07661.005

Figure supplement 2. Combining results of three open-source database search engines in immunopeptidomics

using iProphet.

DOI: 10.7554/eLife.07661.006

Figure supplement 3. Combining both open-source and commercial database search engines in

immunopeptidomics.

DOI: 10.7554/eLife.07661.007
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Figure 2. Content and analysis of the pilot repository. (A) HLA peptides were isolated by immunoaffinity

chromatography and were annotated to their respective HLA alleles following DDA mass spectrometry. (B) Heat

map visualization of HLA class I peptides identified from 20 HLA-typed biological samples. HLA-A and -B alleles are

indicated for each sample. (C) 35,812 distinct class I and class II HLA peptides were identified, annotated, and used

to build 32 and 11 HLA allele-specific peptide spectral and SWATH assay libraries, respectively. (D) The distribution

curve shows that 95% of the HLA-B07-annotated peptides were predicted to bind the HLA molecule with an IC50

below 531 nM. Inner pie chart: we assessed the predicted HLA binding affinity of all peptides contained in individual

source proteins. The pie chart shows that 92% of naturally presented HLA-B07 peptides were ranked in the top 1%

(blue) of predicted peptides (see also Figure 2—figure supplement 6).

DOI: 10.7554/eLife.07661.008

Figure 2. continued on next page
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(Supplementary file 1). Briefly, each identified peptide was given a predicted HLA binding affinity

(IC50) for each of the HLA alleles expressed in the corresponding healthy donor. An HLA annotation

score was then computed for each individual peptide by dividing its second best IC50 value (i.e., the

second best predicted allele) by its best IC50 value (i.e., the best predicted allele). The higher this

annotation score was, the higher the probability was for the peptide to be correctly annotated to

a specific HLA allele. As an example, in PMBC#2, an annotation score of 77 was computed for the

KLEEQARAK peptide by dividing 21,400 nM (second best IC50 value predicted for HLA-B39) by 278

nM (best IC50 value predicted for HLA-A03) (Figure 2—figure supplement 1A). Peptides with an HLA

annotation score ≥3 (selected cutoff value; see ‘Materials and methods’ and Supplementary file 1)

were systematically annotated to the allele predicted to bind best (e.g., HLA-A03 for the KLEEQARAK

peptide). Using this scoring strategy, ∼80% of all identified 8–12-mers were annotated to a specific

HLA-A or -B allele (Figure 2—source data 2). HLA-A and -B alleles were prioritized due to the high

reliability of the NetMHC 3.4 predictor for a broad diversity of HLA-A and -B alleles as well as for their

high expression levels (Kim et al., 2014; Bassani-Sternberg et al., 2015; Trolle et al., 2015).

Peptides with an annotation score below 3 were considered as non-annotated in this study and were

discarded for the process of building the HLA allele-specific peptide spectral libraries. Tables

including scored peptides were then used to generate heat maps and visualize HLA-A and -B

peptidomes of PBMC’s as described (Figure 2B and Supplementary file 1). Of note, allele-supertype

peptides (i.e., peptides predicted to strongly bind more than one allele with an IC50 below 500 nM)

were curated in the output files but were not visualized on the heat maps in this study. A corrected

false discovery rate (cFDR) was estimated for each PBMC sample following removal of all non-

annotated contaminant peptides (Figure 1—figure supplement 2 and Figure 1—figure

supplement 3), resulting in a total of 4153 (peptide-level FDR 1%; average cFDR 0.5%) or 7921

(peptide-level FDR 5%; average cFDR 2.5%) distinct annotated peptides distributed across eighteen

HLA class I alleles (Figure 2—figure supplement 2A and Figure 2—source data 3). All annotated

peptides identified from the 14 PBMC samples were then used in SpectraST (Lam et al., 2008) to build

Figure 2. Continued

The following source data and figure supplements are available for figure 2:

Source data 1. Sources of HLA peptides used in this study.

DOI: 10.7554/eLife.07661.009

Source data 2. Annotation of HLA peptides.

DOI: 10.7554/eLife.07661.010

Source data 3. List of eluted HLA class I peptides that were identified at 1% and 5% peptide-level FDR.

DOI: 10.7554/eLife.07661.011

Source data 4. HLA class I allele-specific peptide spectral libraries stored in PeptideAtlas.

DOI: 10.7554/eLife.07661.012

Source data 5. HLA class I and II allele-specific peptide assay libraries stored in the SWATHAtlas database.

DOI: 10.7554/eLife.07661.013

Figure supplement 1. Automated NetMHC-based method for annotating and visualizing HLA allele-specific

peptides.

DOI: 10.7554/eLife.07661.014

Figure supplement 2. Identification of HLA class I allele-specific peptides by DDA.

DOI: 10.7554/eLife.07661.015

Figure supplement 3. Generation of assay libraries from a large collection of synthetic HLA class II peptides.

DOI: 10.7554/eLife.07661.016

Figure supplement 4. Distribution curves of peptide binding affinities for different HLA-A and -B alleles

(1% peptide-level FDR; 0.5% cFDR).

DOI: 10.7554/eLife.07661.017

Figure supplement 5. Distribution curves of peptide binding affinities for different HLA-A and -B alleles

(5% peptide-level FDR; 2.5% cFDR).

DOI: 10.7554/eLife.07661.018

Figure supplement 6. Binding scores of naturally presented HLA-A and -B peptides contained in individual source

proteins.

DOI: 10.7554/eLife.07661.019
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the HLA class I allele-specific peptide spectral libraries (‘Materials and methods’). The same procedure

was applied to peptides identified from JYEBV+ and C1R cells. Notably, endogenous HLA-C04 peptides

were recently shown to be significantly expressed on the surface of C1R cells (Schittenhelm et al.,

2014b) and were therefore considered in this study. In total, 3528 HLA-A peptides, 4208 HLA-B

peptides and 205 HLA-C04 peptides were recorded in the spectral libraries, which were then stored in

the public PeptideAtlas database (Figure 2—source data 4). In summary, we generated a computa-

tional workflow to effectively annotate and visualize HLA peptidomic data, which were finally converted

and stored into HLA allele-specific peptide spectral libraries consisting of consensus fragment

ion spectra. This strategy could be further refined to collect, store and share HLA peptidomic

information obtained from various cell lines and from larger cohorts of donors. Importantly, this

computational approach can be broadly applied to generate SWATH-compatible assay libraries as

described below.

Libraries of consensus fragment ion spectra can be converted into high quality assays for high-

throughput targeted analysis of SWATH-MS data, an emerging approach for reproducible, consistent

and accurate quantitative measurements of peptides (Gillet et al., 2012; Collins et al., 2013;

Rosenberger et al., 2014; Röst et al., 2014; Guo et al., 2015; Liu et al., 2015; Selevsek et al., 2015;

Schubert et al., 2015a). Here, we aimed at initiating a worldwide community-based effort to generate

pilot HLA allele-specific peptide assay libraries that could be further used for the analysis of SWATH-

MS HLA peptidomic data. Naturally presented and/or synthetic HLA class I and class II peptides were

provided from six independent laboratories and were analyzed using four distinct TripleTOF 5600 MS

instruments operated in DDA acquisition mode in four different international institutions. Naturally

presented HLA class I peptides from JYEBV+ (HLA-A02 and -B07), PBMC (HLA-A03, -A26, -B51 and

-B57), and Jurkat (HLA-A03, -B07 and -B35) cells were isolated by immunoaffinity chromatography

(Figure 2—source data 1). Natural class I peptides from three C1R cell lines—stably expressing HLA-

C04 as well as HLA-B27, -B39 or -B40 molecules—were also isolated using the same procedure.

Synthetic EBV-derived peptides known to bind HLA-A02 or -B07 were also used to build the libraries

(Figure 2—source data 2). All laboratories used the spiked-in landmark iRT peptides for retention

time normalization (Escher et al., 2012). The DDA data generated by the different groups were

shared and pipelined through the computational workflow described above, resulting in the

identification of 7668 (peptide-level FDR 1%; average cFDR 0.5%) or 11,275 (peptide-level FDR 5%;

average cFDR 2.5%) distinct HLA class I peptides distributed across eleven different HLA class I alleles

(Figure 2—figure supplement 2B and Figure 2—source data 3). To properly assess the efficiency of

generating HLA peptide assay libraries from synthetic peptides, a large collection of 20,176 synthetic

HLA class II peptides was analyzed by DDA using different mass spectrometers and fragmentation

methods (Figure 2—figure supplement 3 and Figure 2—source data 2). Our results show that

a total of 15,875 peptides (∼79%) were identified (Figure 2—source data 2). A large collection of

synthetic HLA class I peptides was not available but could be used in the future to extend the contents

of the present class I libraries derived from native peptides. All identified peptides were used to build

the HLA allele-specific peptide assay libraries (‘Materials and methods’). To date, the pilot libraries

contain a total of 223,735 transitions for 26,857 unique peptides and were stored by class and allele in

the SWATHAtlas database (Figure 2—source data 5 and http://www.swathatlas.org). By using the

automated HLA peptide annotation method described above, we observed that similar binding

affinities were predicted for HLA class I peptides identified at peptide-level FDR 1% and peptide-level

FDR 5% (Figure 2—figure supplement 4 and Figure 2—figure supplement 5), suggesting that

a large fraction of true positives were excluded at peptide-level FDR 1%. Our data also show that 95%

of the annotated class I peptides in this study were predicted to bind their respective HLA molecules

with an IC50 ranging from 72 nM (for HLA-A01) to 5682 nM (for HLA-B51) at peptide-level FDR 1%

(Figure 2—figure supplement 4). Similar results were obtained at peptide-level FDR 5%

(Figure 2—figure supplement 5). This result supports a recent study indicating that HLA class I

alleles are associated with peptide-binding repertoires of different affinity (Paul et al., 2013).

Altogether, we demonstrated the feasibility of collecting DDA data from multiple international

laboratories to generate standardized HLA allele-specific peptide assay libraries. We anticipate this

global effort as a first step towards the development of a standardized Pan-human HLA peptide assay

library, which could be used to rapidly and reproducibly quantify the entire repertoire of peptides

presented by HLA molecules using SWATH-MS.
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SWATH-MS is emerging as a robust next-generation proteomics technique for efficiently

generating reproducible, consistent and quantitatively accurate measurements of peptides across

multiple samples (Gillet et al., 2012; Collins et al., 2013; Rosenberger et al., 2014; Röst et al.,

2014; Guo et al., 2015; Liu et al., 2015; Selevsek et al., 2015; Schubert et al., 2015a). To promote

the worldwide development of SWATH-based MS platforms towards robust quantitative measure-

ments of HLA peptidomes, we assessed whether the HLA allele-specific assay libraries described

above could be used to extract quantitative information from digital SWATH maps acquired by

different laboratories. Importantly, four independent laboratories generated their own digital SWATH

maps using TripleTOF 5600 MS operated in DIA acquisition mode. Naturally presented HLA class I

peptides were isolated from the cell types mentioned above (i.e., JYEBV+, Jurkat, PBMC and C1R).

Precursors in the range of 400–1200 Th were divided into 32 SWATH windows of 25 Da (Gillet et al.,

2012). All ionized peptide precursors in this mass range were fragmented, generating comprehensive

and quantitative digital fragment ion maps. The HLA peptidome of JYEBV+ cells was analyzed using the

OpenSWATH (Röst et al., 2014) software tool and a combined assay library containing 22,206

transitions for 1507 HLA-A02 and 2194 HLA-B07 peptides—the two dominant HLA alleles expressed

on these cells. At an estimated peptide-level FDR of 1% (m-score < 0.01), a total of 3150 unique HLA

class I peptides were identified from the digital SWATH map (Figure 3A,B,C, Figure 3—figure

supplement 1A,B, Figure 3—figure supplement 7 and Figure 3—source data 1). Notably, assays

generated from the synthetic EBV-related class I peptides enabled the identification of one EBV-

derived HLA-A02 peptide (Figure 3C), thereby demonstrating that building high-quality assay

libraries from synthetic class I peptides of pathogen origin could be useful for the identification of non-

self HLA-bound peptides by SWATH-MS. To analyze self-HLA peptides isolated from PBMC

(HLA-A03, -A26, -B51 and -B57), Jurkat (HLA-A03, B07 and -B35), C1R-B27 (HLA-B27) and C1R-B40

(HLA-B40) cells, the matching HLA class I allele-specific peptide assay libraries were combined accordingly

using SpectraST and then processed in the OpenSWATH software. High-throughput targeted analysis

from these four additional peptidomic datasets indicated that ∼81% of HLA class I peptides present in an

assay library could be extracted from a quantitative digital SWATH map in a cell type-independent

manner (peptide-level FDR 1%) (Figure 3—figure supplement 1C, Figure 3—figure supplements 2–6

and Figure 3—source data 1). We next optimized the SWATH acquisition conditions according to the

size distribution of HLA class I peptides. Most class I peptide precursors (∼98%) fall within the range of

400–700 Th and were divided in 30 SWATH windows of 10 Da width each. Using SWATH data generated

from JYEBV+ cells, we found that narrowing the size of the windows by 2.5-fold resulted in a ∼13% fold-

increase in the identification of class I peptides (Figure 3—figure supplement 1A). The R2 value for

SWATH-MS quantification was 0.979 from two technical replicates (Figure 3D). In accordance with

previous studies, we also observed that the dynamic range of peptides quantified in different cell types

using SWATH-MS, based on their signal intensity, was about 3-4 orders of magnitude (Figure 3E)

(Hassan et al., 2013; Bassani-Sternberg et al., 2015). Altogether, we demonstrate the feasibility of an

international effort to build standardized HLA allele-specific peptide assay libraries, which were used to

extract quantitative information from digital SWATH maps acquired in different sites. We therefore

provide a proof of concept that acquisition of SWATH-MS HLA peptidomic data may enable robust

analysis of the human immunopeptidome on a global scale.

To further establish the robustness of SWATH-MS for the measurement of HLA-associated

peptides, we tested whether the JYEBV+ HLA peptidome could be reproducibly detected across

multiple MS injections. For this purpose, we prepared a sample of class I peptides by immunoaffinity

purification from JYEBV+ cells and we acquired three datasets in SWATH mode. The datasets were

analyzed using OpenSWATH and a combined HLA-A02 and -B07 peptide assay library as described

above. At an estimated peptide-level FDR of 1%, a total of 2933 unique HLA class I peptides were

identified by SWATH-MS and 2832 peptides (97%) were found in all the SWATH analyses

(Figure 1—figure supplement 1B, Figure 1—source data 1). We then conducted a comparative

analysis by acquiring three additional datasets in DDA mode from the same sample of class I peptides

using the same chromatographic conditions. In total, 3153 HLA-A and -B peptides were identified at

1% peptide-level FDR and 1261 peptides (40%) were found in all the DDA analyses (Figure 1—figure

supplement 1A, Figure 1—source data 1). Thus, the SWATH method clearly outperformed the DDA

approach for the reproducible identification of JYEBV+ HLA class I peptides across several technical

replicates. Overall, our results indicate that SWATH-MS has the capability of detecting large numbers

of HLA peptides across multiple injections at a high degree of reproducibility. By providing
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Figure 3. High-throughput targeted analysis of HLA peptidomic data by SWATH-MS. (A) SWATH-MS coordinates of

two HLA class I allele-specific assay libraries (HLA-A02 and -B07) were combined to extract SWATH data generated

from the HLA peptidome of JYEBV+ cells. Sixteen summed transition groups are shown here for simplicity. (B, C)

Visualization of two extracted SWATH transition groups corresponding to the self-HLA-A02 peptide, KILPTLEAV and

the non-self HLA-A02 EBV peptide, YVLDHLIVV. (D) Reproducibility of intensity measurements for technical

replicates. (E) Dynamic range of transition group intensities following targeted analysis of SWATH-MS HLA

peptidomic data generated from various cell types expressing different combinations of HLA alleles. SWATH/DIA

data were acquired in four independent international laboratories.

DOI: 10.7554/eLife.07661.020

The following source data and figure supplements are available for figure 3:

Source data 1. OpenSWATH analysis.

DOI: 10.7554/eLife.07661.021

Figure 3. continued on next page
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a community resource for the continuous expansion of the library contents and by improving the

performance of the OpenSWATH software, it can be expected that additional HLA peptides—includ-

ing cryptic and mutant peptides—will be reproducibly identified and quantified from the same digital

SWATH maps in the future.

The life sciences community greatly benefits from robust technologies such as microarrays and

RNA-seq. Similarly, robust generation and analysis of quantitative digital maps of HLA peptidomes is

expected to have important implications in basic and translational research as these will allow research

groups to accurately investigate the dynamics of immunopeptidomes in various immune-related

diseases such as autoimmunity, infectious diseases and cancers. For instance, reproducible digital

mapping of tumor-specific mutant HLA peptides during cancer progression will facilitate stratification

of patients who might best benefit from innovative immunotherapeutic interventions (Gubin et al.,

2014; Snyder et al., 2014; Schumacher et al., 2015). The workflow and the computational and data

resources presented in this community-based study is a first step towards highly reproducible and

quantitative MS-based measurements of HLA peptidomes across many samples and could therefore

be greatly beneficial in the design of personalized immune-based therapies. Moreover, the storage of

HLA peptide spectral and assay libraries by class and allele in the SWATHAtlas database provides an

initial framework to collect, organize and share HLA peptidomic data, thereby supporting the recently

proposed Human Immunopeptidome and Vaccines Projects (Admon and Bassani-Sternberg, 2011;

Koff et al., 2014).

Materials and methods

Blood samples, cell lines and synthetic peptides
PBMCs from healthy donors were isolated by density gradient centrifugation. Informed consent was

obtained in accordance with the Declaration of Helsinki protocol. HLA typing was carried out by the

Department of Hematology and Oncology, Tübingen, Germany. PBMCs were stored at −80˚C
until further use. JYEBV+, Jurkat and C1R cells were cultured in RPMI supplemented with 10% fetal

bovine serum, 50 IU/ml penicillin, and 50ug/ml streptomycin (Invitrogen, Life Technologies Europe

BV, Zug, Switzerland). C1R cells were stably transfected with -B2705, -B3901 and -B4002 constructs,

as described previously (Marcilla et al., 2014; Schittenhelm et al., 2014a). The EBV peptide

was synthesized by Thermo Fischer Scientific (Ulm, Germany). The collection of 20,176 MTB peptides

was synthesized by Mimotopes (Victoria, Australia) as described (Lindestam Arlehamn et al., 2013).

Figure 3. Continued

Figure supplement 1. OpenSWATH analysis of HLA peptidomic data.

DOI: 10.7554/eLife.07661.022

Figure supplement 2. OpenSWATH analysis and PyProphet statistics of HLA peptidomic data acquired at ETH

Zurich, Switzerland.

DOI: 10.7554/eLife.07661.023

Figure supplement 3. OpenSWATH analysis and PyProphet statistics of HLA peptidomic data acquired at ETH

Zurich, Switzerland.

DOI: 10.7554/eLife.07661.024

Figure supplement 4. OpenSWATH analysis and PyProphet statistics of HLA peptidomic data acquired at University

of Oxford, UK.

DOI: 10.7554/eLife.07661.025

Figure supplement 5. OpenSWATH analysis and PyProphet statistics of HLA peptidomic data acquired at Monash

University, Australia.

DOI: 10.7554/eLife.07661.026

Figure supplement 6. OpenSWATH analysis and PyProphet statistics of HLA peptidomic data acquired at Centro

National de Biotechnologia, Madrid, Spain.

DOI: 10.7554/eLife.07661.027

Figure supplement 7. Visualization and analysis of SWATH-MS HLA peptidomic data in Skyline.

DOI: 10.7554/eLife.07661.028
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Isolation of HLA peptides
HLA class I peptide complexes were isolated by standard immunoaffinity purification as described

previously using the pan-HLA class I-specific mAb W6/32 (Hunt et al., 1992; Croft et al., 2013;

Kowalewski and Stevanovic, 2013; Marcilla et al., 2014).

RT normalization peptides
For the RT normalization and analysis, the peptides from the iRT Kit (Biognosys AG, Schlieren,

Switzerland) were added to samples (see Figure 2—source data 1) prior to MS injection according to

vendor instructions (Escher et al., 2012).

DDA mass spectrometry

AB SCIEX TripleTOF 5600+

Both naturally presented and synthetic HLA peptides were analyzed using a TripleTOF system (see

Figure 2—source data 1) as described before (Gillet et al., 2012; Röst et al., 2014). Samples were

analyzed on an Eksigent nanoLC (AS-2/1Dplus or AS-2/2Dplus) system coupled with a SWATH-MS-

enabled AB SCIEX TripleTOF 5600+ System. The HPLC solvent system consisted of buffer A (2%

acetonitrile and 0.1% formic acid in water) and buffer B (2% water with 0.1% formic acid in acetonitrile).

The samples were separated in a 75 μm-diameter PicoTip emitter (New Objective, Woburn, MA) packed

with 20 cm of Magic 3 μm, 200 Å C18 AQmaterial (Bischoff Chromatography, Leonberg, Germany). The

loaded material was eluted from the column at a flow rate of 300 nl/min with the following gradient:

linear 2–35% B over 120 min, linear 35–90% B for 1 min, isocratic 90% B for 4 min, linear 90–2% B for

1 min and isocratic 2% solvent B for 9 min. The mass spectrometer was operated in DDA top20 mode,

with 500 and 150 ms acquisition time for the MS1 and MS2 scans respectively, and 20 s dynamic

exclusion. Rolling collision energy with a collision energy spread of 15 eV was used for fragmentation.

Thermo scientific orbitrap ELITE
Mtb synthetic peptides were analyzed on an Eksigent LC system coupled to an LTQ-Orbitrap ELITE

mass spectrometer. Peptides were separated on a custom C18 reversed phase column (150 mm i.d. ×
100 mm, Jupiter Proteo 4 mm, Phenomenex) using a flow rate of 600 nl min−1 and a linear gradient of

3–60% aqueous ACN (0.2% formic acid) in 120 min. Full mass spectra were acquired with the Orbitrap

analyser operated at a resolving power of 30,000 (at m/z 400). Mass calibration used an internal lock

mass (protonated (Si(CH3)2O))6; m/z 445.120029) and mass accuracy of peptide measurements was

within 5 p.p.m. MS/MS spectra were acquired in CID and HCD mode with a normalized collision

energy of 35%. Up to ten precursor ions were accumulated to a target value of 50,000 with

a maximum injection time of 300 ms and fragment ions were transferred to the Orbitrap analyser

operating at a resolution of 15,000 at m/z 400.

Thermo scientific orbitrap XL
Naturally presented HLA class I peptides from several PBMC samples (see Figure 2—source data 1)

were also analyzed by reversed-phase liquid chromatography (nano-UHPLC, UltiMate 3000

RSLCnano; Thermo Fisher, Waltham, MA, USA) coupled with an LTQ Orbitrap XL hybrid mass

spectrometer. Samples were analyzed in five technical replicates. Sample volumes of 5 μl (sample

shares of 20%) were injected onto a 75 μm × 2 cm trapping column (Acclaim PepMap RSLC; Thermo

Fisher) at 4 μl/min for 5.75 min. Peptide separation was subsequently performed at 50˚C and a flow

rate of 175 nl/min on a 50 μm × 50 cm separation column (Acclaim PepMap RSLC; Thermo Fisher)

applying a gradient ranging from 2.4 to 32.0% of acetonitrile over the course of 140 min. Eluting

peptides were ionized by nanospray ionization and analyzed in the mass spectrometer implementing

a top five CID method generating fragment spectra for the five most abundant precursor ions in the

survey scans. Resolution was set to 60,000. For HLA class I ligands, the mass range was limited to

400–650 m/z with charge states 2 and 3 permitted for fragmentation.

Database search engines and statistical validation
All raw instrument data were centroided and processed as described previously (Collins et al., 2013;

Rosenberger et al., 2014). The datasets were searched individually using X!tandem (Craig et al.,

2004), MS-GF+ (Kim and Pevzner, 2014) and Comet (Eng et al., 2012) against the full

non-redundant, canonical human genome as annotated by the UniProtKB/Swiss-Prot (2014_02) with
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20,270 ORFs and appended iRT peptide and decoy sequence. Oxidation (M) was the only variable

modification. Parent mass error was set to ±5 p.p.m., fragment mass error was set to ±0.5 Da. The search

identifications were then combined and statistically scored using PeptideProphet (Keller et al., 2002) and

iProphet (Shteynberg et al., 2011) within the TPP (4.7.0) (Keller et al., 2005). All peptides with an

iProbability/iProphet score above 0.7 were exported in Excel. Assumed charges were also exported, as

this information is needed in SpectraST. Length considered was 8–12 residues for class I HLA peptides.

FDR was manually estimated based on the target-decoy approach (Elias and Gygi, 2007). Peptides (1%

and 5% peptide-level FDR) were then exported to a .txt file for annotation to their respective HLA allele.

HLA allele annotation
Annotation of the identified peptides (1% and 5% peptide-level FDR) to their respective HLA allele

was performed automatically by integrating the stand-alone software package of NetMHC 3.4

(Lundegaard et al., 2008) with our in-house software tools (Supplementary file 1 and Source code 1).

An HLA annotation score was computed by the software tools for individual peptides (Figure 2—figure

supplement 1). A predefined cutoff score of 3 was then used to annotate each peptide to their

respective HLA allele. A cutoff value of 3 was selected because >90% of the identified peptides with an

annotation score above 3 have a predicted IC50 below 1000 nM. FDR was corrected from the list of

annotated HLA peptides based on the target-decoy approach (Elias and Gygi, 2007). The software

tools were used to process and visualize the peptidomic datasets. The final lists of HLA-allele specific

peptides were exported into a .txt file and used in SpectraST for library generation.

Generation of HLA allele-specific peptide spectral and assay libraries
This section was adapted from Schubert et al. (2015b). The parameters below were used for

Spectrast (Lam et al., 2008). Exact meaning of each parameter can be found in the following link:

http://tools.proteomecenter.org/wiki/index.php?title=Software:SpectraST. Spectrast was used in

library generation mode with CID-QTOF settings (-cICID-QTOF) for the Triple-TOF 5600+ or CID

(default) settings for the Orbitrap-XL and Orbitrap-ELITE. Retention times were normalized against

the iRT Kit peptide sequences (-c_IRTiRT.txt -c_IRR). Only HLA-allele specific peptide ions were

included for library generation (-cT):

spectrast -cNSpecLib_celltype_allele_fdr_iRT -cICID-QTOF -cTReference_celltype_allele_fdr.txt

-cP0.7 -c_IRTiRT.txt -c_IRR iprophet.pep.xml

A consensus library was then generated:

spectrast -cNSpecLib_cons_celltype_allele_fdr_iRT -cICID-QTOF -cAC SpecLib_celltype_allele_fdr_iRT.

splib

HLA-allele specific consensus libraries were merged:

spectrast -cNSpecLib_cons_celltype_alleles_fdr_iRT -cJU -cAC SpecLib_celltype_allele1_fdr_iRT.

splib SpecLib_celltype_allele2_fdr_iRT.splib SpecLib_celltype_allele3_fdr_iRT.splib SpecLib_cellty-

pe_allele4_fdr_iRT.splib

The script spectrast2tsv.py (msproteomicstools 0.2.2; https://pypi.python.org/pypi/msproteomic-

stools) was then used to generate the HLA-allele specific peptide assay library with the following

recommended settings:

spectrast2tsv.py -l 350,2000 -s b,y -x 1,2 -o 6 -n 6 -p 0.05 -d -e -w swaths.txt -k openswath -a

SpecLib_cons_celltype_alleles_fdr_iRT_openswath.csv SpecLib_cons_celltype_alleles_fdr_iRT.sptxt

The _openswath.csv file was then converted into a .tsv file and opened in Excel. Reference

coordinates for the 11 iRT peptides were confirmed and any remaining decoy sequences were

removed. The file was then saved in .txt format and then converted back in .csv format. The

OpenSWATH tool ConvertTSVToTraML converted the TSV/CSV file to TraML:

ConvertTSVToTraML -in SpecLib_cons_celltype_alleles_fdr_iRT_openswath.csv -out SpecLib_

cons_celltype_alleles_fdr_iRT.TraML

Decoys were appended to the TraML assay library with the OpenSWATH tool OpenSwathDecoy-

Generator as described before (Rosenberger et al., 2014; Röst et al., 2014; Schubert et al., 2015b)

in reverse mode with a similarity threshold of 0.05 Da and an identity threshold of 1:

OpenSwathDecoyGenerator -in SpecLib_cons_celltype_alleles_fdr_iRT.TraML -out SpecLib_

cons_celltype_alleles_fdr_iRT_decoy.TraML -method shuffle -append -exclude_similar

The library was then uploaded into the iPortal workflow for SWATH data analysis (see below).
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DIA mass spectrometry (SWATH-MS)
For SWATH-MS data acquisition, the same mass spectrometer and LC-MS/MS setup was operated

essentially as described before (Collins et al., 2013; Rosenberger et al., 2014) using 32 windows of 25

Da effective isolation width (with an additional 1 Da overlap on the left side of the window) and with

a dwell time of 100 ms to cover the mass range of 400–1200 m/z in 3.3 s. Before each cycle, an MS1

scan was acquired, and then the MS2 scan cycle started (400–425 m/z precursor isolation window for

the first scan, 424–450 m/z for the second... 1,174–1200 m/z for the last scan). The collision energy for

each window was set using the collision energy of a 2+ ion centered in the middle of the window with

a spread of 15 eV. Four independent international laboratories acquired their own SWATH maps using

the settings described above: (1) Antony Purcell, Monash University; (2) Nicola Ternette, University of

Oxford; (3) Miguel Marcilla, Spanish National Biotechnology Center; (4) Ruedi Aebersold, ETH-Zurich.

SWATH-MS data analysis
The iPortal workflow was used for data analyses (Kunszt et al., 2014). The OpenSWATH analysis workflow

(OpenSWATHWorkflow) (http://www.openswath.org) was implemented in the iPortal workflow. The

parameters were selected analogously to the ones described before (Röst et al., 2014): min_rsq: 0.95,

min_coverage: 0.6, min_upper_edge_dist: 1, mz_extraction_window: 0.05, rt_extraction_window: 600,

extra_rt_extraction_window: 100. pyprophet (https://pypi.python.org/pypi/pyprophet) was run on the

OpenSwathWorkflow output adjusted to contain the previously described scores (xx_swath_prelim_score,

bseries_score, elution_model_fit_score, intensity_score, isotope_correlation_score, isotope_overlap_score,

library_corr, library_rmsd, log_sn_score, massdev_score, massdev_score_weighted, norm_rt_score,

xcorr_coelution, xcorr_coelution_weighted, xcorr_shape, xcorr_shape_weighted. yseries_score) (Röst

et al., 2014). Assay libraries were loaded into Skyline and SWATH traces were analyzed as described

previously (Schubert et al., 2015b). Advanced protocols for analysis of SWATH/DIA data can be

downloaded from the website: http://skyline.maccosslab.org.
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specific spectral libraries
(without RT normalization) are
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PASS00666.
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Publicly available at the
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