Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria

  1. Alexandre Chojnowski
  2. Peh Fern Ong
  3. Esther SM Wong
  4. John SY Lim
  5. Rafidah A Mutalif
  6. Raju Navasankari
  7. Bamaprasad Dutta
  8. Henry Yang
  9. Yi Y Liow
  10. Siu K Sze
  11. Thomas Boudier
  12. Graham D Wright
  13. Alan Colman
  14. Brian Burke
  15. Colin L Stewart
  16. Oliver Dreesen  Is a corresponding author
  1. Institute of Medical Biology, Singapore
  2. Nanyang Technological University, Singapore
  3. National University of Singapore, Singapore
  4. IPAL UMI 2955, Singapore

Abstract

Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization.

Article and author information

Author details

  1. Alexandre Chojnowski

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Peh Fern Ong

    Cellular Ageing, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Esther SM Wong

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. John SY Lim

    Microscopy Unit, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Rafidah A Mutalif

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Raju Navasankari

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Bamaprasad Dutta

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Henry Yang

    Bioinformatics Core, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  9. Yi Y Liow

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Siu K Sze

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas Boudier

    Bioinformatics Institute, IPAL UMI 2955, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  12. Graham D Wright

    Microscopy Unit, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  13. Alan Colman

    Stem Cell Disease Models, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  14. Brian Burke

    Nuclear Dynamics and Architecture, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  15. Colin L Stewart

    Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  16. Oliver Dreesen

    Cellular Ageing, Institute of Medical Biology, Singapore, Singapore
    For correspondence
    oliver.dreesen@imb.a-star.edu.sg
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (140960) of the Institute of Medical Biology, A*STAR, Singapore.

Reviewing Editor

  1. Karsten Weis, ETH Zürich, Switzerland

Publication history

  1. Received: March 27, 2015
  2. Accepted: August 23, 2015
  3. Accepted Manuscript published: August 27, 2015 (version 1)
  4. Version of Record published: September 11, 2015 (version 2)

Copyright

© 2015, Chojnowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,397
    Page views
  • 1,152
    Downloads
  • 88
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexandre Chojnowski
  2. Peh Fern Ong
  3. Esther SM Wong
  4. John SY Lim
  5. Rafidah A Mutalif
  6. Raju Navasankari
  7. Bamaprasad Dutta
  8. Henry Yang
  9. Yi Y Liow
  10. Siu K Sze
  11. Thomas Boudier
  12. Graham D Wright
  13. Alan Colman
  14. Brian Burke
  15. Colin L Stewart
  16. Oliver Dreesen
(2015)
Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria
eLife 4:e07759.
https://doi.org/10.7554/eLife.07759

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Andria C Schibler, Predrag Jevtic ... Tom Misteli
    Research Article

    The shape and size of the human cell nucleus is highly variable amongst cell types and tissues. Changes in nuclear morphology are associated with disease, including cancer, as well as with premature and normal aging. Despite the very fundamental nature of nuclear morphology, the cellular factors that determine nuclear shape and size are not well understood. To identify regulators of nuclear architecture in a systematic and unbiased fashion, we performed a high-throughput imaging-based siRNA screen targeting 867 nuclear proteins including chromatin-associated proteins, epigenetic regulators, and nuclear envelope components. Using multiple morphometric parameters and eliminating cell cycle effectors, we identified a set of novel determinants of nuclear size and shape. Interestingly, most identified factors altered nuclear morphology without affecting the levels of lamin proteins, which are known prominent regulators of nuclear shape. In contrast, a major group of nuclear shape regulators were modifiers of repressive heterochromatin. Biochemical and molecular analysis uncovered a direct physical interaction of histone H3 with lamin A mediated via combinatorial histone modifications. Furthermore, disease-causing lamin A mutations that result in disruption of nuclear shape inhibited lamin A-histone H3 interactions. Finally, oncogenic histone H3.3 mutants defective for H3K27 methylation resulted in nuclear morphology abnormalities. Altogether, our results represent a systematic exploration of cellular factors involved in determining nuclear morphology and they identify the interaction of lamin A with histone H3 as an important contributor to nuclear morphology in human cells.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Yunfeng Lin, Jia Li ... Shan Yan
    Research Article

    Cells have evolved the DNA damage response (DDR) pathways in response to DNA replication stress or DNA damage. In the ATR-Chk1 DDR pathway, it has been proposed that ATR is recruited to RPA-coated single-stranded DNA (ssDNA) by direct ATRIP-RPA interaction. However, it remains elusive how ATRIP is recruited to ssDNA in an RPA-independent manner. Here, we provide evidence that APE1 directly associates ssDNA to recruit ATRIP onto ssDNA in an RPA-independent fashion. The N-terminal motif within APE1 is required and sufficient for the APE1-ATRIP interaction in vitro and the distinct APE1-ATRIP interaction is required for ATRIP recruitment to ssDNA and the ATR-Chk1 DDR pathway activation in Xenopus egg extracts. In addition, APE1 directly associates with RPA70 and RPA32 via two distinct motifs. Taken together, our evidence suggests that APE1 recruits ATRIP onto ssDNA in an RPA-dependent and -independent manner in the ATR DDR pathway.