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Abstract Complexes of specifically interacting molecules, such as transcription factor proteins

(TFs) and the DNA response elements (REs) they recognize, control most biological processes, but

little is known concerning the functional and evolutionary effects of epistatic interactions across

molecular interfaces. We experimentally characterized all combinations of genotypes in the joint

protein-DNA sequence space defined by an historical transition in TF-RE specificity that occurred

some 500 million years ago in the DNA-binding domain of an ancient steroid hormone receptor. We

found that rampant epistasis within and between the two molecules was essential to specific TF-RE

recognition and to the evolution of a novel TF-RE complex with unique derived specificity. Permissive

and restrictive epistatic mutations across the TF-RE interface opened and closed potential

evolutionary paths accessible by the other, making the evolution of each molecule contingent on its

partner’s history and allowing a molecular complex with novel specificity to evolve.

DOI: 10.7554/eLife.07864.001

Introduction

Function and evolution in molecular sequence space
The relationship between gene sequence and molecular function is of central interest in both

molecular biology and evolution. A useful construct for understanding this relationship is sequence

space, an organized multidimensional representation of all possible genotypes of a biological system,

each connected to its neighbors by edges representing changes in a single sequence site (Maynard

Smith, 1970). Assigning functional information to each genotype yields a ‘topological map’ of the

space, which depicts the total set of relations between sequence and function. As proteins evolve,

they follow trajectories through sequence space, so the topology of the map also determines how

mutation, drift, selection, and other forces can drive genetic evolution.

The functional topology of sequence space depends strongly on the degree and type of epistasis,

defined as genetic interactions between sequence sites, such that the effect of a mutation at one site

depends on the state at others. Epistasis makes the space’s topology rugged (Gavrilets, 2004;

Kondrashov and Kondrashov, 2015) in the sense that the functional effect of a mutation—a step in

some direction along the map—depends on the genetic background in which it occurs. By causing the

fitness effects of mutations to depend on the order in which they are introduced, epistasis can affect the

probability that evolution will follow any given mutational trajectory under positive selection, purifying

selection, or neutral drift (Wright, 1932; Stadler et al., 2001; Weinreich et al., 2006; Poelwijk et al.,

2007; Ortlund et al., 2007; Phillips, 2008; Bridgham et al., 2009; Field and Matz, 2010;
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Salverda et al., 2011; Breen et al., 2012; Gong et al., 2013; Harms and Thornton, 2014; Yokoyama

et al., 2014; Podgornaia and Laub, 2015; Tufts et al., 2015).

Sequence space is vast, so an exhaustive functional mapping and characterization of epistasis for any

protein or gene is impossible. Some studies have characterized libraries of genotypes in the sequence

space immediately around present-day proteins (Lunzer et al., 2005; Fowler et al., 2010; Hinkley

et al., 2011; Araya et al., 2012; McLaughlin et al., 2012; Tokuriki et al., 2012; Jacquier et al., 2013;

Melamed et al., 2013; Olson et al., 2014; Bank et al., 2015; Podgornaia and Laub, 2015). Others

have focused on smaller numbers of mutations that occurred during historical evolution, introducing

them singly and in combination into extant proteins to understand their interactions and potential

effects on evolutionary trajectories (Weinreich et al., 2006; Elde et al., 2009; Bloom et al., 2010;

eLife digest Transcription factors are proteins that control which genes inside a cell are active by

binding to specific short sequences of DNA called response elements. Small differences in

a trancription factor’s amino acid sequence or in a response element’s DNA sequence can affect their

ability to recognize each other. How these pairs of molecules recognize each other—and how they

evolved to do so—are important questions in molecular biology and evolution.

One way to understand these questions is to study ‘sequence space’, an organized representation

of all of the possible sequences of a molecule, each linked to its neighbors by single point mutations.

As a molecule evolves, it follows one of many possible paths from its ancestral form to a later-day

version. Some paths deliver improvements at every step, and some involve ‘neutral’ wanderings. Still

other paths produce intermediate forms that work poorly or not at all; such paths are unlikely to be

followed during evolution. By characterizing many different versions of a molecule and mapping their

functions onto sequence space, scientists can better understand how biological molecules work and

how evolution might have produced them.

No one has previously explored the combined sequence space of two interacting molecules. Now

Anderson, McKeown and Thornton have characterized the joint sequence space of a transcription

factor that controls a cell’s response to steroid hormones and the DNA response elements that it

recognizes. Their experiments focused on the portion of sequence space between two ancient

members of the transcription factor family which existed just before and just after a major shift in

their ability to recognize different DNA sequences.

To reconstruct these ancestral proteins, Anderson, McKeown and Thornton used computational

methods to infer their most likely sequences based on those of hundreds of present-day members of

the family and the relationships between them. These proteins were then tested in the laboratory to

see how strongly each of them could bind to various DNA response elements.

These proteins and their preferred response elements define the start and end of an ancient

evolutionary journey through sequence space, which took place about 500 million years ago.

Anderson, McKeown and Thornton then reconstructed all the possible steps on the paths between

the two transcription factors and the two response elements. Every transcription factor was tested

with every response element, and the information about how strongly they could bind was mapped

onto the joint sequence space of the two molecules.

The experiments revealed that mutations in either the DNA or the transcription factor had very

different effects, depending on which other changes had already occurred elsewhere in the same

molecule or in its partner. Geneticists call this phenomenon ‘epistasis’. Because of epistasis, only

a handful of paths connected the ancestral protein-DNA complex to the derived complex without

passing through intermediate steps that functioned poorly. These few likely paths all involved

‘permissive mutations’—a change in the DNA that allowed the protein to tolerate a mutation that

was previously detrimental, or vice versa.

The findings show that the evolution of each molecule depended critically on chance events in the

evolutionary history of its partner. By changing the evolutionary potential of the molecule it

interacted with, the members of the complex wandered through sequence space together. This

journey yielded two new molecules that now work specifically together, each with functions that are

distinct from their ancestors’.

DOI: 10.7554/eLife.07864.002
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Gong et al., 2013;Natarajan et al., 2013). Similar approaches have also been applied to reconstructed

ancestral proteins in order to directly characterize how epistasis may have affected evolutionary history

in the genetic backgrounds likely to have existed in the past (Ortlund et al., 2007; Bridgham et al.,

2009; Field and Matz, 2010; Harms and Thornton, 2010, 2014; Lynch et al., 2011; Yokoyama et al.,

2014; Wilson et al., 2015).

Epistasis across a molecular interface: transcription factors and DNA
response elements
Although the effect of epistasis on sequence space and evolution has begun to be characterized for

individual molecules, many biological functions depend on physical interactions between molecules.

Epistasis between sites across a molecular interface could play a key role in determining the functions

and evolutionary potential of molecular complexes. An important but unexplored goal is therefore to

functionally map the joint multidimensional sequence space that contains the combined genotypes of

interacting molecules.

The interactions between transcription factors (TFs) and the DNA response elements (REs) to which

they bind exemplify this issue. TF-RE interactions regulate gene expression in virtually all biological

processes (Tjian and Maniatis, 1994; Lelli et al., 2012). Effective and precise gene regulation

depends on the capacity of a TF to specifically bind its preferred RE targets with sufficient affinity and

occupancy in a heterogeneous cellular environment (Li et al., 2008; Fisher et al., 2012). The genetic

determinants of affinity and specificity of TF-RE complexes must lie in both molecules and the

interactions between them: for example, an amino acid replacement that changes a TF’s DNA

specificity must affect affinity differently when combined with various RE genotypes (Voordeckers

et al., 2015).

The joint sequence space of TFs and their REs has not been directly characterized, particularly in an

evolutionary context. Previous work on TF-DNA recognition suggests that epistasis is likely to be

important, as expected given the biophysical complexity of protein-DNA interfaces (Dill, 1997; Stout

et al., 1998; Pabo and Nekludova, 2000). For example, numerous studies have assessed the binding

of a single TF to a library of REs, thus identifying the genetic states in the DNA that determine affinity

(Badis et al., 2009; Portales-Casamar et al., 2010; Stormo and Zhao, 2010; Payne and Wagner,

2014); in several cases, epistatic interactions between neighboring nucleotides in the RE are apparent

(Man and Stormo, 2001; O’Flanagan et al., 2005; Moyroud et al., 2011; Zhao et al., 2012). Other

studies have addressed aspects of the TF’s protein sequence space by investigating how amino acid

variation in a TF affects RE binding (Lynch et al., 2008; Baker et al., 2011; McKeown et al., 2014;

Perez et al., 2014; Pougach et al., 2014), and here too there is some evidence of epistasis between

residues (Pabo and Nekludova, 2000). We have little systematic knowledge, however, concerning the

topology of joint TF-RE sequence space and how it may affect evolutionary processes.

The total joint sequence space of multiple molecules is far too large to characterize

comprehensively. It should be possible, however, to functionally map the small portion of that space

defined by a specific historical change in function. Such a region contains all genotypes on all direct

mutational paths between the molecules in a reconstructed ancestral complex and those in

a descendant complex that has different specificity. Here we map the joint sequence space across an

evolutionary transition in specificity for an ancient TF protein and the DNA REs to which it binds. This

approach allowed us to identify sequence states in the DNA and protein that determine the affinity

and specificity of binding, to characterize epistasis within and between the molecules, and to analyze

the effects of intermolecular epistasis on the evolution of gene regulation and TF-RE interactions.

Evolutionary sequence space of an ancient steroid receptor and its REs
The DNA binding domain (DBD) of steroid hormone receptors (SRs) are a model for exploring the

sequence space of an evolving TF-RE complex. SRs are a class of ligand-activated TFs; they include

a ligand-binding domain—which activates gene expression in the presence of specific sex or adrenal

steroid hormones—and a DNA-binding domain, which binds as a dimer to palindromic REs consisting

of two half-sites each six bases long (Bentley, 1998; Bain et al., 2007). SRs group into two

phylogenetic clades, each with a distinct DNA-binding specificity (Figure 1A). The estrogen receptors

(ERs) preferentially bind to estrogen RE (ERE), which contain the half-site AGGTCA.

The other clade—progestagen, androgen, mineralocorticoid and glucocorticoid receptors
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Figure 1. Recognition helix (RH) substitutions change DNA-binding affinity and specificity. (A) Phylogenetic relationships of modern-day

vertebrate SRs are shown, with ancestral proteins AncSR1 and AncSR2 marked. Each protein’s preferred response element (RE) is shown:

estrogen RE (ERE; purple) or steroid REs (SRE1, SRE2; light and dark green, respectively), with the half-site sequence of each. Gray box indicates

evolutionary interval in which SRE specificity evolved (McKeown et al., 2014). (B) Interface of steroid hormone receptor DNA-binding domains

(DBDs) with their preferred RE half-sites. X-ray crystal structures of AncSR1 with ERE (left, 4OLN) and AncSR2 with SRE1 (right, 4OOR). The RH is

shown as a colored cylinder; sticks, side chains that differ between AncSR1 and AncSR2. Colored surface, nucleotides that differ between REs.

(C) Close-up of protein-DNA interface for AncSR1:ERE (left) and AncSR2:SRE1 (right). In the DBD, the RH is shown as ribbon, with side chains of

variable amino acids shown as sticks and Cα as spheres. In the RE, variable nucleotides are shown as sticks with backbone as cartoon. Atoms are

colored by element. Dashed lines, polar interactions between variable amino acids and nucleotides. (D) Historical RH replacements change

AncSR1’s affinity for REs. Binding energies of AncSR1 (left) and AncSR1+RH replacements were measured using fluorescence polarization to

single half-site REs containing all possible combinations of nucleotides at the sites that vary between ERE and SREs. ERE, SRE1 and SRE2 are

highlighted in purple, light green and dark green, respectively. ΔGdissociation is the free energy of dissociation, calculated from dissociation

constant (Kd). Technical replicates (dots) with mean and SEM (lines) are shown. (E) RH replacements change the genetic determinants of affinity

within the RE. Energy logos for AncSR1 (left) and AncSR1+RH (right) show the effects of nucleotide states on binding energy relative to the

average across all REs tested; states with ΔΔGdissociation > 0 are associated with higher affinity binding. Main effects of nucleotides at variable

positions 3 and 4 are shown, as is the epistatic effect of nucleotide combinations, defined as the excess effect beyond that predicted under

additivity. The height of each state indicates the magnitude of their effect on binding energy; states are ranked from top to bottom by the

magnitude of its effect. Each column’s width shows the portion of variation in binding energy attributable to the effects of states in that column,

calculated as the increase in the adjusted R2 when terms corresponding to those states are added to a linear regression model and fit to the

experimental binding data. *, significant improvement in model fit (likelihood ratio test, p < 0.05 Bonferroni-corrected). For complete

explanation of linear modeling approach, see ‘Materials and methods’.

DOI: 10.7554/eLife.07864.003
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(PAMGRs)—preferentially bind to the SRE half-sites AGAACA (SRE1) or AGGACA (SRE2) (Umesono

and Evans, 1989; Lundback et al., 1993; Beato and Sanchez-Pacheco, 1996; Welboren et al.,

2009). Thus, the preferred RE half-sites for the two clades are identical except at two nucleotide

positions (underlined).

The historical amino acid replacements that caused the two classes of extant SRs to evolve their

distinct half-site specificities are already known (McKeown et al., 2014). We previously reconstructed

the ancestor of all SRs (AncSR1) and the ancestor of all PAMGRs (AncSR2) and assayed their affinities

for ERE and SREs (Figure 1A). We found that AncSR1 was ER-like, preferentially binding to ERE, and

that AncSR2 was like PAMGRs, preferentially binding SREs. When just three of the 38 amino acid

replacements that occurred during the evolutionary interval between AncSR1 and AncSR2 were

introduced into AncSR1, they fully recapitulated the shift in half-site preference from ERE to SREs.

These three replacements (glu25GLY, gly26SER, and ala29VAL, where lower and upper cases denote

ancestral and derived states, respectively) were the only changes on the DBD’s ten-residue

recognition helix (RH), which inserts into the DNA major groove (Figure 1B,C). The ancestral and

derived states at these three sites are completely conserved in modern-day ERs and PAMGRs,

respectively, so the inference of their states in AncSR1 and AncSR2 was unambiguous. Although other

substitutions during this interval affected the DBD’s non-specific affinity for DNA and the

cooperativity of dimeric binding, only the RH substitutions affected half-site specificity, and they

did so without affecting cooperativity (McKeown et al., 2014).

The ancestral complex AncSR1:ERE and the derived complex AncSR1+RH:SRE define an ancient

evolutionary transition in TF:RE specificity, and the set of direct paths between these points

constitutes a historically relevant region of the joint protein-DNA sequence space. Here we report on

experiments to functionally map this region of the molecules’ joint sequence space and to understand

the implications of its topology for evolutionary processes. We experimentally measured the binding

affinity of AncSR1-DBD variants containing all genotypic combinations of ancestral and derived amino

acids in the RH in complexes with REs containing all possible combinations of nucleotides at the two

variable positions in the half-site. We used these data to statistically estimate the main effects of every

variable state in the DBD and the RE and of interactions between states within and between each

molecule. This analysis allowed us to investigate how the causal determinants of binding changed as

the regulatory complex evolved during the historical shift in function and to evaluate the plausibility

that any pathway through the joint TF-RE space might have been followed under various evolutionary

scenarios.

Results

Exploitation of latent binding affinity
We first characterized the RE-specificity of the ancestral and derived proteins AncSR1 and AncSR1+
RH by measuring each protein’s affinity for RE sequences containing all 16 combinations of possible

nucleotides at the two sites that vary between ERE and SRE. We used a fluorescence anisotropy (FA)

assay using labeled DNA probes, which provides direct and precise estimates of the free energy (ΔG)

of binding (Figure 1D, expressed as ΔGdissociation). Although the set of all possible REs is much larger,

the preferred nucleotides at the other sequence positions in the RE did not change during SR

evolution. We focused on differences in half-site affinity because the RH substitutions affected this

phenomenon without changing the cooperativity of binding to palindromic REs (McKeown et al.,

2014).

We found that several major changes occurred during the evolutionary transition from the ancestral

to derived proteins. First, AncSR1 prefers ERE and AncSR1+RH prefers SREs, but both classes of RE

are among the highest-affinity targets for both proteins (Figure 1D). The derived preference for SREs

therefore arose by reshuffling the protein’s relative affinities among high- and moderate-affinity

targets, rather than by radically increasing affinity for DNA sequences that were previously bound very

poorly.

Second, the RH substitutions dramatically impaired binding to the protein’s best DNA targets in

both absolute and relative terms; they reduced affinity for ERE by more than 2 kcal/mol while

increasing affinity for SREs by a mere ∼0.2 kcal/mol (Figure 1D). As a result, AncSR1’s affinity for ERE

is much higher than AncSR1+RH’s affinity for SREs, and the difference between the best and next-best
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targets in AncSR1 is much larger than that in AncSR1+RH. Together, these effects make AncSR1+RH
less specific for its preferred REs than AncSR1.

The RH substitutions therefore changed the protein’s preferred DNA binding sites by exploiting

a preexisting latent affinity for a moderate-affinity RE and dramatically reducing affinity for the ancestral

RE. Exploitation of latent, moderate- or low-affinity interactions has been observed in the functional

evolution of other molecules (Khersonsky et al., 2006; Coyle et al., 2013; Pougach et al., 2014).

Determinants of affinity in RE sequence space
We next used these measurements to quantitatively analyze the genetic factors within the RE’s DNA

sequence that determine affinity of AncSR1 and of AncSR1+RH. These determinants include the

average (or ‘main’) effects of each possible nucleotide at the variable RE sites, as well as epistatic

interactions, which occur when a combination of nucleotides at multiple sites affects affinity differently

from expectation based on each nucleotide’s average contribution. We used a multiple linear

regression model (Stormo, 2011) that predicts a protein’s free energy of binding to an RE as the sum

of all main and epistatic effects at the two variable positions 3 and 4 (for details, see ‘Materials and

methods’); a linear model is appropriate because the dependent variable is the ΔG of reversible

binding, which grows additively with the free energy of the factors that contribute to it (Benson, 1968;

Dill, 1997; Stout et al., 1998). We used global regression to estimate the values of the model’s

parameters that best predict each protein’s measured affinity for all 16 RE sequences. This approach

allows us to quantify the contribution to the total binding energy made by each individual state (the

main effects) and every combination of states (epistatic effects). It also allows us to estimate the

portion of all variation in affinity explained by each main and epistatic effect (expressed as the increase

in adjusted R2 when a parameter for any class of effect is added to the model) and to evaluate the

statistical significance of the improvement in fit attributable to each class of parameters.

We found that DNA affinity is determined by main effects of individual nucleotides and by epistatic

interactions between them, but these determinants are radically different between AncSR1 and

AncSR1+RH. AncSR1 prefers REs with G in position 3 (G3) by 1.0 kcal/mole and those with T in

position 4 (T4) by 0.5 kcal/mole (Figure 1E, Supplementary file 1). A strong epistatic effect (G3xT4) is

also present, which further enhances affinity for the GT combination by 0.8 kcal/mole beyond that

expected from the main effects of these two nucleotides. This epistatic interaction establishes the

protein’s specificity for ERE by generating a large energy gap between binding to GT and binding to

other sequences containing G3 or T4 but not both (Figure 1D). AncSR1’s specificity is further affected

by a strong negative epistatic determinant G3xA4, which substantially reduces its affinity for SRE2

(GA); without this interaction, the protein’s preference for G3 would have made SRE2 (GA) a high

affinity target (Figure 1E).

The DNA determinants of binding by AncSR1+RH are very different (Figure 1E, Supplementary

file 1). Unlike its ancestor, this protein’s affinity is unaffected by main effects of the nucleotide at DNA

position 3. Further, the ancestral preference for T4 is replaced by a strong preference for A4. The

ancestral epistatic determinant G3xT4 is nearly abolished and replaced by two new positive epistatic

interactions—A3xA4 and G3xA4—which together establish the protein’s preference for its best

targets SRE1 and SRE2 relative to other sequences that contain A4. Consistent with the lower

specificity of AncSR1+RH, the magnitude of all these determinants is smaller than those that

determine AncSR1’s target affinity.

These data indicate that in both the ancestral and derived proteins, epistasis between the two

variable nucleotide positions in the DNA target played a key role in establishing specificity of binding.

The evolutionary effect of the RH substitutions was to erase all major ancestral DNA determinants of

affinity and to establish novel determinants, both main and epistatic.

Evolutionary changes in TFs altered the DNA determinants of binding
We next sought to understand how each historical amino acid change in the RH altered the

determinants of binding within the RE. We engineered variants of AncSR1 containing all combinations

of ancestral and derived states at the three RH sites and measured each one’s binding affinities for all

16 REs (Figure 2). All three RH amino acid replacements can be produced by single-nucleotide

mutations; this set of proteins therefore comprises all direct pathways between AncSR1 and AncSR1+
RH and represents all of the most parsimonious possible evolutionary histories.
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Every intermediate protein we tested preferred either ERE or SREs over all other REs; transiently

preferred targets do not emerge along trajectories from AncSR1 to AncSR1+RH. Unlike the starting

and ending states, however, all intermediates were either universally low-affinity or highly

promiscuous TFs. Specifically, three low-affinity intermediates (glu-gly-VAL, glu-SER-ala and

glu-SER-VAL) bound to their best targets far more weakly than either the ancestral or derived forms

bound their preferred sequences, and they did not bind any REs with affinity greater than the global

average of all 8 proteins with all 16 REs (Figure 2). Two others (GLY-gly-ala and GLY-gly-VAL)

promiscuously bound all 16 REs with greater-than-average affinity, and they both bound many

targets—16 and 7, respectively—with affinity greater than AncSR1+RH’s affinity for its best target.

The remaining intermediate (GLY-SER-ala), was moderately promiscuous, binding four REs—ERE,

SREs, and one other—with similar and above-average affinities.

We used these data to quantify the DNA determinants of TF affinity for each intermediate protein

using the linear model described above. This allowed us to reveal how DNA specificity would have

changed along any direct trajectory from AncSR1 to AncSR1+RH. We found that no single

replacement is sufficient to abolish the ancestral DNA preferences or to establish the derived

preferences. All of AncSR1’s single-replacement neighbors maintain the major ancestral determinants

of specificity—G3, T4, and G3xT4—but at reduced magnitude (Figure 3, Supplementary file 1),

consistent with the fact that all three of these proteins prefer ERE, but to a lesser degree than AncSR1

does (Figures 1D, 2). None of the single-replacement neighbors display any of the derived

determinants of specificity (main effect preference for A4 or epistatic preference for G3xA4 and

A3xA4).

After the second step of the mutational pathway from AncSR1 to AncSR1+RH, some of the derived

determinants of specificity begin to appear, and the ancestral determinants are further weakened

Figure 2. Protein intermediates between AncSR1 and AncSR1+RH are promiscuous or weak transcription factor proteins (TFs). Binding energies of

AncSR1 variants containing all combinations of ancestral and derived states at the RH sites with historical replacements are shown for all 16 REs as

measured by fluorescence polarization. Single-replacement neighbors of AncSR1 are shown in the top row; two-replacement proteins are shown in the

bottom row. ERE, SRE1 and SRE2 are highlighted with purple, light green and dark green bars, respectively. Dashed line, mean binding energy across all

protein genotypes and all REs. Data points show three replicates; mean and SEM are shown with lines.

DOI: 10.7554/eLife.07864.004
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Figure 3. Each amino acid replacement contributes to the evolution of novel DNA specificity. For each protein intermediate in the sequence

space between AncSR1 and AncSR1+RH, the energy logo depicts the main and epistatic effects of the RE nucleotide states and combinations on

binding affinity by each TF (for details, see Figure 1E). Vertices of the cube indicate protein genotypes; the number of amino acid differences

Figure 3. continued on next page
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(Figure 3, Supplementary file 1). In all cases, however, either the ancestral determinants are partially

retained or the derived determinants are weak. Only upon addition of the third replacement are the

derived determinants complete. All three amino acid replacements in the RH therefore contributed to

the derived DNA specificity, and their effects depend on the background into which they are

introduced.

These analyses also point to a third-order form of epistasis: combinations of amino acid

replacements uniquely affect binding to specific DNA sequences. The most apparent example of this

phenomenon is the interaction between glu25GLY and ala29VAL in producing the derived

preferences (Figure 3, Supplementary file 1). Neither replacement increases relative affinity for

REs containing A4. But when the two changes are combined (GLY-gly-VAL or GLY-SER-VA)L, a strong

A4 preference is established. Thus, the threefold combination of GLY25, VAL29, and nucleotide A4

increases affinity beyond that expected due to the main effects of any of these states or the pairwise

interactions between them (see also Supplementary file 1).

Taken together, our findings indicate that all direct paths from AncSR1 to AncSR1+RH involve one

of two scenarios: losing high-affinity binding to the ancestral and all other REs followed by a gain of

binding to new targets, or gaining very promiscuous high-affinity binding followed by a dramatic

narrowing of targets. No paths involve an immediate transformation of the highly specific ancestral TF

into a specific protein with a new but narrow set of targets. Instead, ancestral determinants of binding

were weakened and derived determinants gradually strengthened as mutational combinations were

assembled.

Effects of amino acid substitutions on affinity
We next quantitatively characterized the effects of each amino acid replacement on DNA affinity and

specificity. For this purpose, we first expanded the regression model described above to incorporate

variation in the TF’s protein sequence and to determine the main and epistatic effects of each

historical amino acid replacement on DNA affinity (Supplementary file 2).

We first analyzed nonspecific effects on affinity averaged across all REs tested. We found that each

amino acid replacement changed non-specific affinity, but they did so in different directions.

glu25GLY increased average affinity by 1.3 kcal/mol (Figure 4A, Supplementary file 1), consistent

with the observation that GLY-gly-ala is a promiscuous and high-affinity DBD (Figure 2,

Supplementary file 1). The other substitutions gly26SER and ala29VAL each reduced the average

affinity of binding (Figure 4A, Supplementary file 1), explaining why proteins containing these states

without glu25GLY are low-affinity proteins for all REs (Figure 2). Moderate epistatic interactions

between the residues further modified their nonspecific effects on average affinity (Figure 4A,

Supplementary file 1). When combined, the countervailing effects of the three replacements cause

the final AncSR1+RH genotype to have an average affinity similar to that of AncSR1.

Epistasis across a molecular interface
Differences among proteins in their average affinity over REs cannot explain the shift in DNA

specificity that occurred between AncSR1 to AncSR1+RH. To change specificity, an amino acid

replacement must affect affinity for RE genotypes differently. Therefore, when amino acid

replacements change specificity or preference for REs, epistasis across the protein-DNA interface

must be involved. To statistically characterize this form of epistasis, we further expanded the linear

models described above to simultaneously analyze the effects of the combined protein + DNA

genotype on affinity. This approach allowed us to identify epistatic effects on affinity caused by

combinations of amino acid replacements and nucleotide states. The magnitude of an epistatic effect

across the molecular interface is the difference in the binding energy of complexes containing both

a specific TF amino acid and a specific RE nucleotide from that predicted based on the average effects

of each of those states. A replacement may also participate in third-order interactions with

Figure 3. Continued

from AncSR1 is indicated in the circle at each node. Edges represent single replacements between TF genotypes.

DOI: 10.7554/eLife.07864.005
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a combination of nucleotide states in the RE, if it specifically changes relative affinity for the

combination more than expected from the first- and second-order effects together.

We found that each amino acid replacement is involved in cross-interface epistatic interactions that

contribute to eliminating the ancestral determinants of specificity and establishing the derived

determinants. Although replacement glu25GLY increases affinity for all REs (Figure 4A), it does not

do so uniformly: it increases relative affinity for REs with nucleotide states A3, A4 and G3xA4—thus

specifically improving relative binding to SREs—and decreases relative affinity for REs containing the

ancestral DNA determinants G3 and T4, as well as the ERE-specific combination G3xT4 (Figure 4B,

Supplementary file 1). This replacement’s most dramatic effect is therefore to cause a specific

increase in the protein’s affinity for SREs relative to EREs.

Figure 4. Epistasis across the protein-DNA interface: effect of historical replacements in the TF on DNA determinants of affinity in the RE. (A) Main and

epistatic effects of RH replacement on DNA affinity. Bars indicate the mean change in binding energy caused by each amino acid change in the RH,

averaged across all TF:RE combinations measured; epistatic effects represent the additional effect of pairs of replacements on average binding energy

beyond that predicted by their main effects. Bar width depicts the portion of variation in binding energy attributable to each main or epistatic effect,

calculated as the increase in the adjusted R2 of the fit to the experimental binding data when each term is added to a linear regression model. *, significant

improvement in model fit (likelihood ratio test p < 0.05 after Bonferroni correction). (B) Intermolecular epistasis. Energy logos indicate the effect of each

amino acid replacement on the genetic determinants of binding within the RE. For each amino acid replacement, the size of each letter indicates the

change the replacement causes in the main (or epistatic) effects of nucleotide states (or combinations) on relative binding energy.

DOI: 10.7554/eLife.07864.006
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The other two replacements also participate in cross-interface pairwise and third-order epistatic

interactions. Both gly26SER and ala29VAL reduce the ancestral determinants of binding G3 and T4

and increase the derived preference for REs with A4. Both also are involved in third-order interactions,

by which the amino acid changes further reduce affinity for the G3xT4 combination and increase

affinity for the G3xA4 combination (Figure 4B, Supplementary file 1). As a result, although each of

these replacements reduces binding affinity to every single RE (Figure 4A), they do so most radically

on ERE while only weakly affecting SREs (Figure 4B).

Taken together, these observations confirm that all three RH replacements contributed to the

historical change in specificity via cross-interface epistatic interactions. Second-order intermolecular

interactions allowed each replacement in the TF to shift specificity by differentially affecting affinity for

REs containing specific individual nucleotide states. Third-order interactions allowed each

replacement to have further effects on affinity when combined with pairs of nucleotides, beyond

those expected based on any of the three sites’ average effects plus all their pairwise interactions.

We found that new specificity evolved without sign epistasis. Each replacement affected binding to

all 16 REs in the same direction (Figures 2, 4), but its effects on some REs were more extreme than on

others. Because none of the replacements acted as a switch that impaired binding to some sequences

while improving affinity for others, multiple replacements were necessary to achieve the derived

specificity and affinity. Why would the shift in function not have occurred via a simpler genetic

mechanism involving sign epistasis? We speculate that there are few or no potential replacements that

have pinpoint opposite effects on different REs. The interface between a TF and DNA is

heterogeneous and densely packed, and all four possible nucleotides share many similarities in the

physical properties they confer on the DNA surface to which a TF binds. Thus, amino acid changes are

more likely to alter binding in a generic direction across all possible versions of the RE, but they do so

more effectively when paired with some nucleotides than with others.

Mutational pathways to new transcriptional modules
Having mapped the free energy of binding—a fundamental biochemical property—across joint

sequence space, we next sought to understand how evolution might proceed through this space

under various evolutionary scenarios. If the relationship between biochemical affinity of a TF-RE

complex and its function in the cell and organism were linear, then the ruggedness of the biochemical

topology of sequence space would be identical to the ruggedness of the space’s functional topology.

It is highly unlikely, however, that all biological dependent variables—occupancy on DNA, gene

regulatory output, phenotypic effect, and fitness—are linearly related the affinity of a TF-RE complex.

A nonlinear relationship between affinity and biological function/fitness would introduce additional

epistasis into the topology of sequence space and further change the kinds of paths that evolution is

likely to follow under purifying selection, drift, and positive selection. The precise nature of this

transformation depends strongly on biological context, is unknown. We therefore sought to gain

preliminary insight into the plausibility of evolutionary trajectories through joint sequence space under

two simple, biologically motivated scenarios.

The first scenario was to consider how AncSR1 might have evolved novel recognition of SREs, thus

establishing occupancy of a new set of target genes, while under purifying selection to maintain

specific, high-affinity binding to at least one RE at every step in the trajectory. We based our analysis

on the concept of a connected network of functional protein genotypes, which assumes that purifying

selection makes mutational pathways through nonfunctional intermediates very unlikely (Maynard

Smith, 1970; Wagner, 2008). Although the RH substitutions occurred after a gene duplication of

AncSR1, it is unlikely that either copy was released from purifying selection, because the ancestral

function was conserved in both copies for tens or hundreds of millions of years before

neofunctionalization occurred (Bridgham et al., 2008; Eick et al., 2012). We defined each protein’s

set of functional RE targets as those that fulfill two simple criteria. First, to achieve reasonable

occupancy by the low concentrations of TF typical in cells (Fisher et al., 2012), the RE must be bound

with moderate to high affinity, which we defined as greater than the average affinity across all TF-RE

complexes tested. Further, a potential DNA binding site must compete with other REs for occupancy

by the same TF, so the second criterion we imposed is that the affinity constant for an RE must be

within a factor of ten of that protein’s best target (Fisher et al., 2012). TF:RE complexes not meeting

these criteria were classified as low-occupancy and therefore nonfunctional. Although these criteria
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are somewhat arbitrary, they provide a starting point for understanding how the biochemical epistasis

we observed, along with a simple nonlinearity in the transformation of affinity into function, might

affect the mutational paths available to the evolving TF-RE complex.

We found that epistasis strongly structures possible evolutionary trajectories through sequence

space. Starting from AncSR1, only one replacement (glu25GLY) leads to a functional TF; the others

yield proteins that do not effectively bind any REs and are therefore unlikely evolutionary

intermediates (Figure 5). The glu25GLY mutation produces a high-affinity but extremely promiscuous

TF that retains strong binding to the ancestral ERE while gaining high-affinity binding to 13 novel REs,

including the SREs. This replacement opens up new evolutionary trajectories, because once it is in

place, either of the other two amino acid changes become tolerable. glu25GLY therefore represents

a permissive evolutionary mutation that broadens the network of other accessible replacements that

the protein can explore.

Epistasis also affects the second and third steps in the protein’s mutational trajectory. The two

possible paths available to AncSR1+RH have different functional implications for specific RE

recognition, depending on the order in which the remaining replacements are introduced. Adding

ala29VAL first expands the set of occupied DNA targets to include all 16 REs; the final gly26SER

mutation then radically narrows the TF’s specificity, eliminating 13 REs as high-occupancy targets and

leaving only SRE1, SRE2, and one additional target (TA). Following the other pathway, incorporating

gly26SER first narrows promiscuity somewhat but does not eliminate the ancestral targets, leaving

four high-affinity REs (ERE and the other ancestrally recognized target GG, plus the novel SRE1 and

SRE2); the final replacement ala29VAL then eliminates the ancestral targets—rather than expanding

the protein’s promiscuity, as it would if introduced earlier—and yields a protein specific for the

derived REs (Figure 5). These observations point to higher-order epistasis—two amino acids

interacting with each other to differentially change regulation of specific DNA sequences—which

causes the functional implications of trajectories through sequence space to depend on the order of

sequence change among multiple molecules.

Taken together, these data indicate that a derived TF could evolve to regulate a novel set of DNA

targets completely distinct from those of the ancestral protein without losing the ancestral function

until the final amino acid change. Because of epistasis—particularly the requirement for the permissive

replacement glu25GLY for the other two replacements to be tolerated—only a small fraction of the

possible pathways through protein sequence space pass through only functional TF intermediates on

the way to the derived protein (Figure 5). Along both pathways, promiscuous intermediate genotypes

gained recognition of the novel SREs, followed by further replacements that eliminated high-affinity

binding to the ancestral RE and any transiently acquired targets. Our results are consistent with

previous studies indicating an important role for permissive mutations in enabling a protein to tolerate

other function-switching mutations that would otherwise be deleterious, particularly when a threshold

relationship pertains between a biochemical property and fitness (Ortlund et al., 2007; Bloom and

Arnold, 2009; Woods et al., 2011; Gong et al., 2013; Harms and Thornton, 2013). By strongly

increasing the protein’s affinity for many REs, replacement glu25GLY moved the evolving AncSR-DBD

well above the threshold for functionality, allowing the protein to tolerate other replacements that

refined the protein’s specificity while decreasing its generic RE affinity.

Intermolecular epistasis allows coevolutionary drift by the TF-RE
complex
The second scenario we examined was a process of mutually permissive neutral drift by a functional

unit of one TF and one RE under purifying selection. Numerous studies have found that a TF and its RE

at a regulatory element sometimes diverge in sequence from their ancestral states while maintaining

a conserved regulatory association with each other (True and Haag, 2001; Haag and True, 2007;

Barriere et al., 2012; Lynch and Hagner, 2015). Using the same criteria as above to define a functional

complex, we sought to understand whether a single complex of AncSR1:ERE could traverse the joint

TF-RE sequence space through a series of changes in the protein and the DNA, reaching AncSR1+RH:
SRE along a continuous neutral network without ever losing high-affinity, high-occupancy binding.

We found that there are many pathways through the joint genotype space from the ancestral to the

derived complex that maintain a functional complex at every intermediate step. These pathways are

made possible by intermolecular epistasis, which causes replacements in the TF to alter constraints on
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Figure 5. Accessible mutational pathways in the joint TF-RE sequence space. Each vertex of the cube represents a protein genotype between AncSR1

and AncSR1+RH; amino acid states at variable RH residues are shown; lower and upper case denote ancestral and derived states, respectively.

Each protein’s affinity for the 16 REs is shown using the color gradient from red to blue (low to high ΔGdissociation). The genotype at the center of

each cluster of REs is that protein’s highest-affinity target. REs preferred by AncSR1 or AncSR1-RH are shown in triangles or squares, respectively;

circles show other REs. TF-RE complexes with high affinity and occupancy (binding energy greater than the average of all TF-RE complexes

and affinity within tenfold of that TF’s best target) are outlined in bold. Blue lines represent amino acid replacements in the TF that maintain

high-affinity/occupancy binding to a RE; green lines represent nucleotide substitutions in the RE that maintain high-affinity/occupancy binding to

a TF. Nodes connected by blue or green lines represent the neutral network between the ancestral TF and its RE targets and the derived TF and its

distinct targets.

DOI: 10.7554/eLife.07864.007
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evolution of the RE, and vice versa. At the starting point of AncSR1:ERE, both the TF and the RE

genotypes are highly constrained by the requirement to maintain a high-affinity complex with each

other: only a single mutation is available to the DNA (from GT to GG), and only one replacement

(glu25GLY) is available to the protein (Figure 5). Drift along each of these pathways has very different

functional implications: if the G4 mutation in the RE were to occur first, the neutral network available

to the protein would remain unchanged, with glu25GLY remaining as the only viable replacement on

the trajectory towards AncSR1+RH. But if glu25GLY were to occur first, the set of viable mutations

available to the RE would radically expand, with almost any RE genotype being tolerated.

Reaplcement glu25GLY in the TF therefore acts as a permissive substitution for drift by the RE,

allowing the DNA binding site to explore many new pathways—including mutation to SREs—while still

maintaining an association with the TF. Thus, neutral substitutions in the protein can permit previously

unavailable moves by the DNA through its neutral network.

Conversely, neutral changes by the RE can permit amino acid replacements in the TF to occur that

would otherwise have been unfavorable. For example, if the complex is in the state GLY-SER-ala:GT,

adding the final replacement ala29VAL would lead to a nonfunctional complex. But if the RE were to

drift first to one of the SREs, then the complex would be able to tolerate this amino acid change.

Further, neutral substitutions in the RE can also restrict evolutionary pathways that were previously

open to the TF, making certain amino acid changes inaccessible. For example, if the complex is in the

state GLY-gly-VAL:GA, the TF can drift to AncSR1+RH via the gly26SER replacement; however, if the

RE first drifts to GC, this replacement would abolish the TF:RE association, making it an unlikely

evolutionary step (Figure 5).

Permissive and restrictive mutations across the interface may act in a serial chain that reciprocally

modifies the partner molecules’ evolvability: a mutation in the RE may change the protein’s capacity to

tolerate a previously unavailable replacement, which then changes the RE’s tolerance of a mutation that

would otherwise have been unavailable, and so on. To follow one such example, replacement glu25GLY

allows the ancestral ERE (GT) to drift to TT, which prevents gly26SER, which otherwise would have been

available, and also permits the previously denied replacement ala29VAL; if ala29VAL does occur next,

then mutation of the DNA to TA becomes available, which in turn is permissive for gly26SER. That

replacement closes off many DNA mutations that were previously available, but the final mutation to

SRE1 or SRE2 is open. Epistasis across the molecular interface therefore makes the evolution of the TF

and the RE contingent upon the genotype—and therefore the prior evolutionary history—of its partner.

A chain of serially contingent events may ensue, as permissive and restrictive mutations in the protein

and DNA open or close evolutionary paths for mutations within the same molecule or its binding partner.

Taken together, these findings indicate that epistasis across a molecular interface can allow

interacting molecules to both evolve by drift to states that are incompatible with the ancestral

versions of their partner. AncSR1:ERE is a highly specific complex that does not recognize SRE; it lies

on a narrow peninsula in sequence space, with few mutations leading directly to other functional

complexes. A series of permissive mutations in both partners, however, could have allowed the RE

and the TF to drift together through numerous new genotypes, eventually reaching AncSR1+RH:SRE,
which itself is a specific complex on a narrow peninsula that does not bind or connect directly to ERE.

The nonlinear mapping we imposed from biochemical property to biological function/fitness

added an additional form of epistasis to that we observed due to affinity alone. The criteria that we

used to define this mapping are highly simplified. In reality, the selective effects of mutations that

change TF:RE interactions are likely to depend on many factors, including the genomic context and

role of other TFs in regulating a given target, interactions between the TF and other proteins, the

genotype and function of other domains and sites in the TF, the physiological roles of the target

genes, and the demographic characteristics of the population. How these factors affected the

mapping of affinity onto fitness for the ancient molecular complex we study here is unknown; as

a result, the mutational pathways most likely to have been followed during the evolutionary history

of the SR DBD and its targets are also unknown. Despite this uncertainty about specific historical

scenarios, however, it is clear that rampant epistasis was present at the most fundamental biochemical

level, and even the simple biological criteria we imposed resulted in very strong impacts on the

evolutionary accessibility of trajectories across sequence space. It therefore seems likely that epistasis

will also structure evolutionary trajectories under more complex, realistic conditions that introduce

further nonlinearities into the relationship between physical properties and selectable biological

outcomes.
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The biophysical causes of specificity are genotype-specific
Finally, we sought to understand the underlying biophysical mechanisms that cause variation in

binding affinity among TF:RE pairs in this region of sequence space. To determine these mechanisms,

we performed molecular dynamics (MD) simulations for AncSR1, AncSR1+RH and all intermediate

protein genotypes, each bound to every one of the 16 DNA sequences. We then measured hydrogen

bonding and packing at the protein-DNA interface, which are known to contribute to high-affinity

interactions between proteins and DNA (von Hippel, 1994; Garvie and Wolberger, 2001;

Coulocheri et al., 2007; Rohs et al., 2010; McKeown et al., 2014). For each protein in complex

with all 16 REs, we used linear regression to analyze the statistical relationship between each

biophysical parameter and affinity.

We found that the number of hydrogen bonds formed across the protein-DNA interface is not

positively correlated with the affinity of the TF-RE complex when all 128 combinations are examined

(Figure 6A,C). Thus, hydrogen bonding does not provide even a partial global explanation of affinity;

however, it does explain, in part, affinity for a few specific genotypes. When we separately analyzed

each protein’s affinity across REs, we found that the number of hydrogen bonds was positively and

significantly correlated with affinity for 2 of the 8 protein genotypes (Figure 6C, Figure 6—figure

supplement 1), explaining at most 30% of the variation in affinity. These proteins contain residue

glu25, which in the crystal structure of AncSR1:ERE forms hydrogen bonds to specific nucleotide

bases in the DNA major groove (Figure 1C) (McKeown et al., 2014).

Packing also does not provide a global explanation for variation in binding affinity. When all TF:RE

combinations were analyzed, the efficiency of packing was not positively correlated with affinity

(Figure 6B,C). When analyzed separately, packing was significantly and positively associated with

affinity for only two proteins, explaining at most 40% of the variance in a protein’s affinity across REs

(Figure 6C, Figure 6—figure supplement 2). There is no clear pattern to explain which protein

genotypes manifest a correlation of packing with affinity.

We conclude that no simple biophysical metric provides a general explanation of variation in affinity

among TF-RE complexes. There may be common mechanisms for the effects of each amino acid

replacement on affinity that are common to all REs: for example, replacement gly25GLY improved

affinity for every RE, possibly by enhancing the entropic benefit of binding driven by the hydrophobic

effect or decreasing the entropic cost of binding by introducing additional degrees of freedom in the

protein backbone. But specificity—variation in affinity among REs—appears to be determined by

biophysical interactions that are largely unique to each TF-RE combination. For example, replacement

ala29VAL improves relative affinity for REs containing A4; in previously published ancestral X-ray crystal

structures, the hydrophobic side chain of VAL29 packs against the hydrophobic methyl groups that are

unique to the complementary T at position 4 in the RE, providing a likely explanation, at least in part,

for this effect (McKeown et al., 2014). These interactions only affect packing involving a small number

of atoms, and they are present in only a small number of TF-RE pairs, so they do not have a statistically

detectable effect on the relationship between packing and affinity across all REs.

These results reinforce the importance of epistasis across the molecular interface. Differences in

binding affinity among TF:RE complexes are typically determined by unique physical interactions

between atoms on the protein and atoms on the DNA, and higher-order interactions sometimes

involve more than two atoms across the interface.

Discussion

Methodologies for characterizing epistasis in combined sequence space
Linear modeling strategies have previously been used to statistically characterize the main and epistatic

effects of variation in a DNA sequence on affinity for a specific TF, typically using high-throughput

approaches that estimate affinity from measurements of occupancy (Benos et al., 2002; Stormo, 2011;

Zhao et al., 2012; Stormo et al., 2015). We extended these methods, using direct measurements of

affinity for every combination of TF and RE genotypes in a defined region of sequence space, to identify

the genetic determinants of protein-DNA affinity both within and between the two molecules.

This strategy has both advantages and limitations. By simultaneously studying the effects of

variation within the RE, within the TF, and between the two molecules were we able to describe in

detail how changes in the TF protein affect the specificity of RE binding and vice versa. This approach
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can in principle be used to study interactions in joint sequence space for any complex of molecules,

including those with more than two elements. It can also be applied to large datasets, larger numbers

of sites, and higher-order interactions, so long as the data are sufficiently precise to allow robust

quantitative analysis.

Our experimental approach allowed us to obtain precise and direct measurements of affinity for each

individual TF-RE complex, which were essential to our analysis. Statistical models of higher-order

epistasis across a protein-DNA interface add many terms to the regression models previously used for

individual proteins (Zhao et al., 2012; Stormo et al., 2015). As models become complex, estimates of

Figure 6. Hydrogen bonding and packing efficiency do not explain TF-RE affinity. (A) The number of hydrogen

bonds formed between atoms in the RH and atoms in the RE in molecular dynamic (MD) simulations is not positively

correlated with the experimentally measured binding energy of TF-RE complexes. Each data point represents the

number of hydrogen bonds formed by one of the 128 TF-RE pairs (8 variants of AncSR1 with 16 variant REs), each

averaged over three replicate 50 ns simulations; error bars show SEM. Red line indicates best-fit linear regression

model. For p-value and R2, see panel C. (B) The efficiency of packing interactions across the RH-RE interface in MD

simulations is not positively correlated with the experimentally measured binding energy of TF-RE complexes. In MD

simulations, the number of protein-DNA atom pairs within 4.5 Å of each other was calculated for all 128 TF:RE

complexes. Points and error bars show the mean and SEM over three replicate MD simulations. Red line indicates

best-fit linear regression model; p-value and R2 are shown in C. (C) Correlation of hydrogen bonding and packing

efficiency with binding energy for individual protein genotypes. For each TF, the experimentally measured binding

energy for each of the 8 REs was regressed against either the number of hydrogen bonds formed from RH to RE or

the efficiency of packing between RH and RE. The presence of positive (blue), negative (red), or non-significant (NS)

correlations is indicated, along with the p-value of the correlation and the fraction of variation in binding energy

explained by each dependent variable (R2). For full data sets and regressions, see Supplementary file 1.

DOI: 10.7554/eLife.07864.008

The following figure supplements are available for figure 6:

Figure supplement 1. Direct hydrogen bonding at the protein-DNA interface positively correlates with binding

affinity for only 2 out of 8 protein genotypes.

DOI: 10.7554/eLife.07864.009

Figure supplement 2. Packing efficiency at the protein-DNA interface positively correlates with binding affinity for

only 2 out of 8 protein genotypes.

DOI: 10.7554/eLife.07864.010
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higher-order determinants of affinity can become uncertain or biased if the estimates of affinity are

noisy or imprecise; this problem can be exacerbated if affinities for some sequence states are

estimated by interpolation rather than being measured (Otwinowski and Plotkin, 2014). By directly

and precisely measuring the ΔG of binding for all TF:RE combinations, we were able to detect and

estimate the magnitude and importance of higher-order epistatic effects with relatively high

confidence. Further, because effects on the free energy of binding by independent factors are

additive for reversible interactions, these measurements allowed us to use linear regression to

rigorously estimate the magnitude and significance of main and epistatic effects on TF-RE

recognition. Other metrics such as occupancy or entropy may require more complex descriptive

models.

Obtaining such precise and direct measurements of binding energy is time consuming and limits

the number of complexes that can be studied. The 128 TF:RE combined genotypes whose affinity we

measured represent a tiny slice of the vast joint sequence space of possible TFs and REs. Even within

this small region of sequence space, however, we found rampant epistatic interactions within the DNA

RE, within the TF protein, and between the RE and the TF. These epistatic interactions play key roles in

determining the specificity of binding by each TF, and they strongly shape the functional topology of

the joint sequence space and the capacity of each molecule to traverse this space under various

evolutionary scenarios. As improving technical capacities allow larger tracts of joint sequence space to

be analyzed and higher-level biological functions to be assessed, it seems quite likely that epistasis will

be a major influence on the specificity and evolution of molecular complexes.

Epistasis and the evolution of molecular complexes
Complexity and interdependence are often thought to act as constraints on evolution (Lewontin,

1984; Bonner, 1988; Kauffman, 1993; Wagner and Altenberg, 1996; Orr, 2000; Schank and

Wimsatt, 2001). Previous studies of epistasis within a molecule have shown that interactions among

mutations constrict the number of passable evolutionary trajectories through sequence space and

make the outcomes of evolution contingent upon the prior occurrence of permissive mutations

(Weinreich et al., 2006; Bridgham et al., 2009; Podgornaia and Laub, 2015). The joint sequence

space of multiple interacting molecules contains more dimensions and therefore far more paths

between functional joint genotypes than does either molecule’s separate sequence space (Gavrilets,

2004). Our work shows that intermolecular epistasis is indeed rampant and blocks many of these

additional pathways.

But intermolecular epistasis also has an opposite effect, which introduces new degrees of

freedom into the evolutionary process. Permissive epistatic mutations across the molecular interface

open paths for the other molecule that would otherwise have been blocked. As a result, the

absolute number of trajectories (and ultimate endpoints) available to either partner is larger than it

would appear to be if only the ‘slice’ or profile through the joint sequence space represented by

variability in a single molecule were considered. Under the scenario we examined, for example, an

ERE regulated by an immutable AncSR1-DBD could not reach SRE without losing functionality, and

AncSR1 could not reach AncSR1+RH if it regulated only immutable binding sites. But because

amino acid replacements in the TF are permissive for mutations in the RE, and subsequent RE

mutations are permissive for replacements in the protein, both members of the complex can

explore regions of their own sequence space and reach genotypes that were not previously

available to either.

Molecular complexes are pervasive in biology. The extensive intermolecular epistasis that we

observed among a small number of sites in a simple binary complex suggests that the reach of

intermolecular epistasis may be vast. If the structure of that epistasis is anything like that present in

the AncSR1-RE complex, then the web of contingent events that structures evolutionary trajectories

is likely to be dense, with the evolutionary potential of any one molecule depending on prior events

in other molecules. But if some of those events are permissive, as our results suggest they are likely

to be, then the potential of evolution to generate new functional complexes by the combined action

of mutation, drift and selection is greater than it may appear if the molecules are viewed only in

isolation. Complexity and interdependence not only constrain evolution; they can also buy freedom

for the parts of a system to reach new states, if the historical events are right.
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Materials and methods

Protein purification
DBDs were cloned into the pETMALc-H10T vector (Pryor and Leiting, 1997) (a gift from John

Sondek, UNC-Chapel Hill) C-terminal to a cassette containing a 6xHis tag, maltose binding protein

(MBP) and a TEV protease cleavage site. DBDs were expressed in BL21(DE3)pLysS Rosetta cells.

Protein expression was induced by addition of 1 mM IPTG at A600 of 0.8–1.2. After induction, cells

were grown overnight at 15˚C. Cells were harvested via centrifugation and frozen at −10˚C overnight.

Cells were lysed using B-PER Protein Extraction Reagent Kit (Thermo Scientific).

Lysate was loaded onto a pre-equilibrated 5 ml HisTrap HP column (GE Fairfield, CT) and eluted

with a linear imidazole gradient (25 mM–1 M) in 25 mM sodium phosphate and 100 mM NaCl buffer

[pH 7.6]. The DBD was cleaved from the MBP-His fusion using TEV protease in dialysis buffer

consisting of 25 mM sodium phosphate, 150 mM NaCl, 2 mM βME and 10% glycerol [pH 8.0]. The

cleavage products were loaded onto a 5 ml HiPrep SP FF cation exchange column (GE) and eluted

with a linear NaCl gradient (150 mM–1 M) in 25 mM sodium phosphate buffer [pH 8.0]. DBDs were

further purified on a Superdex 200 10/300 GL size exclusion column (GE) with 10 mM Tris [pH 7.6], 100

mM NaCl, 2 mM βME, 5% glycerol. Protein purity was assayed after each purification by visualization

on a 12% SDS-PAGE gel stained with Bio-Safe Coomassie G-250 stain (Bio-Rad).

FA binding assay
DNA constructs were ordered from Eurofins Operon (Huntsville, AL) as HPLC-purified single stranded

oligos with the forward strand labeled at the 5′-end with 6-FAM. Sequences of forward strands, with

differences underlined, were as follows: CCAGGCCA, CCAGGGCA, CCAGCTCA, CCAGCACA,

CCAGCCCA, CCAGCGCA, CCAGTTCA, CCAGTACA, CCAGTCCA, CCAGTGCA, CCAGACCA,

CCAGAGCA, CCAGGTCA, CCAGAACA, CCAGGACA, CCAGATCA. Complementary reverse

strands were also ordered.

Forward and reverse strands were re-suspended in duplex buffer (30 mM Hepes [pH 8.0], 100 mM

potassium acetate) to a concentration of 100 μM. Equimolar quantities of complementary forward and

reverse strands were combined and placed in a 95˚C water bath for 10 min then slowly cooled to room

temperature. The double stranded product was diluted to 5 μM in water.

Purified DBD was buffer exchanged using Illustra NAP-25 columns into 20 mM Tris [pH 7.6], 130

mM NaCl and 5% glycerol. Protein concentration was determined by measuring absorbance at 280

nm, 320 nm and 340 nm and correcting for light scattering. A range of DBD concentrations was

titrated in triplicate onto a black, NBS-coated 384 well plate (Corning 3575, Corning, NY). Labeled

DNA was added to each well to achieve a final concentration of 5 nM in 91 μl total volume. Sample FP

was read using a Perkin Elmer Victor X5, exciting at 495 nm and measuring emission anisotropy at 520

nm. To determine K1, we measured binding affinity to the half-site REs in triplicate and fit the data to

a single-site binding model.

Linear modeling the genetic determinants of binding affinity

Definition of genetic encoding system
To quantify the genetic determinants of binding affinity, we used an approach similar to that

previously developed (Stormo, 2011). We constructed regression models that explain ΔGdissociation as

a function of the genetic states at the three variable amino acid residues in the protein and the two

variable nucleotide positions in the RE half-site.

The genetic variation in the protein was defined in the linear models using one-dimensional

variables for the RH substitutions; residues 25, 26 and 29 were are described by single-dimensional

vectors a, b, and c, respectively, with the ancestral state defined as −1 and the derived state defined

as +1 (Supplementary file 2). For the two variable nucleotide positions in the RE, each of the four

alternate genetic states was represented using the WYK tetrahedral-encoding system (Zhang and

Zhang, 1991) in which A, C, G, and T are represented as different linear vectors in a three-dimensional

space defined by [wi yi ki] (where i indicates the site in the RE). A is represented by the linear vector

(1, −1, −1), C by (−1, 1, −1), G by (−1, −1, 1), and T by (1, 1, 1) (Supplementary file 2). These variables

make the y-intercept of the linear model equal to the mean ΔGdissociation across all experimental

measurements (Stormo, 2011); therefore, all genetic effects are expressed relative to the mean.
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First-order linear models
We constructed our first-order model by regressing the ΔGdissociation of each genotype on dependent

variables that reflect the individual first-order identities at each genetic position. For example, the

linear model for position 25 in the RH is expressed as

ðΔGdissociationÞ=   aðu1Þ+ u0;

where a is the effect coefficient of moving +1 in that dimension, u1 is the coordinate representing the

genotype (i.e., −1 for ancestral glu, +1 for derived GLY), and u0 is the y-intercept for the model (equal

to the mean across the data). The linear coefficients for each model were computed using ordinary

least squares regression with the open-source statistical package R (http://www.r-project.org/). The

coefficient a indicates the deviation of the derived genetic state from the mean, while −a gives the

deviation of the ancestral genetic state from the mean. The total effect of the substitution glu25GLY is

therefore equal to 2a.

To determine how well all three first-order effects of substitutions in the protein predict variation in

ΔGdissociation, we constructed the following linear model that included all first-order protein

coefficients:

ðΔGdissociationÞ=   aðu1   Þ+   bðu2Þ  +   cðu3Þ+ u0;

where u2 and u3 are the coordinates representing the genotype for position 26 and 29, respectively.

We then computed the R2 and adjusted R2 values for this protein-only first-order model (Figure 3,

Supplementary file 1).

The site-specific first-order models for each site in the RE were modeled in terms of the w, y, and k

coefficients. For example, the linear model relating ΔGdissociation to variation in the third position is

expressed as

ðΔGdissociationÞ=  w3ðu4   Þ+   y3ðu5Þ  + k3ðu6Þ+   u0;

where u4, u5, and u6 are the coordinates representing the genotype at site 3 in the RE, while w3, y3,

and k3 are the coefficients for the effect on ΔGdissociation per unit in w3, y3, and k3 space. The

magnitude of the effect of each genotype on ΔGdissociation was determined by computing the sum of

the modeled WYK coefficients for its defined coordinates in w3, y3, and k3 space (e.g., the effect of C

in position 3 is equal to −w3 + y3 − k3: See Supplementary file 2). To determine how well the first-

order effects of RE variables predict variation in ΔGdissociation, we constructed the following linear

model:

ðΔGdissociationÞ=  w3ðu4Þ  +   y3ðu5Þ  + k3ðu6Þ  +  w4ðu7Þ  +   y4ðu8Þ  +   k4ðu9Þ+   u0:

We then computed the R2 and adjusted R2 values for this RE-only first-order model

(Supplementary file 1). In modeling the genetic effects within the RE for each protein genotype,

we also performed a likelihood ratio test in order to assess whether adding each site’s first-order

effects significantly improved the fit to a model only including first-order variation at the other site

(e.g., to assess the importance of site 3, we compared the fit of a model containing terms for site 4 vs

a model containing terms for both site 3 and site 4; if the more complex model was significant by

likelihood ratio test, this indicates that variation at site 3 is significantly predictive of binding affinity).

We also constructed a global first-order linear model that included both RH and RE variables. The

global first-order model is as follows:

ðΔGdissociationÞ=   aðu1Þ+   bðu2Þ  +   cðu3Þ  +  w3ðu4Þ  +   y3ðu5Þ  +   k3ðu6Þ  +  w4ðu7Þ  +   y4ðu8Þ 
+   k4ðu9Þ+   u0:

To determine how well the combined first-order effects of both the protein and RE variables

predicted variation in ΔGdissociation, we determined the R2 and adjusted R2 values (Supplementary file 1),

as well as performing likelihood ratio tests for each additional set of parameters. Together, we refer to

these as ABC-/WYK- encoded linear models.

Linear models with second-order intra-molecular epistasis
To identify cases of second-order epistatic interactions, we individually introduced every possible

interaction term for every two-way combination of genotypes at the variable sites in the protein or the

RE. These interaction variables were constructed as previously described (Stormo, 2011). Each
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interaction is described by a new linear vector, the value for which is determined by taking the outer

product between the two first-order linear vectors. For example, the interaction between site 25 and

29 of the RH will be equal to (a)⊗ (c) = (ac). The linear model that includes both first and second-order

terms in the protein is as follows:

ðΔGdissociationÞ=   aðu1   Þ+   bðu2   Þ+   cðu3Þ+   abðu10   Þ+   acðu11Þ  +   bcðu12Þ+u0;

where u10 is equal to u1u2, and so on. The second-order interaction effects are equal to the deviation

from the additive effect modeled by each genetic state individually across other genetic backgrounds,

and is defined herein as the ‘marginal’ effect. As previously described, this method of encoding means

that all terms are relative to the mean ΔGdissociation, and so we multiplied this term by two in order to

obtain the effect of each substitution in the derived genetic background (i.e., when the derived state

exists at the other site) vs the average effect of that substitution regardless of the genetic background

(e.g., interaction 25_29 is equal to 2ac). The calculation of these terms is summarized in

Supplementary file 2.

Interactions between each site in the RE were modeled analogously. Here, the interaction between

site 3 and site 4 in the RE is constructed by: (w3, y3, k3) ⊗ (w4, y4, k4) = (w3w4, w3y4, w3k4, y3w4, y3y4,

y3k4, k3w4, k3y4, k3k4). The linear model that includes both first and second-order terms in the RE is as

follows:

ðΔGdissociationÞ=  w3ðu4Þ  +   y3ðu5   Þ+   k3ðu6Þ  +  w4ðu7Þ+   y4ðu8Þ+   k4ðu9Þ+w3w4ðu13Þ
+w3y4ðu14Þ  +w3k4ðu15Þ+   y3w4ðu16Þ  +   y3y4ðu17Þ+   y3k4ðu18Þ
+   k3w4ðu19   Þ+   k3y4ðu20Þ+   k3k4ðu21Þ+u0:

One advantage of this method of encoding the genetic data is that the first-order model is nested

within the second-order model. This allowed us to assess whether addition of the second-order model

terms significantly improved the fit by comparing the improvement in the adjusted R2 as well as the

improvement in the likelihood ratio test relative to the simpler first-order model. The effect of each

second-order interaction (i.e., the epistasis that should be added to the sum of the additive lower-

order effects) can be solved from these coefficients. For example, the epistatic interaction between C

at position 3 and A at position 4 is:

C3 A4=   −w3w4 +w3y4   +w3k4 +   y3w4 −   y3y4 −   y3k4 −   k3w4   +   k3y4 +   k3k4:

To identify the genetic determinants of binding affinity for both the protein and RE, we applied this

analysis to each individual protein genotype (Supplementary file 1), as well as globally across all

protein and RE genotypes (Supplementary file 2).

Linear models with second-order inter-molecular epistasis
We next constructed a linear model that included both first- and second-order terms within the

protein and RE as well as second-order terms between the protein and RE (i.e., interactions between

specific amino acid and nucleotide states). These second-order interaction terms between the protein

and RE were determined in the same manner as before. For example, the interaction between the

substitution at site 25 in the protein and C at site 3 in the RE is determined by adding the terms given

by: (a) ⊗ (−w3, y3, −k3) = (−aw3, ay3, −ak3) (Supplementary file 2). We added these inter-molecular

second order terms to the previously described model that included all first- and second-order intra-

molecular terms. Significance of the more complex model was assessed by its improvement of

adjusted R-squared and by likelihood ratio test. For all terms resulting from this model, see

Supplementary file 2.

Third-order epistatic linear models
We next constructed a linear model that included third-order interactions. These third-order terms

described the interactions between one state in the protein and a pair of states in the RE (and vice

versa). These interactions were modeled analogously to the second-order terms, by determining the

outer product between all relevant lower-order terms.

The significance of the improvement in the fit resulting from the addition of these third-order

interaction terms was assessed by how much the set of third-order terms improved the adjusted R2 as

well as by likelihood ratio test (Supplementary file 1). The script for these analyses is available from

Github: github.com/danderso8/eLife2015_LinearModelingandMolecularDynamics.
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Validating with an alternative genetic encoding system
Finally, we wanted to confirm that the effects we modeled using these methods were consistent with

other modeling approaches. We constructed analogous first-, second-, and third-order models using

a binary encoding system, in which each variable is 1 if the respective genetic state is at a given

position, and 0 otherwise (e.g., glu25 is 1 if there is a glu at position 25, and 0 in all other cases). For

higher-order models, the terms were constructed so that they equal 1 if all lower-order genetic states

are present (e.g., glu25_G3 is 1 if both site 25 in the RH is a glu and site 3 in the RE is a G, and

0 otherwise). We constructed these linear models by determining the effect of each binary variable

relative to the mean ΔGdissociation. We then compared the effect of all the same first- and second-order

genetic effects with this approach to our results from abc-/WYK-models and found they were entirely

consistent, as expected (Stormo, 2011; Poelwijk et al., 2015).

MD simulations
The crystal structure of AncSR1 bound to ERE (PDB: 4OLN) was used as the starting point for all

simulations. Historical substitutions and changes to the DNA RE sequences were introduced in silico

(Emsley and Cowtan, 2004). Each system was solvated in a cubic box with a 10 Å margin, then

neutralized and brought to 150 mM ionic strength with sodium and chloride ions. This was followed by

energy minimization to remove clashes, assignment of initial velocities from a Maxwell distribution,

and 1 ns of solvent equilibration in which the positions of heavy protein and DNA atoms were

restrained. Production runs were 50 ns, with the initial 10 ns excluded as burn-in. The trajectory time

step was 2 fs, and final analyses were performed on frames taken every 12.5 ps.

We used TIP3P waters and the AMBER FF03 parameters for protein and DNA, as implemented in

GROMACS 4.5.5 (Duan et al., 2003). The zinc fingers were treated with a recently derived bonded

potential for Cys-Zn interactions (Hoops and Rindler, 1991; Lin andWang, 2010) as previously described

(McKeown et al., 2014). Zinc finger partial charges were derived using the RED III.4 pipeline (Dupradeau

et al., 2010) as previously described (McKeown et al., 2014). We extracted a tetrahedral Cys4 zinc finger

from a 0.9 Å crystal structure (Iwase et al., 2011), optimized its geometry with an explicit quantum

mechanical calculation using the 6–31G** basis set (Schuchardt et al., 2007), then derived partial charges

using RESP (Dupradeau et al., 2010). All quantum mechanical calculations were performed using the

FIREFLY implementation of GAMESS (Schmidt and Mohring, 1993; Granovsky, 2007,). We verified that

the zinc fingers maintained their tetrahedral geometry over the course of the simulations.

Simulations were performed in the NTP ensemble at 300 K, 1 bar. All bonds were treated as

constraints and fixed using LINCS (Hess et al., 1997). Electrostatics were treated with the Particle

Mesh Ewald model (Darden and Pedersen, 1993), using an FFT spacing of 12 Å, interpolation order

of 4, tolerance of 1e-5, and a Coulomb cutoff of 9 Å. van der Waals forces were treated with a simple

cutoff at 9 Å. We used velocity rescaled temperature coupling with a τ of 0.1 ps and Berendsen

pressure coupling with a τ of 0.5 ps and a compressibility of 4.5e-5 bar−1. Analyses were performed

using VMD 1.9.1 (Humphrey et al., 1996)—with its built-in TCL scripting utility—as well as a set of in-

house Python scripts (adapted from scripts generously shared by Mike Harms, and available from

Github: github.com/harmsm/md-analysis-tools).
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·Supplementary file 1. First-order and epistatic genetic determinants of binding affinity. First-order

effects indicate the difference in binding energy relative to the mean across all data, while the second-

order effects are the marginal addition to the additive sum of the first-order effects. Third-order

effects are the marginal addition to the additive sum of all lower-order effects. (A) The energetic

effects of binding for all first-order and epistatic terms in the RE as determined by linear modeling for

each protein genotype. (B) The energetic effects for amino acid replacements averaged across all 16

REs. (C) The energetic effects from a global model, including all possible first-, second-, and third-

order effects within and between the protein and DNA.
DOI: 10.7554/eLife.07864.011

· Supplementary file 2. abc/WYK- encoding of sequence characters for linear modeling of genetic

effects. (A) One-dimensional vectors for ancestral versus derived state at variable amino acid positions

25, 26, and 29 in the protein are shown. (B) Three-dimensional vectors for A, C, G, or T at variable

positions 3 and 4 in the RE are shown. The encoding methods shown in panels A and B ensure that the

origin in each vector space will be associated with the mean value of the independent variable (in this

case, the delta-G of dissociation) across all the data. (C) Terms used in the linear model using abc/WYK

coding. Each row shows the expression for the effect on the independent variable of a nucleotide state,

amino acid replacement, or interaction among them. Each genetic effect is calculated using the

expression shown and the optimized values of the linear coefficients as described in ‘Materials and

methods’.
DOI: 10.7554/eLife.07864.012

Major dataset
The following previously published dataset was used:

Author(s) Year Dataset title
Dataset ID
and/or URL

Database, license, and
accessibility information

McKeown AN, Bridgham
JT, Anderson DW,
Murphy MN, Ortlund EA,
Thornton JW

2014 Ancestral Steroid
Receptor 1 in complex
with estrogen response
element DNA

http://www.rcsb.org/pdb/
explore/explore.do?
structureId=4OLN

Publicly available at RCSB
Protein Data Bank
(Accession No: 4OLN).
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