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Abstract Prior studies have shown that high-frequency activity (HFA) is modulated by the phase

of low-frequency activity. This phenomenon of phase-amplitude coupling (PAC) is often interpreted

as reflecting phase coding of neural representations, although evidence for this link is still lacking in

humans. Here, we show that PAC indeed supports phase-dependent stimulus representations for

categories. Six patients with medication-resistant epilepsy viewed images of faces, tools, houses,

and scenes during simultaneous acquisition of intracranial recordings. Analyzing 167 electrodes, we

observed PAC at 43% of electrodes. Further inspection of PAC revealed that category specific HFA

modulations occurred at different phases and frequencies of the underlying low-frequency rhythm,

permitting decoding of categorical information using the phase at which HFA events occurred. These

results provide evidence for categorical phase-coded neural representations and are the first to show

that PAC coincides with phase-dependent coding in the human brain.

DOI: 10.7554/eLife.07886.001

Introduction
Perceptual representations of the environment are critical to an animal’s survival and are believed to

occur through coactivated neuronal groups known as cell assemblies. Human neuronal firing (Ekstrom

et al., 2007; Kraskov et al., 2007; Chan et al., 2011; Rey et al., 2014) and increases in high-frequency

activity (HFA) in the gamma range (above 30 Hz; Jacobs and Kahana, 2009; Jacobs et al., 2012; van

Gerven et al., 2013) carry information about perceptual and mnemonic representations. Several

recent studies have shown that these two signals are positively correlated (Ray et al., 2008; Manning

et al., 2009; Whittingstall and Logothetis, 2009; Miller et al., 2014; Rey et al., 2014; Burke et al.,

2015) and are each modulated by the phase of low frequency oscillations (LFO) (O’Keefe and Recce,

1993; Bragin et al., 1995; Skaggs et al., 1996; Canolty et al., 2006; Jacobs et al., 2007; Tort et al.,

2009; Axmacher et al., 2010; Rutishauser et al., 2010;McGinn and Valiante, 2014). This modulation

is detectable as phase-amplitude coupling (PAC) of gamma amplitude to LFO phase (Buzsaki, 2010;

Miller et al., 2014; Aru et al., 2015).

Together, these findings have motivated models positing that LFO phase may organize cell

assemblies (Kayser et al., 2012; Lisman and Jensen, 2013; Jensen et al., 2014;Watrous et al., 2015),

a form of phase coding (O’Keefe and Recce, 1993). Supporting this view, LFO phase can be used to

decode behaviorally relevant information (Belitski et al., 2008, 2010; Fell et al., 2008; Schyns et al.,

2011; Lopour et al., 2013; Ng et al., 2013) and phase coded neural activity has been demonstrated in

rodents (O’Keefe and Recce, 1993; Skaggs et al., 1996) and monkeys (Kayser et al., 2009; Siegel

et al., 2009). Although the PAC observed in humans (Canolty et al., 2006; Axmacher et al., 2010) has

been thought to reflect phase-coding, this assumption has yet to be validated because prior studies

have not investigated the relation between PAC and decoding from LFO phases.
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We have recently proposed that the frequency-specific phase of LFO coordinates neural firing to

support neural representations (Watrous and Ekstrom, 2014; Watrous et al., 2015). Here, we tested

this prediction, a form of the phase-coding hypothesis in humans, by examining the relation between

PAC and neural representations for categories. We analyzed intracranial recordings from 167

electrodes in six patients with pharmaco-resistant epilepsy as they viewed pictures of houses, tools,

scenes, and faces. First, we identified PAC on individual electrodes by using a recently developed

metric which allows for the characterization of PAC across individual HFA events. On electrodes

exhibiting PAC, we then assessed the distinctiveness of each category’s phase-coded representation

during periods with and without pronounced HFA. Our results suggest that during periods with

pronounced HFA, categorical representations can be recovered based on the phase of low-frequency

oscillations, supporting the idea of phase-coded neural representations in humans.

Results
We analyzed data from a total of 167 intracranially-recorded EEG electrodes from six patients with

pharmaco-resistant epilepsy as they viewed pictures of houses, faces, tools, and outdoor scenes

(Figure 1A), testing whether these categories may be represented based on HFA activity at different

phases of the LFO (Figure 1B). We first sought to identify electrodes exhibiting PAC and used a data-driven

method which allows for the identification of predominant modulating and modulated frequencies (Dvorak

and Fenton, 2014; see Figure 1—figure supplement 1 for analysis schematic). Figure 2A–D shows the

PAC modulation profile of an example electrode from the basal temporal lobe of patient 3. Figure 2A

shows the magnitude of the modulatory signal relative to HFA events (time 0) at different frequencies in the

HFA band. PAC is evident as red and blue vertical striping, with maximal modulation of activity at 84 Hz

(Figure 2B; ‘HFA event’ marked by arrow in Figure 2C) occurring near the trough of the 2.5 Hz oscillation

(see also Figure 2D). Notably, PAC was visible in the raw trace (Figure 2C), the modulatory signal showed

rhythmicity (Figure 2D), and there was a clear peak in the power spectrum of both the raw signal and the

modulatory signal (Figure 2E, see Figure 2—figure supplement 1 for more examples).

eLife digest Electrocorticography, or ECoG, is a technique that is used to record the electrical

activity of the brain via electrodes placed inside the skull. This electrical activity repeatedly rises and

falls, and can therefore be represented as a series of waves. All waves have three basic properties:

amplitude, frequency and phase. Amplitude describes the height of a wave’s peaks (and the depth of

its troughs), and frequency defines how many waves are produced per second. The phase of a wave

changes from 0˚ to 360˚ between two consecutive peaks of that wave and then repeats, similar to the

phases of the moon.

Previous studies have shown that brain activity at different frequencies can interact. For instance,

neural firing (when nerve impulses are sent from one neuron to the next) is related to ‘high frequency

activity’; and the amplitude of high frequency activity can be altered by the phase of other, lower

frequency brain activity. It has been suggested that this phenomenon, called ‘phase-amplitude

coupling’, might be one way that the brain uses to represent information. This ‘phase coding’

hypothesis has been demonstrated in rodents but is largely untested in humans.

Now, Watrous et al. have explored this hypothesis in epilepsy patients who had ECoG electrodes

implanted in their brains for a diagnostic procedure before surgery. These electrodes were used to

record brain activity while the patients viewed images from four different categories (houses, scenes,

tools and faces).

Watrous et al. found that phase-amplitude coupling occurred in over 40% of the recordings of

brain activity. The analysis also revealed that the phase of the lower frequency activity at which the

high frequency activity occurred was different for each of the four image categories. This provides

support for the phase-coding hypothesis in humans. Furthermore, it suggests that not only how

much neural firing occurs but also when (or specifically at what phase) it occurs is important for how

the brain represents information. Future studies could now build on this analysis to see if phase-

amplitude coupling also supports phase coding and neural representations in other thought

processes, such as memory and navigation.

DOI: 10.7554/eLife.07886.002
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Next, we investigated the prevalence of PAC and HFA on each electrode. We found robust

evidence for PAC, with at least 20% of electrodes in each patient showing significant PAC (n = 72/167

‘PAC+’ electrodes, see ‘Materials and methods’ for statistical assessment and inclusion criteria). On

PAC+ electrodes, HFA was broadly distributed across trials and time points. Calculating the

proportion of trials showing a period of significantly increased HFA (95th percentile, see ‘Materials

and methods’ for ‘HFA windows’) on each PAC+ electrode and category, we found that HFA occurred

throughout the period of stimulus presentation but increased ∼150 ms after stimulus onset

(Figure 2F). 66% of trials had at least one HFA window and this prevalence did not vary by category

(Figure 2—figure supplement 2; one-way ANOVA, F(3,284) = 0.6, p > 0.61). These findings converge

with prior studies demonstrating increased neural firing and HFA during stimulus presentation

and demonstrate pronounced PAC in our paradigm (Canolty et al., 2006; Mormann et al., 2008;

Axmacher et al., 2010; Cichy et al., 2014; Rey et al., 2014).

We then determined the frequencies and phases at which PAC is maximal on each PAC+
electrode. Slow-modulating (‘Fphase’) frequencies were significantly clustered in the delta band

(0.5–4 Hz; Figure 2G) and HFA modulated frequencies (‘Famp’) were significantly clustered around

slow (∼32 Hz) and fast (∼110 Hz) gamma frequencies (Figure 2H, chi-square goodness of fit test

across gamma frequencies, p < 0.004, χ2(22) = 43.6, Cohen’s d = 0.77). Furthermore, we found that

HFA was typically maximal near the trough of the oscillation (i.e., at 180˚; Figure 2I; p < 0.05, Rayleigh

test; see Figure 2—figure supplement 1 for additional examples and modulation at other phases).

Figure 1. (A) Task structure and timing. Exemplar images are shown from each category. Each image was presented in

pseudo-random order for one second with a jittered inter-stimulus interval. (B) Theoretical model of phase amplitude

coupling (PAC) and phase coding, showing how each phenomenon could occur in isolation (left, right) or together (middle).

Numbers above distributions indicate difference scores (DSs), the total number of categories one category differs from.

High-frequency activity (HFA) may occur at specific phases but not differ between categories, leading to PAC without phase

coding (left). Alternatively, HFA may be phase clustered across categories but still occur at different phases for some

categories, leading to both PAC and phase coding (middle). In a third scenario (right), category-specific phase clustering

could occur without any phase-clustering of HFA across categories, leading to phase coding without PAC.

DOI: 10.7554/eLife.07886.003

The following figure supplement is available for figure 1:

Figure supplement 1. Schematic showing the calculation of oscillatory triggered coupling (OTC) and DS (panels A

and B, respectively).

DOI: 10.7554/eLife.07886.004
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We next tested if PAC occurs for all four categories, which would be necessary if PAC was related

to the representation of categorical information. To this end, we tested each category separately for

phase clustering of HFA events at the electrode-specific peak modulatory frequency (‘FMAX’). This

analysis revealed significant clustering for all four categories on 87% (63/72) of PAC+ electrodes

(Rayleigh test p < 0.00004, Bonferroni-corrected p < 0.01 for PAC+ electrodes and categories). Phase

Figure 2. Phase amplitude coupling analysis. (A–E) Example of PAC using the OTC method described by Dvorak and Fenton (2014). Data are from one

electrode located in the left basal temporal lobe of patient #3. (A) Oscillatory-triggered comodulogram shows phase coupling above 50 Hz, evident as red

and blue vertical striped regions. Time zero corresponds to the HFA event. (B) Z-scored modulation strength as a function of frequency relative to 100

surrogate shuffles at pseudo-HFA events (i.e., random time points). (C) Modulation of gamma amplitude (green) by the phase of a 2.5 Hz oscillation (blue)

on an example trial. Time zero indicates image onset. Red shaded area and arrowhead indicate an HFA window and HFA event, respectively. Extracting

the peak modulatory signal from B (84 Hz) reveals the phase (D, HFA events occur at the trough at time 0), strength (D, peak-to-trough height) and

frequency (E; green) of the modulation. The red trace in (E) shows the average normalized power of the entire recording. (F) Group level analysis of HFA

event timing. HFA events occurred throughout the stimulus presentation period but increased ∼150 ms after stimulus onset. Magenta trace shows

percentage of gamma events as a function of time, averaged across electrodes and categories. The timing of HFA events did not systematically differ by

category (Figure 2—figure supplement 2). (G) Group level FFT data, defined at the peak of the modulation strength curve for each PAC+ electrode.

Most PAC occurred around 1 Hz. Black bars are relative counts of electrodes with a peak at each frequency. (H) Distribution of modulated frequencies

across electrodes. Electrodes were primarily modulated in the low and high gamma bands. (I) Preferred phases for modulation, clustered around the

trough of the signal (180˚).

DOI: 10.7554/eLife.07886.005

The following figure supplements are available for figure 2:

Figure supplement 1. Additional examples of PAC from each patient, demonstrating frequency and phase-diversity of PAC.

DOI: 10.7554/eLife.07886.006

Figure supplement 2. HFA time course for each category.

DOI: 10.7554/eLife.07886.007

Figure supplement 3. Comparison of PAC results using the OTC and modulation index (MI).

DOI: 10.7554/eLife.07886.008
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clustering was observed in each patient and did not vary across categories at FMAX (one-way ANOVA

on resultant vector lengths, F(3,284) = 0.14, p > 0.93). In sum, we found evidence for widespread PAC

in each patient at several frequencies and phases of the LFO, similar to single neuron and field

potential studies in monkeys (Kayser et al., 2009; Siegel et al., 2009) and humans (Canolty et al.,

2006; Jacobs et al., 2007; Axmacher et al., 2010; Maris et al., 2011; Jacobs et al., 2012; van der

Meij et al., 2012; Voytek et al., 2015).

HFA occurs at different phases for different categories
Testing the phase-coding hypothesis, we asked if high frequency activity occurred during category-

specific phases of the modulatory LFO. Figure 3A shows two traces from an example electrode which

are color-coded by the instantaneous phase at Fmax. HFA windows (boxes color coded by 1 Hz phase)

occurred during different modulatory phases depending on stimulus category. On this electrode,

phases extracted during HFA windows were clustered for each category to different phases, resulting

in category-specific phase-clustering (Figure 3B). Similar findings were observed in other patients

(Figure 3C), and appeared distinct from representations using power or phase (Figure 3—figure

supplements 1, 2).

These findings imply that representations might occur by the category-specific phase at which HFA

events occur. In order to further quantify this effect, we developed a simple metric, the difference

score (‘DS’), which allowed us to identify the distinctiveness of each category’s phase distribution

during HFA windows. We applied this metric to the subset of 63 PAC+ electrodes showing significant

phase-clustered HFA for each category. This was necessary in order to exclude spurious phase

differences between categories occurring in the absence of phase clustering. Across all patients, 78%

(49/63) of PAC+ electrodes showed a unique phase-clustering profile for one category compared with

each other category (e.g., Figure 1B; DS = 3 for at least one category, p < 10−9, Watson Williams test,

Bonferroni corrected across comparisons). This pattern was consistent both within and across

patients, with at least 15% of electrodes in each patient showing these effects (Figure 3D).

We next calculated the average phase difference between categories, expecting this measure to

increase with increasing DS. Indeed, categories with larger DSs exhibited larger phase differences

with other categories such that maximally distinct representations were 35˚ phase offset from all other

categories (Figure 3E).

As described above, PAC was most likely to occur at the oscillatory trough (Figure 2I and

Figure 2—figure supplement 1). Nonetheless, on individual electrodes or for individual categories,

HFA could occur at different phases. In fact, across electrodes, phase-coding was equally likely to

occur at all phases and for all categories; phase-coded categories were not clustered at particular

phases at any level of DS (Rayleigh test, all p > 0.19; Figure 3F) and phase-coding was equally likely

for each category (χ2(3) = 1.6, p = 0.64). Thus, a large proportion of PAC+ electrodes also show

category-specific phase clustering of HFA events to different phases (Video 1), suggesting that PAC is

related to phase-coding (Figure 1B, middle).

Decoding category identity from HFA event phases
To link these findings more directly to neural coding, we used pattern classification to determine if the

phase at which HFA events occur is sufficient to recover categorical information (see ‘Materials and

methods’). As expected from the analysis using DS, 42 (25% of all) electrodes showed significant

decoding accuracy (using LFO phases during HFA windows as features) compared to category label

shuffled surrogates and this proportion was significantly higher than would be expected by chance

(p < 10−10, binomial test, chance level: 8.3 electrodes, Cohen’s d = 0.6). Next, we assessed whether

phase-coding of categorical information indeed depended on HFA, as would be expected if PAC

supports phase-coding. We compared decoding accuracy during HFA events to decoding accuracy

during randomly selected surrogate events. 19 (11%) electrodes showed significantly higher decoding

accuracy during HFA events as compared to random event surrogates, and this proportion was

significantly higher than would be expected by chance (p < 0.0003, binomial test, chance = 8.3

electrodes, Cohen’s d = 0.22). Moreover, 17 (10%) electrodes showed significant enhancements of

decoding accuracy during HFA events relative to both label and event shuffled surrogates, with at

least two electrodes in each patient showing this pattern. This proportion of electrodes far exceeded

that expected by chance (p < 10−10, binomial test, chance = 0.41 electrodes, Cohen’s d = 0.46).
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These findings complement the above results using DS and indicate that the phase at which HFA

events occur carries sufficient information to decode image category, suggesting such information

may be a relevant component of the neural code.

We performed several control analyses to rule out alternative explanations. First, if slow oscillatory

phase relates to category-specific representations, we expect phase-locking across trials to different

categories. We observed significant phase locking on many electrodes to specific categories

(Figure 3—figure supplement 3, Rayleigh test, p < 0.000001), similar to previous studies which have

identified phase-locked activity (e.g., Fell et al., 2008). Second, we excluded the possibility that our

PAC+ or phase-clustering inclusion criteria biased our findings by computing a composite measure of

phase representation (PR) on each electrode (see ‘Supplement results’). This analysis again revealed

Figure 3. HFA occurs at category-specific low-frequency phases. (A) Two example trials from patient #6 demonstrating that HFA windows occur at

different phases for different categories. The signal is color-coded by the phase of 1 Hz oscillation only during the stimulus period. Times prior to stimulus

period are shown in order to visualize the 1 Hz modulatory signal. HFA windows are indicated by the boxes, color-coded by the 1 Hz phase at which they

occur. (B) Summary circular histograms and resultant vectors for this electrode. Categorical phase-clustering to different phases was prominent at Fmax,

allowing for the decoding of categorical information based on the phase at which HFA events occur. DSs are plotted for each category in the lower panel.

(C) Another example, from a different patient (#4), showing phase-clustered HFA windows for different categories (upper) along with DSs (lower).

(D) Proportion of electrodes in each patient showing category specific phase-clustered HFA. (E) Average absolute phase difference across categories and

electrodes for increasingly distinct phase representations (PRs). (F) Circular distribution of phases for each level of DS, pooled over electrodes and

categories. Phase coded representations were equally likely to occur at each phase.

DOI: 10.7554/eLife.07886.009

The following figure supplements are available for figure 3:

Figure supplement 1. Decoding categorical information using delta power, phase, or HFA power on example electrode shown in Figure 3A–B.

DOI: 10.7554/eLife.07886.010

Figure supplement 2. Decoding categorical information using delta power, phase, or HFA power on example electrode shown in Figure 3C.

DOI: 10.7554/eLife.07886.011

Figure supplement 3. Category-specific phase locking analysis.

DOI: 10.7554/eLife.07886.012
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that phase coding is largest on PAC+ electrodes

and is enhanced during HFA windows. Third, for

comparison with prior PAC methods, we recom-

puted PAC using the modulation index (MI, Tort

et al., 2009) in different low-frequency bands,

again finding PAC that was most prevalent in the

delta band (Figure 2—figure supplement 3).

Lastly, several models predict that neural

processes forming representations will show

frequency-specificity (Siegel et al., 2012;

Watrous and Ekstrom, 2014; Womelsdorf

et al., 2014). We therefore recalculated phase-

clustering and DS at the minimum modulatory

frequency (FMIN; see ‘Materials and methods’ and

Figure 4—figure supplement 1 for individual

subject values) using the same criteria detailed

above. As one would expect, on PAC+ electro-

des, phase clustering was larger at FMAX com-

pared to at FMIN, both on individual electrodes

(Figure 4A, B) and at the group level (Figure 4C;

paired t-test on resultant vector lengths, t(287) =
8, p < 10−10, Cohen’s d = 0.32). Moreover, only

20% (15/72) of PAC+ electrodes showed signif-

icant phase-clustering at FMIN for all 4 categories and only 1 electrode showed category-selective

phase-clustering of HFA events. Given that the phase of slower frequencies varies less over time and

that we primarily identified Fmax at slow frequencies, this result might be biased towards finding

enhanced phase clustering at Fmax. We therefore recalculated phase clustering across the full range of

frequencies (1–12 Hz, 0.1 Hz steps). Again, we found enhanced phase-clustering around 0.5 and 1 Hz

(Figure 4—figure supplement 2), but not at adjacent frequencies as would be expected from this

alternative account. Taken together, these results support the conclusion that HFA at distinct phases

and frequencies reflect representations for different categories.

Discussion
We tested the hypothesis that PAC reflects a phase-coding mechanism, measuring both PAC and

categorical PR in intracranial recordings from six patients who viewed pictures from different categories.

Our analyses show that on a large subset of electrodes showing PAC, the frequency-specific phase at

which HFA occurs varies with categorical information. Therefore, to the extent that HFA reflects

increases in local neuronal activity (Crone et al., 1998; Miller et al., 2014), our results suggest that

neural representations for categories might occur by the phase at which neurons fire. These findings

thus provide a novel link between PAC and phase-coded neural representations in humans.

Critically, although PAC and phase-coded representations share some attributes, such as phase-

clustering of activity, they are not necessarily identical processes. High frequency activity could occur

at particular phases of LFOs, as reflected by PAC, but these phases may not vary with stimulus

category (Figure 1B, left). In other words, there could be PAC without phase coding. This is in fact the

null hypothesis we have tested and would manifest as PAC with DSs of zero. On the other hand,

categorical information may be represented by specific low-frequency phases independent of HFA,

leading to DS without phase-clustering across HFA events (PAC; Figure 1B, right). We did not find

a complete overlap between PAC+ and phase-coding electrodes, indicating that each can occur in

isolation, but instead found a compromise between these extremes (Figure 1B, middle). These results

suggest that PAC in many cases reflects phase coding because of the significant overlap between the

two phenomena (Video 1).

Phase-coding, in the form of phase-modulated neuronal firing, has been identified in rodents,

monkeys, and humans (O’Keefe and Recce, 1993; Skaggs et al., 1996; Jacobs et al., 2007; Kayser

et al., 2009; Rutishauser et al., 2010). Although the mechanisms which guide such a neuronal phase

preference remain poorly understood, previous studies have found enhanced PAC during learning and

memory tasks (Tort et al., 2008; Axmacher et al., 2010; Kendrick et al., 2011; Friese et al., 2013;

Video 1. Significant electrodes rendered onto a glass

brain. Each point represents an electrode, and each

color represents different effects. Black electrodes

(n = 95) did not show significant phase-amplitude

coupling (PAC). Green electrodes (n = 9) only showed

significant PAC. Yellow electrodes (n = 14) showed

significant PAC and phase-clustering of HFA for all 4

categories. Red electrodes (n = 49) showed significant

PAC, phase-clustering for all 4 categories, and phase-

coding of high-frequency activity (i.e., difference score

of 3 for at least one category).

DOI: 10.7554/eLife.07886.013
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Lega et al., 2014). Our findings provide a potentially unifying account of these observations,

suggesting that PAC may be promoting the formation of phase-coded neural assemblies (Canolty and

Knight, 2010; Watrous and Ekstrom, 2014;Watrous et al., 2015). Follow-up studies will need to test

this account of PAC as it relates to other putative roles for PAC (Canolty and Knight, 2010; Voytek

et al., 2015).

While epilepsy is marked by increased synchronized neuronal activity which could potentially

manifest as HFA or PAC, we believe several factors weigh against this interpretation. First, we only

analyzed electrodes overlying putatively healthy tissue, typically from the hemisphere contralateral to

the epileptic focus, as assessed by our clinical team. Electrodes showing epileptic spiking were

systematically removed from our analysis and all analyzed trials were visually inspected for artifacts

Figure 4. HFA clusters to specific phases and frequencies for different categories. (A) Example electrode showing phase clustering at the maximum

modulatory signal (Fmax; frequency with maximum power in the FFT, see Figure 2E) but not at the minimum modulatory signal (panel B; Fmin; frequency

with minimum power in the FFT). HFA events are marked in color as the phase of the oscillation at the respective frequencies. (C) At the group level,

phase clustering was more prominent at the maximum frequency (Fmax; maroon) compared to the minimum frequency (Fmin; black) across categories and

PAC+ electrodes.

DOI: 10.7554/eLife.07886.014

The following figure supplements are available for figure 4:

Figure supplement 1. Fmax and Fmin values by subject.

DOI: 10.7554/eLife.07886.015

Figure supplement 2. Phase-locking analysis across all frequencies from 0.1–12 Hz.

DOI: 10.7554/eLife.07886.016
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related to epilepsy. Next, the PAC metric allows for assessment of the modulatory signal. Visual

inspection of these signals did not reveal a similarity to epileptic spikes (Figure 2—figure supplement 1).

Finally, it seems unlikely that epileptic activity at different phases would systematically differ by

category. Similar reasoning excludes saccade-related artifacts (Yuval-Greenberg et al., 2008;

Kovatch et al., 2011) as a parsimonious account of our results. We therefore conclude that similar

findings would translate into healthy human populations.

Another caveat is that our results provide evidence for categorical phase-coding based on

a restricted image set. This was necessary in the present study to maximize the chances of identifying

category-selective responses while still ensuring that these responses were generalizable across a few

exemplars. Follow-up studies should test the generalizability of these findings using more exemplars

within a category and using other categories.

PAC has typically been investigated using pre-defined low and high-frequency filters which may

optimize statistical power for detecting PAC but do not adequately deal with the time-resolved nature

of cognition (Aru et al., 2015). Here, we leveraged a recent method which can identify PAC and

subsequently test mechanistically interesting questions related to the modulation of HFA, such as its

temporal profile and its dependence on phase, frequency, and behavioral requirements. Notably, this

method may conservatively estimate PAC because it is based on transient increases in HFA, which do

not necessarily occur in all cases of PAC. Our findings demonstrate that PAC and large HFA events

can be identified and subsequently linked to categorically distinct representations. These results thus

extend previous research which has decoded neural representations using either low or high

frequency activity (Jacobs and Kahana, 2009; Schyns et al., 2011; van Gerven et al., 2013) and may

provide new avenues for decoding the human representational system.

Intriguingly, phase-coding of categorical information extended beyond brain areas associated with

higher-order vision. Thus, our findings of category-specificity do not appear to exclusively relate to

perception but may also involve other more complex, and idiosyncratic, associations to these stimuli.

Our findings are nonetheless in line with prior work (Majima et al., 2014; Yaffe et al., 2014; Zhang

et al., 2015) which has found spatially-distributed content-specific representations.

We identified frequency-specific PRs in humans, consistent with a growing body of evidence

implicating the relevance of frequency-specific oscillatory activity to human cognition (Daitch et al., 2013;

Watrous et al., 2013; Fontolan et al., 2014; Freudenburg et al., 2014). These findings are therefore

consistent with models implicating frequency-specific oscillations as central to higher-order cognition

(Siegel et al., 2012;Watrous and Ekstrom, 2014;Watrous et al., 2015). It has recently been shown that

the frequency of LFOs contributes to several neuronal properties such that relatively slower LFOs lead to

decreased firing threshold and increased spike timing variability (Cohen, 2014). It is not immediately clear

how this relates to our finding that PAC predominantly occurs with modulating frequencies in the delta

band, particularly around 1 Hz. It is possible that our findings reflect the activation of assemblies during

‘up’ states which show a similar frequency profile (Destexhe et al., 2007) or that the applied method of

identifying peaks in the spectrum biased our findings to find PAC at lower frequencies.

A third possibility, more likely in our view based on our results indicating multiple modulating

frequencies per electrode (Figure 2G), is that the timing of our task (1 image per second with

a jittered inter-stimulus interval) partially entrained slow oscillations forming an oscillatory hierarchy

(Lakatos et al., 2005). Similarly, our results showing PAC at a variety of phases and frequencies (Maris

et al., 2011; van der Meij et al., 2012), particularly near 32 Hz, might reflect a form of ‘nested

coupling’ (Kopell et al., 2010) distinct from ‘broadband’ high gamma, which has been suggested to

reflect population spiking (Manning et al., 2009; Miller et al., 2014). Future research may clarify this

issue by comparing single neuron activity and HFA modulation during different perceptual tasks and

by investigating their relation to hierarchical cross-frequency coupling.

To summarize, by identifying electrodes exhibiting both PAC and phase-coded neural representa-

tions for categories, our results employing direct brain recordings explicitly link phase-coupled neural

activity to phase coding in humans.

Materials and methods

Epilepsy patients
Six right handed patients with pharmacoresistant epilepsy (mean age 31.8 years; 3 female) participated

in the study. All patients were stereotactically implanted for diagnostic purposes. Medial temporal
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depth electrodes (AD-Tech, Racine, WI, USA) with 10 cylindrical platinum-iridium contacts (diameter:

1.3 mm) were implanted in 1 patient, and 5 patients were implanted with subdural grid and strip electrodes

with stainless-steel contacts (diameter: 4 mm) at temporal, frontal, and parietal sites (Video 2). Recordings

were performed using a Stellate recording system (Stellate GmbH, Munich, Germany) at the Department

of Epileptology, University of Bonn, Germany. The study was conducted according to the latest

version of the Declaration of Helsinki and approved by the ethical committee of the medical faculty at

the University of Bonn (approval identifier 280/08). All patients provided written informed consent to

participate in the study and for the results to be published in a pseudonymized manner.

Experimental design
Patients performed an object–location association task, though here we focus on neural representa-

tions for categories independent of memory encoding per se. Patients viewed greyscale images taken

from four different categories (houses, tools, scenes, and faces) and each category had four unique

stimuli, resulting in a stimulus set of 16 unique images. Example images from each category are shown

in Figure 1A. Each image was presented 30 times in pseudo random order (total of 480 trials) and was

followed by a white square in a fixed location. Patients were instructed to form object–location

associations and to rate if they liked or disliked each image, thus ensuring that they were attending to

each image presentation. Images were presented on a laptop placed in front of the patient. Each

image was presented for 1 s, followed by the white square presented for 1 s, and finally a jittered inter-

stimulus interval ranging from 1800–2200 ms. A fixation cross was presented between images.

Recording and analyses
Intracranial EEG recordings (sampled at 1000 Hz) were referenced to linked mastoids and band-pass

filtered (0.01 Hz [6 dB/octave] to 300 Hz [12 dB/octave]). Recordings from the hemisphere

contralateral to the epileptogenic focus were analyzed. To boost our electrode sampling, an

additional 32 electrodes from an ipsilateral left lateral temporal grid were included from patient 5

based on the physicians’ report, which indicated a left hippocampal focus and no evidence of

neocortical lesion based on an magnetic resonance imaging (MRI). Signals from this grid were

carefully visually inspected for artifacts and did not show increased artifacts associated with epilepsy.

Qualitatively similar results were observed when excluding these electrodes from the analysis, with the

proportions of electrodes showing any reported effect changing by no more than 3%.

Electrode locations were determined by post-implantation MRI such that electrodes were mapped

by co-registering pre- and post-implantation MRIs, normalizing the pre-implantation MRI and

applying the normalization matrix to the post-implantation MRI. The anatomical locations of contacts

were then identified by comparison with standardized anatomical atlases and using custom software

(published at http://pylocator.thorstenkranz.de/). In total, 167 implanted electrode contacts were

analyzed across all patients (Video 2).

Raw EEG signals were extracted from 750 ms

before to 1500 ms after image onset. EEG trials

were visually inspected for artifacts (e.g., epilep-

tiform spikes), and trials with artifacts were

excluded from further analysis (15% of all trials

on average). Trial epochs were then concate-

nated for subsequent analysis described below.

We analyzed an average of 103 trials per

category and subject and there were no differ-

ences in total number of trials analyzed across

categories (F(3,20) = 0.38, p = 0.76).

Oscillatory triggered coupling
(OTC) analysis
PAC was detected using the methods described

by Dvorak and Fenton (2014). This method is

conceptually similar to an event-locked analysis

around periods of enhanced HFA. All analyses

Video 2. Electrode locations for each patient, rendered

onto a glass brain of the average MNI template. Each

point represents an electrode, and each color represents

a different patient. Electrodes were primarily located in

the temporal lobe.

DOI: 10.7554/eLife.07886.017
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were conducted using standard routines in EEGLab (Delorme and Makeig, 2004) and Matlab based

on previously published algorithms (Rizzuto et al., 2006; Berens, 2009; Tort et al., 2009; Dvorak

and Fenton, 2014). In brief, the power and phase of the signal on each electrode was computed in

the low frequency (Fphase, 0.5–12 Hz, 0.5 Hz steps) and gamma (Famp, center frequencies at 32–120 Hz,

4 Hz steps) bands using Morlet wavelet convolution with 7 cycles. At each center HFA frequency, the

time course of power values was z-scored and time periods exceeding the 95th percentile of these values

were identified (we refer to these as ‘HFA windows’, red shaded area in Figure 2C). The time point of the

largest power value within each window was identified and taken as the time-locking ‘HFA event’ for OTC

analyses (arrow, Figure 2C). Two-second segments (1 s before to 1 s after each HFA event) of the raw

signal were extracted around these timestamps and raw signal segments were summed at each time point

across segments, resulting in the modulatory signal at each center HFA frequency.

The strength of modulation was determined based on the peak to trough height of the modulatory

signal. Surrogate modulatory signals (n = 100) were constructed at each modulated frequency based

on choosing an equal number of pseudo-HFA events at random timestamps and repeating the above

procedure. Surrogate modulation strengths were extracted and used to z-score the observed

modulation strength. PAC+ electrodes were identified as electrodes (1) with a modulation strength

z-score >4.35 for at least one gamma frequency and (2) with a clear peak in the power spectrum of the

raw signal at Fphase (Aru et al., 2015). This z-score threshold was calculated by identifying the z value

equivalent to a Bonferroni corrected (across 23 gamma frequencies and 167 electrodes) alpha

threshold of p < 0.05 and corresponded to p < 0.00005. Peaks were identified by normalizing the

power spectrum of both the raw and modulatory signal to their respective maxima and ensuring that

both normalized signals were maximal (i.e., 1) at the same frequency.

We identified the peak HFA modulation frequency as the frequency with the largest z-score and

extracted the modulatory signal (see Figure 2B). The phase and frequency content of the modulatory

signal was determined using a Hilbert transform and fast Fourier transform, respectively. The

modulatory signal was mean-centered prior to FFT in order to remove DC components. The maximum

(‘FMAX’) and minimum (‘FMIN’) of this FFT output indicate the strongest and weakest slow-modulating

frequencies in the 0.5–12 Hz band, respectively.

DS and phase clustering calculation
Phase comparisons were conducted using a Watson Williams test following Rizzuto et al (2006) and

using code taken from these eegtoolbox available at (http://memory.psych.upenn.edu/Software).

Statistical testing was performed between the phases extracted during HFA windows for all pairs of

conditions (4 categories; 6 total category pairs). DSs were computed for each category as the total

number of significant differences (p < 0.001) between the phase distribution for one category and the

remaining categories and thus ranged from 0 (no difference to any other category) to 3 (significant

difference to all other categories). Phase clustering scores were defined as the resultant vector length

for each category’s phase distribution.

Pattern classification analysis
We used a pattern classification approach for comparison with our DS metric, classifying image category

based on the phase at which HFA events occur. To this end, we trained support vector machines using

a linear kernel and fivefold cross-validation. Phase values at Fmax were extracted at moments in time

when HFA events occurred during image presentation and were used as input features for the classifier.

Similar to previous approaches (Lopour et al., 2013; Majima et al., 2014), the sine and cosine of the

phase values were used as input features for phase. Classifiers were run separately on each electrode

and the classifier output was a prediction of the category label for each HFA event. Classification

accuracy was defined as the average proportion of correctly classified HFA events across folds.

Chance classification performance varies across electrodes because we classified the category label

associated with each HFA event and the number of HFA events per category varied across electrodes.

We thus opted to report significance based on permutation testing which accounts for the varying

chance level across electrodes and assessed the significance of classification using two separate

analyses which both utilized permutation testing. First, we randomized the category labels associated

with HFA events and assessed classification accuracy. Second, we used random time points (also

corresponding to random phases) as surrogate HFA events and assessed classification accuracy. Each

type of permutation test was performed 50 times, resulting in a distribution of pseudo classification
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accuracy values for each test. Observed classification accuracies at or above the 95th percentile of

each of these distributions were deemed significant. Thus, we fixed the type 1 error rate for each test

at 5% and, assuming independence between tests, we would therefore expect 0.0025 × 167 = 0.42

electrodes to show significance by chance for both permutation tests.

Supplement information

Methods: control analyses and PR scoring
Conducting an alternative analysis, we aimed to determine if phase coding was more prominent

during HFA windows. To this end, we created a composite measure of PR on each electrode. Direct

comparison of the observed DS value to a surrogate distribution is problematic because DS assumes

values between 0–3. Therefore, in the case of an observed DS of 3, it is impossible to identify any

surrogates larger than our observation. We thus created a composite and continuous measure of PR

by multiplying DS and phase clustering values on each category–electrode pair.

Permutation tests were then performed by shuffling the temporal position of HFAwindows. This method

is similar to a method used previously (Axmacher et al., 2008). Specifically, we randomly reordered the

positions of HFA and non-HFA windows and then recalculated DS, phase-clustering, and PR values for each

category. Notably, this method maintains the distribution of HFA and non-HFA window durations while

shuffling these windows relative to the phase series. Surrogate PR values were calculated 200 times per

electrode and the observed PR value was compared against the 95th percentile of this surrogate

distribution. PR values were also extracted during non-HFA windows as a second control condition.

Supplement results
We computed a composite measure of PR by weighting each category’s DS by its phase-clustering

value. This measure combines two intuitive features of phase-coding, namely that information is

represented at different phases and that activity is concentrated at these phases (captured by DS and

phase-clustering values, respectively). Testing the specificity of HFA windows for phase coding, we

found that 56% (94/167) of electrodes showed PR that was larger during HFA windows compared to

both time-shifted surrogates and non-HFA windows for at least one category. Moreover, PR values

were significantly larger on PAC+ electrodes compared to electrodes without significant PAC

(two-sample t-test, p < 0.000005). Thus, we find that phase coding is largest on PAC+ electrodes and

is enhanced during HFA windows.

We calculated the MI (Tort et al., 2009) by binning HFA (51–200 Hz) amplitude according to phase

in either the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz) or the entire low frequency (0.5–12 Hz)

bands. Following surrogate control analyses, in which we randomly shuffled gamma values 500 times

prior to calculating MI, we observed significant PAC in each band relative to shuffled gamma MI

values. Consistent with our primary results, PAC was most prominent in the delta band using these

methods. Furthermore, the magnitude of gamma band activity was maximal at a similar phase of delta

oscillations (180˚, oscillatory trough) as when assessed using the OTC method. Based on the MI based

metric, we found that 102/167 electrodes exhibited significant PAC with delta band phase. These

results are shown in Figure 2—figure supplement 3.
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Bragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, Buzsáki G. 1995. Gamma (40–100 Hz) oscillation in the
hippocampus of the behaving rat. Journal of Neuroscience 15:47–60.

Burke JF, Ramayya AG, Kahana MJ. 2015. Human intracranial high-frequency activity during memory
processing: neural oscillations or stochastic volatility. Current Opinion in Neurobiology 31:104–110. doi: 10.
1016/j.conb.2014.09.003.

Buzsaki G. 2010. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68:362–385. doi: 10.1016/j.
neuron.2010.09.023.

Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. 2006.
High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628. doi: 10.
1126/science.1128115.

Canolty RT, Knight RT. 2010. The functional role of cross-frequency coupling. Trends in Cognitive Sciences
14:506–515. doi: 10.1016/j.tics.2010.09.001.

Chan A, Baker J, Eskandar E, Schomer D, Ulbert I, Marinkovic K, Cash S, Halgren E. 2011. First-pass selectivity for
semantic categories in human anteroventral temporal lobe. Journal of Neuroscience 31:18119–18129. doi: 10.
1523/JNEUROSCI.3122-11.2011.

Cichy RM, Pantazis D, Oliva A. 2014. Resolving human object recognition in space and time. Nature Neuroscience
17:455–462. doi: 10.1038/nn.3635.

Cohen MX. 2014. Fluctuations in oscillation frequency control spike timing and coordinate neural networks.
Journal of Neuroscience 34:8988–8998. doi: 10.1523/JNEUROSCI.0261-14.2014.

Crone NE, Miglioretti DL, Gordon B, Lesser RP. 1998. Functional mapping of human sensorimotor cortex
with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain
121:2301–2315. doi: 10.1093/brain/121.12.2301.

Daitch AL, Sharma M, Roland JL, Astafiev SV, Bundy DT, Gaona CM, Snyder AZ, Shulman GL, Leuthardt EC,
Corbetta M. 2013. Frequency-specific mechanism links human brain networks for spatial attention. Proceedings
of the National Academy of Sciences of USA 110:19585–19590. doi: 10.1073/pnas.1307947110.

Delorme A, Makeig S. 2004. EEGLAB: an open source toolbox for analysis of single- trial EEG dynamics
including independent component analysis. Journal of Neuroscience Methods 134:9–21. doi: 10.1016/j.
jneumeth.2003.10.009.

Destexhe A, Hughes SW, Rudolph M, Crunelli V. 2007. Are corticothalamic ‘up’ states fragments of wakefulness?
Trends in Neuroscience 30:334–342. doi: 10.1016/j.tins.2007.04.006.

Dvorak D, Fenton AA. 2014. Toward a proper estimation of phase-amplitude coupling in neural oscillations.
Journal of Neuroscience Methods 225:42–56. doi: 10.1016/j.jneumeth.2014.01.002.

Ekstrom A, Viskontas I, Kahana M, Jacobs J, Upchurch K, Bookheimer S, Fried I. 2007. Contrasting roles of neural
firing rate and local field potentials in human memory. Hippocampus 17:606–617. doi: 10.1002/hipo.20300.

Fell J, Ludowig E, Rosburg T, Axmacher N, Elger CE. 2008. Phase-locking within human mediotemporal lobe
predicts memory formation. Neuroimage 43:410–419. doi: 10.1016/j.neuroimage.2008.07.021.

Watrous et al. eLife 2015;4:e07886. DOI: 10.7554/eLife.07886 13 of 15

Research article Neuroscience

http://dx.doi.org/10.1016/j.conb.2014.08.002
http://dx.doi.org/10.1093/brain/awn103
http://dx.doi.org/10.1073/pnas.0911531107
http://dx.doi.org/10.1007/s10827-010-0230-y
http://dx.doi.org/10.1016/j.conb.2014.09.003
http://dx.doi.org/10.1016/j.conb.2014.09.003
http://dx.doi.org/10.1016/j.neuron.2010.09.023
http://dx.doi.org/10.1016/j.neuron.2010.09.023
http://dx.doi.org/10.1126/science.1128115
http://dx.doi.org/10.1126/science.1128115
http://dx.doi.org/10.1016/j.tics.2010.09.001
http://dx.doi.org/10.1523/JNEUROSCI.3122-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.3122-11.2011
http://dx.doi.org/10.1038/nn.3635
http://dx.doi.org/10.1523/JNEUROSCI.0261-14.2014
http://dx.doi.org/10.1093/brain/121.12.2301
http://dx.doi.org/10.1073/pnas.1307947110
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://dx.doi.org/10.1016/j.tins.2007.04.006
http://dx.doi.org/10.1016/j.jneumeth.2014.01.002
http://dx.doi.org/10.1002/hipo.20300
http://dx.doi.org/10.1016/j.neuroimage.2008.07.021
http://dx.doi.org/10.7554/eLife.07886


Fontolan L, Morillon B, Liegeouis-Chauvel C, Giraud AL. 2014. The contribution of frequency-specific activity to
hierarchical information processing in the human auditory cortex. Nature Communications 5:4694. doi: 10.1038/
ncomms5694.

Freudenburg ZV, Gaona CM, Sharma M, Bundy DT, Breshears JD, Pless RB, Leuthardt EC. 2014. Fast-scale
network dynamics in human cortex have specific spectral covariance patterns. Proceedings of the National
Academy of Sciences of USA 111:4602–4607. doi: 10.1073/pnas.1311716111.
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