1. Structural Biology and Molecular Biophysics
Download icon

Structural Biology: NMR illuminates the pathways to ALS

  1. Tao Xie
  2. Charalampos G Kalodimos  Is a corresponding author
  1. Rutgers University, United States
Insight
Cite this article as: eLife 2015;4:e08679 doi: 10.7554/eLife.08679
1 figure

Figures

Energy landscape showing the four short-lived excited states that are in equilibrium with the ground state of apoSOD12SH, which is thought to be the form of the SOD1 enzyme that causes ALS.

(A) The ground state (center) is in equilibrium with two native (or working) conformations. Exchange process I leads to the formation of a dimer, with the changes being localized to the surface that forms the interface between the two SOD1 monomers in Cu2Zn2SOD1S-S (left); exchange process II folds the electrostatic loop within the enzyme to form a helix (pink). (B) The ground state (center) is also in equilibrium with two non-native conformations, both of which have aberrant dimer interfaces. These interfaces and the unstructured electrostatic loop in apoSOD12SH may act as sites for the formation of higher-order oligomers and aggregates that may have a role in ALS. The binding sites for metal ions are denoted by purple circles (Zn) and khaki circles (Cu); these sites are empty (denoted by E) for all these states. P is the percentage of enzymes in a state; τ is the lifetime of the state.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)