
*For correspondence: axel.

behrens@crick.ac.uk

Present address: †Department

of Pharmacology and

Translational Research,

Boehringer Ingelheim RCV

GmbH & Co KG, Vienna, Austria;
‡Helmholtz Zentrum München,

German Research Center for

Environmental Health, Institute

of Stem Cell Research,

Neuherberg, Germany;
§Translational Cancer

Therapeutics Laboratory, UCL

Cancer Institute, University

College London, London, United

Kingdom; ¶MRC Centre for

Regenerative Medicine, The

University of Edinburgh,

Edinburgh, United Kingdom

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 20

Received: 14 May 2015

Accepted: 18 February 2016

Published: 17 March 2016

Reviewing editor: Richard J

Gilbertson, Cambridge Cancer

Center, CRUK Cambridge

Institute, United Kingdom

Copyright Blake et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Inactivation of the ATMIN/ATM pathway
protects against glioblastoma formation
Sophia M Blake1,2†, Stefan H Stricker3‡, Hanna Halavach1,2, Anna R Poetsch2,4,5,6,
George Cresswell2,4, Gavin Kelly2,7, Nnennaya Kanu1,2§, Silvia Marino8,
Nicholas M Luscombe2,4,5,6, Steven M Pollard3¶, Axel Behrens1,2,9*

1Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom;
2Lincoln’s Inn Fields Laboratory, The Francis Crick Institute, London, United
Kingdom; 3Samantha Dickson Brain Cancer Unit and Department of Cancer Biology,
UCL Cancer Institute, University College London, London, United Kingdom;
4Bioinformatics and Computational Biology Laboratory, The Francis Crick Institute,
London, United Kingdom; 5UCL Genetics Institute, Department of Genetics,
Evolution and Environment, University College London, London, United Kingdom;
6Okinawa Institute of Science and Technology, Okinawa, Japan; 7Bioinformatics and
Biostatistics, The Francis Crick Institute, London, United Kingdom; 8Blizard Institute,
Barts and the London School of Medicine and Dentistry, London, United Kingdom;
9Faculty of Life Sciences and Medicine, King’s College London, London, United
Kingdom

Abstract Glioblastoma multiforme (GBM) is the most aggressive human primary brain cancer.

Using a Trp53-deficient mouse model of GBM, we show that genetic inactivation of the Atm

cofactor Atmin, which is dispensable for embryonic and adult neural development, strongly

suppresses GBM formation. Mechanistically, expression of several GBM-associated genes, including

Pdgfra, was normalized by Atmin deletion in the Trp53-null background. Pharmacological ATM

inhibition also reduced Pdgfra expression, and reduced the proliferation of Trp53-deficient primary

glioma cells from murine and human tumors, while normal neural stem cells were unaffected.

Analysis of GBM datasets showed that PDGFRA expression is also significantly increased in human

TP53-mutant compared with TP53-wild-type tumors. Moreover, combined treatment with ATM and

PDGFRA inhibitors efficiently killed TP53-mutant primary human GBM cells, but not untransformed

neural stem cells. These results reveal a new requirement for ATMIN-dependent ATM signaling in

TP53-deficient GBM, indicating a pro-tumorigenic role for ATM in the context of these tumors.

DOI: 10.7554/eLife.08711.001

Introduction
Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain cancer in

adults. Despite improvements in clinical care, a rapid disease progression and insufficient under-

standing of the etiology of these tumors results in very poor survival prognosis. The standard treat-

ment for GBM patients involves a combination of the DNA damaging agent temozolomide together

with radiotherapy (Stupp et al., 2005). However, the benefits of current treatment regimes come

with severe side effects for patients, as well as drug resistance and inevitable recurrence of the

tumor (Wen and Kesari, 2008).

Over recent years, great efforts by individual research groups and consortia have shed light on

the key genetic events that lie at the heart of human GBM formation, raising the possibility of a

more targeted approach to therapy. This has identified activation of growth factor receptor signaling
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(for example by amplification or overexpression of the PDGF receptor) and direct or indirect inacti-

vation of the TP53 and retinoblastoma tumor suppressors as core deregulated pathways in human

GBM (Cancer Genome Atlas Research Network, 2008). Unfortunately, many of these pathways are

difficult to target pharmacologically in vivo, and for others, like PDGFR signaling, available inhibitors

have so far lacked clinical impact (Wen et al., 2006; Rich et al., 2004). Hence, an important goal of

GBM research is to identify novel, more effective therapies to generate better outcomes.

One of the central determinants of tumor progression and the response to therapy is the DNA

damage response (Lord and Ashworth, 2012). The DNA damage kinase ATM is known primarily as

a tumor suppressor, through its role in the response to DNA double-strand breaks (Shiloh and Ziv,

2013), and systemic loss of ATM has previously been shown to accelerate glioblastoma progression

(Squatrito et al., 2010). This tumor suppressive role is in line with the activation of the DNA damage

response in precancerous lesions as a barrier to tumorigenesis (Bartkova et al., 2005). A recent

study has, however, demonstrated loss of ATM signaling to inhibit the growth of TP53-null tumor

xenografts, via stabilization of p14ARF (Velimezi et al., 2013), suggesting that ATM function in can-

cer is highly context-dependent.

As well as its canonical activation at break sites, ATM signaling also occurs in response to other

cellular stresses (Bakkenist and Kastan, 2003), and this mode of ATM signaling requires the ATM

INteractor ATMIN (Kanu and Behrens, 2007). ATMIN interacts with the ATM kinase in basal condi-

tions and disassociates from ATM in response to ionizing radiation, to allow ATM to interact with

the MRN complex at double-strand break sites (Zhang et al., 2014). ATMIN also has ATM-indepen-

dent functions, most notably the transcriptional activation of Dynll1, a motor protein involved with

ciliogenesis and crucial for lung development (Jurado et al., 2012a; Goggolidou et al., 2014). In

addition, ATMIN has been shown to counteract oxidative damage in the brain (Kanu et al., 2010)

and to protect against B cell lymphomagenesis (Loizou et al., 2011), but its role in other cancer

types has not yet been determined.

A key downstream mediator of the DNA damage response pathway, activated by both the dou-

ble-strand break and ATMIN-dependent responses, is the tumor suppressor TP53. Precancerous

lesions in which the DNA damage response is activated are under selective pressure to lose or

mutate TP53, and loss of TP53 is known to cooperate with several genes to accelerate tumorigenesis

(as summarized in the IARC database [Petitjean et al., 2007]). Among these cooperating changes is

loss of ATM, which induces rapid T-cell lymphoma development (Westphal et al., 1997). TP53 is

also one of the most commonly mutated genes in human GBM. Consequently, the majority of avail-

able mouse models of GBM use deletion of one or both copies of the Trp53 gene in combination

eLife digest Glioblastomas are the most common and aggressive brain cancers in adults, and

currently lack efficient treatment options. Glioblastoma cells contain genetic mutations that enable

them to grow and divide more quickly than they would under normal conditions. The occurrence of

these mutations often leads to a functional impairment in so-called ’tumor suppressor’ proteins that

may have a range of roles, including repairing genetic damage or controlling the rate of cell division.

Blake et al. have now studied how some of these tumor suppressor proteins interact. Deleting a

prominent tumor suppressor called TP53 from the brain of mice caused these animals to develop

glioblastomas. If, however, both TP53 and another tumor suppressor called ATMIN were deleted at

the same time, the majority of mice did not develop any brain tumors. Further in-depth profiling of

these brain tumor cells revealed that TP53-deleted cells had very high levels of the oncogene

PDGFRA, which causes cells to divide more rapidly. These high PDGFRA levels were brought back

to normal conditions upon deletion of ATMIN.

Blake et al. then studied primary human glioblastoma cells that lack TP53 and found that these

cells could be efficiently killed by a combination of drugs that block the activity of PDGFRA and the

protein ATM, which is known to work in concert with ATMIN. Importantly, this combination of drugs

did not adversely affect healthy brain cells, opening up new strategies and potential treatment

options for glioblastoma patients.

DOI: 10.7554/eLife.08711.002

Blake et al. eLife 2016;5:e08711. DOI: 10.7554/eLife.08711 2 of 24

Research article Cancer biology

http://dx.doi.org/10.7554/eLife.08711.002
http://dx.doi.org/10.7554/eLife.08711


with other mutations (Chen et al., 2012). Overexpression of the Pdgf receptor ligand Pdgfrb in adult

Nestin-positive neural stem cells, for instance, results in glioma formation, which is accelerated in a

Trp53-mutant background (Squatrito et al., 2010).

In this study, we demonstrate that congenital loss of Trp53 in the mouse brain is sufficient to pre-

cipitate spontaneous glioblastoma formation, and that this correlates with upregulation of Pdgfra.

Further, we show that ATMIN plays a critical role in GBM formation, promoting Pdgfra protein and

gene expression in a Trp53-deficient background, using an in vivo glioma model as well as neural

stem cell and primary tumor cell cultures. Importantly, we find that these results are translatable to

therapeutic ATM inhibition in human patient-derived GBM stem cells, and that combining ATM inhi-

bition with PDGFRA inhibition results in synergistic tumor cell killing with minimal effects on untrans-

formed cells.

Results

Glioblastomas develop at high frequency in p53DN (Trp53 mutant) mice
Loss of TP53 is one of the earliest occurring events in human GBM initiation (Maher et al., 2001;

Wang et al., 2009; Ohgaki et al., 2004; Mazor et al., 2015; Johnson et al., 2014). This inevitably

results in the accumulation of a plethora of secondary hits, which, after a long latency period, leads

to tumor formation. To recapitulate this chain of events in mice, we deleted Trp53 as an initial driver

during neural development (using p53f/f; Nestin-Cre (p53DN) mice) and monitored brain tumor for-

mation in late adult life. After 8 months, brain tumors arose in p53DN mice with high penetrance

(Figure 1A and B), similar to previous observations using an hGFAP-Cre model (Wang et al., 2009).

Animals began to show neurological symptoms including reduced movements and tremor at an

average age of 263 days. When examined histologically, many p53DN tumors had features consistent

with WHO classification criteria for Grade IV GBM (Figure 1C). Out of 17 animals, 14 (82%) showed

diffusely infiltrative astrocytic brain tumors, the majority of which were classified as GBM by indepen-

dent analysis (57% Grade IV, glioblastoma; 29% Grade III, anaplastic astrocytoma; 14% Grade II,

fibrillary astrocytoma), while one displayed an osteosarcoma (Figure 1B and D, Figure 1—figure

supplement 1 and Supplementary file 1). p53DN GBMs displayed pseudopalisading necrosis (i),

microvascular proliferation with endothelial hyperplasia (ii) and occasional endovascular thrombosis

(iii), hallmarks of human GBM tumors (Figure 1E [i–iii]). The markers Gfap (iv), Nestin (v), and Olig2

(vi) were expressed in all tumors, while they were negative for the neuronal marker NeuN, support-

ing the diagnosis of glioma (Figure 1E (iv–vi) and Figure 1—figure supplement 2). Intertumoral and

intratumoral heterogeneity, a classic hallmark of high-grade gliomas, was also frequently observed

(Figure 1F). These data indicate that early embryonic loss of Trp53 in the brain is sufficient to pro-

mote GBM formation. The long latency of these tumors, together with the genome instability and

transcriptional changes known to be induced by loss of Trp53, indicated that these gliomas almost

certainly develop as a result of secondary mutations arising in the Trp53-null brain. In line with this

notion, mouse SNP array data revealed large chromosomal gains and losses (typical tumorigenic

genetic changes) in four out of five analyzed p53DNgliomas, whereas no changes were detected in

one wt and three Trp53-deficient non-tumorigenic control NS cells (Figure 1—figure supplement

3). These secondary hits are not congenitally predefined and thus possibly allow a better representa-

tion of the genetic diversity of the disease in patients. In addition, the high frequency of brain tumor

formation, proportion of high-grade tumors, and consistency of tumor latency on a mixed genetic

background make this a valuable GBM model.

Loss of Atmin strongly suppresses GBM formation in the p53DN model
As an integral part of the response to genomic stress, activation of the DNA damage response path-

way typically represents a barrier to tumorigenesis. Consistent with this, it has previously been

shown that loss of the DNA damage kinase Atm accelerates tumorigenesis in a Pdgf-driven glioblas-

toma model (Squatrito et al., 2010). In addition, deletion of the Atm cofactor Atmin promotes B

cell lymphomagenesis (Loizou et al., 2011). Whether loss of Atmin affects tumorigenesis in other

cancer types is so far unknown. To investigate the potential role of Atmin in glioma formation, we

crossed AtminDN mice (Kanu et al., 2010) with p53DN mice. Strikingly, AtminDN; p53DN mice showed

significantly longer tumor-free survival than p53DNanimals (p<0.0002) (Figure 2A). The largest
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Figure 1. Loss of Trp53 is sufficient to induce GBM with high penetrance. (A) Kaplan-Meier curves showing tumor-free survival in p53f/f; Nestin-Cre

(p53DN) and control Nestin-Cre mice. (B) Status of mouse cohorts at 450 days, showing tumor incidence. (C) H&E-stained p53DN brain tumor sections

showing histological features of malignant GBM. Arrowheads indicate (i) a mitotic cell, (ii) neo-vascularization, (iii) rosetta formation, (iv) mitotic

catastrophe, (v) a multinucleated giant cell, and (vi) large areas of necrosis. (D) Grades of gliomas for p53DN mice. (E) Examples of human GBM

hallmarks observed in p53DN tumors: pseudopalisading necrosis (i), microvascular proliferation with endothelial hyperplasia (ii), and endovascular

thrombosis (iii) (all H&E). Immunohistochemistry shows expression of the glial markers GFAP (iv), NESTIN (v), and OLIG2 (vi) in p53DN tumors. (F) p53DN

glioblastomas display high inter- and intra-tumoral heterogeneity. H&E images i-ii, iii-iv, and v-vi represent different regions of the same tumors #1, #2,

and #3 respectively. GBM, Glioblastoma multiforme.

DOI: 10.7554/eLife.08711.003

Figure 1 continued on next page
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proportion of AtminDN; p53DNmice (43%) did not develop any signs of sickness and were still alive

after 450 days; a further 36% succumbed either to non-tumor-related illness or, in one case, a pan-

creatic tumor (Figure 2B and Supplementary file 1). Only three animals out of a cohort of 14

AtminDN; p53DNdouble mutants (21%) initiated glial tumors (Figure 2B), compared with 82% of

p53DNmice over the same period. The three GBMs arising in AtminDN; p53DNdouble-mutant mice

arose later but were histologically similar to those observed in p53DN mice (Figure 2—figure supple-

ment 1), and did not escape Atmin deletion, suggesting that the requirement for Atmin can eventu-

ally be overcome, but only in a small proportion of cases. Importantly, central nervous system

deletion of Atmin alone (AtminDN) did not affect brain morphology or histology (Kanu et al., 2010)

and the mice remained tumor free (Figure 2A). Thus, Atmin deletion strongly suppresses GBM for-

mation in p53DN animals.

Atmin loss rescues hyperproliferation and sensitivity to hypoxia in
p53DNNSCs
Loss of Trp53 affects diverse fundamental cellular processes including proliferation, genome stabil-

ity, cell cycle arrest, and apoptosis (Vousden and Lane, 2007). To understand the involvement of

Atmin in the suppression of the Trp53-null phenotype, we isolated neural stem cells (NSCs) (Fig-

ure 2—figure supplement 2) from p53DNembryos and tested the effect of Atmin loss on these pro-

cesses. p53DNNSCs proliferated more rapidly than wild-type (wt) controls. This proliferative

advantage, however, was rescued in AtminDN; p53DN NSCs (Figure 2C and D), indicating that Atmin

is required for the hyperproliferation of Trp53-deficient NSCs. Loss of Atmin alone did not alter pro-

liferation of NSCs (Figure 2—figure supplement 3). FACS profiling of p53DN and AtminDN; p53DN

NSCs revealed a decrease in the proportion of AtminDN; p53DN cells in S phase compared with

p53DN NSCs, in agreement with the reduced proliferation rate, but no change in cells with a >4n

DNA content, and metaphase spreads at passage 10 revealed no obvious difference in ploidy (Fig-

ure 2—figure supplement 4). We analyzed cell cycle arrest and cell death in response to ionizing

radiation (IR) by quantifying the percentage of BrdU-incorporating and DAPI-permeable NSCs

respectively. As expected, p53DN NSCs arrested less efficiently than wt NSCs and cell death was

reduced; but cell cycle arrest and cell death were not rescued in AtminDN; p53DN NSCs (Figure 2E

and Figure 2—figure supplement 5). In addition to IR-induced cell death, p53DN NSCs were more

resilient to hypoxia-induced death, consistent with previous studies (Liu et al., 2007; Graeber et al.,

1996). Atmin deletion in these cells re-sensitized them to hypoxia, to similar levels as wt NSCs

(Figure 2F). Thus, loss of Atmin is able to rescue some of the phenotypes of Trp53 loss, such as

hyperproliferation and hypoxia induced death, but not others, such as IR-induced cell cycle arrest

and cell death.

Loss of Atmin impairs the tumorigenicity of neural stem cells in
orthotopic transplants
As increased proliferation and hypoxia resistance are attributes commonly found in tumor initiating

cells of solid tumors, including glioma (Graeber et al., 1996; Gilbertson and Rich, 2007), we evalu-

ated the tumorigenic potential of p53DN and AtminDN; p53DN NSCs in vivo. We performed intracra-

nial injections of NSCs isolated from wt, p53DN, and AtminDN; p53DNembryos (Figure 2G). Five out

of five animals injected with p53DN NSCs died within 93 days post-injection, while four out of five wt

and three out of four p53DN; AtminDNNSC-injected animals were still alive even at 155 days, the

Figure 1 continued

The following figure supplements are available for figure 1:

Figure supplement 1. Histological features of lower grade tumors observed in p53DN animals.

DOI: 10.7554/eLife.08711.004

Figure supplement 2. Histological features of glioblastomas observed in p53DN animals.

DOI: 10.7554/eLife.08711.005

Figure supplement 3. SNP array analysis on primary cells derived from GBM bearing p53DN, non-tumor bearing p53DN , and wild-type (wt) animals.

DOI: 10.7554/eLife.08711.006

Figure supplement 4. Table representing CGHcall output for SNP array analysis compressed to comparable regions between arrays in the series.

DOI: 10.7554/eLife.08711.007
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endpoint of the experiment (Figure 2G). Histologically, injected cells appeared as atypical glial cells

expressing Nestin and Ki67, diffusely infiltrating the host brain (Figure 2—figure supplement 6),

similar to previous observations with human GBM xenografts (Stricker et al., 2013). Fluorescent

imaging of asymptomatic mice at the experimental endpoint readily detected injected AtminDN;

p53DN and wt NSCs (Figure 2—figure supplement 7), suggesting that these cells survived in the

host brain, but did not induce lethality. Thus, genetic inactivation of Atmin greatly impairs the tumor-

igenic potential of p53DNcells.

Atmin loss normalizes expression of the proto- oncogene Pdgfra in
p53DN NSCs
To understand the molecular basis of the observed attenuation of tumorigenic potential, we per-

formed gene expression profiling on wt, p53DN, and AtminDN; p53DNembryonic NSCs. Compared

with wt NSCs, 145 genes were downregulated more than 1.5-fold in p53DN, whereas 77 were over-

expressed (Figure 3A). Many of the canonical Trp53 target genes, such as Bax, Puma, and Cdkn1a,

were downregulated to a similar extent in AtminDN; p53DN compared with p53DNNSCs. However,

27% of genes deregulated in p53DNNSCs returned to wt expression levels when Atmin was also

deleted (36/145 of the decreased, and 24/77 of the increased genes; examples in Figure 3B). When

this subset of genes ‘rescued’ in double mutant NSCs was queried against the Cancer Genome Atlas

(TCGA) database, in several cases abnormal levels of these transcripts were found to be associated

with human GBM (Cancer Genome Atlas Research Network, 2008; Suvasini et al., 2011). Particu-

larly notable among this list was the platelet-derived growth factor receptor alpha (Pdgfra)

(Figure 3C). Elevated levels of PDGFRA have been observed in human gliomas of various malig-

nancy grades (Engström et al., 2012), and increased PDGFR signaling has been shown to induce gli-

oma-like growths in vivo (Jackson et al., 2006). Increased PDGFRA levels are also a characteristic

hallmark of the proneural GBM subtype as classified in (Brennan et al., 2013; Verhaak et al., 2010).

Interestingly, we found that p53DNNSCs were associated most closely with the proneural subtype

when comparing the microarray expression profile from the murine NSCs to that of publically avail-

able human GBM samples from TCGA (Verhaak et al., 2010) (Figure 3—figure supplement 1),

which is in agreement with elevated Pdgfra mRNA as well as protein levels (Figure 3D). This

increased protein expression was also apparent in high-grade GBMs from endstage p53DNanimals

(Figure 3E and Figure 3—figure supplement 2). Other growth factor receptors, like Egfr, and pro-

teins commonly deregulated in glioma including Rb, Pten, Cyclin D2, Junc, and Cdk4 (Wang et al.,

2009) remained unaltered in p53DNcells and tumors (Figure 3—figure supplements 2 and 3), as did

the closely related Pdgf receptor Pdgfrb and the receptor ligands Pdgfa and Pdgfb (Figure 3—fig-

ure supplement 4).

Importantly, deletion of Atmin together with Trp53 completely rescued the elevated Pdgfra

expression, reducing it to wild-type levels (Figure 3C and D). Overexpression of tagged Atmin in

double mutant NSCs restored elevated Pdgfra expression at both the mRNA and protein levels

(Figure 3F and G), while acute silencing of Atmin in p53DNNSCs, using two independent shRNA con-

structs, reduced Pdgfra levels (Figure 3H), implying that sustained Pdgfra upregulation in

p53DNNSCs constantly requires Atmin function to maintain increased Pdgfra expression. Thus, inter-

ference with Atmin function is sufficient to reduce Pdgfra overexpression in Trp53-deficient cells.

To assess whether Trp53 null tumors require sustained Pdgfra overexpression, we isolated pri-

mary tumor cells from GBM-bearing p53DNmice and induced stable knockdown of Pdgfra using

shRNA (Figure 3—figure supplement 5). This resulted in a significant decrease in the proliferation

rate of these primary tumor cells (Figure 3I), emphasizing the importance of Atmin function in sup-

porting elevated Pdgfra expression in p53DNgliomas.

Pdgfra overexpression is reversible with pharmacological Atm
inhibition
Atmin has two known functions: an Atm-dependent function, in which Atmin interacts with Atm and

is required for Atm signaling in several stress contexts, and an Atm-independent function, in which

Atmin is required for transcription of the dynein light chain Dynll1. To determine whether acute

silencing of Atmin in tumor cells might reduce Pdgfra expression by disrupting Atm signaling, we

tested the effects of pharmacological Atm inhibition in p53DNprimary tumor cells. Treatment with an
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Figure 2. Loss of Atmin rescues GBM formation in p53DN brains. (A) Kaplan-Meier curves showing tumor-free survival in AtminDN and AtminDN; p53DN

mice. p53DN curve from Figure 1A (same experiment) is shown for comparison. (B) Status of mouse cohorts at 450 days, showing tumor incidence. (C)

Atmin loss rescues the increased proliferation of p53DN NSCs. (D) Mean percentage of BrdU-positive NSCs from the indicated genotypes, assessed by

FACS following a 2-hr BrdU pulse. (E) Mean number of DAPI-permeable (non-viable) cells after IR or (F) hypoxia, showing sensitivity of AtminDN; p53DN

NSCs to hypoxia but not IR. n.s., not significant; * p<0.05, ** p<0.01. (G) Scheme of orthotopic NSC transplant experiment (left) and Kaplan-Meier

curves indicating survival of NOD/SCID mice orthotopically transplanted with p53DN and AtminDN; p53DN NSCs (right). Error bars represent the SEM of

three biological repeats, and two biological repeats for (E). IR, Ionizing radiation; NSC, Neural stem cell.

DOI: 10.7554/eLife.08711.008

Figure 2 continued on next page
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Atm inhibitor (ATMi) significantly reduced Pdgfra transcript and protein levels (Figure 4A and B)

and efficiently reduced proliferation of p53DNprimary tumor cells (Figure 4C), similar to our observa-

tions after Pdgfra silencing. ATMi treatment also reduced Pdgfra expression in p53DNNSCs

(Figure 4D and Figure 4—figure supplement 1). Consistent with these results, Atm-/-;

p53DNdouble-mutant NSCs had dramatically lower Pdgfra expression levels than p53DNNSCs, com-

parable to AtminDN; p53DNand wt NSCs (Figure 4E and F). Furthermore, in vitro proliferation assays

showed that genetic loss of Atm reduced the proliferation of p53DNNSCs to wt levels (Figure 4G).

Importantly, the reduction in cell proliferation in vitro correlated with reduced tumorigenic potential

of the NSCs when orthotopically injected into the brains of NOD/SCID mice. Mice injected with

Atm-/-; p53DNNSCs survived up to 50% longer than those receiving p53DNNSCs (Figure 4H). How-

ever, Atmin deletion (Figure 2G) was more effective than deletion of Atm (Figure 4H). Atmin can

also act as a transcription factor (Jurado et al., 2012a; 2012b; Goggolidou et al., 2014), and it is

conceivable that this Atm-independent function of Atmin contributes to the suppression on GBM.

The similar effect of Atmin deletion and Atm inhibition on Pdgfra expression and proliferation of

NSCs and primary tumor cells supports the hypothesis that Atmin functions in these processes via its

modulation of Atm signaling. Given the extensively characterized role of PDGFRA in cell proliferation

and in particular in glioma, it is reasonable to propose that the reduction in Pdgfra expression upon

Atm loss contributes to the reduced tumorigenic potential observed.

Since Atm is best known as a DNA damage signaling kinase, we examined whether the effect of

Atm on Pdgfra expression and tumorigenicity was related to altered DNA damage signaling in

p53DNglioma cells. Neither p53DNnor AtminDN; p53DNNSCs showed increased gh2ax or 53bp1 foci in

basal conditions (Figure 5A and B), suggesting that the different proliferation rates are not caused

by changes in endogenous DNA damage. Pdgfra expression was not affected by IR or hydroxyurea

(HU), two well-described inducers of ATM signaling, either in wt or in p53DNNSCs (Figure 5C) and

no increased Atm substrate phosphorylation could be detected in untreated p53DN NSCs

(Figure 5D), suggesting that Pdgfra upregulation is not a consequence of stimulation of DNA dam-

age signaling. Atm substrate phosphorylation was also comparable in IR- and HU-treated wt,

p53DNand AtminDN; p53DNNSCs (Figure 5D), suggesting that the response to DNA damage stimuli

is comparable in these cells. This suggests that while Atm is required for the increased Pdgfra

expression in p53DN cells, this does not involve alterations in IR or HU-induced Atm signaling, but at

this point does not exclude the possibility that increased ROS (reactive oxygen species) levels in

p53DN GBM cells might contribute to Atm pathway activation and subsequent Pdgfra induction and

GBM development.

Primary human glioma neural stem cells are sensitive to ATM inhibition
and combinatorial treatment with PDGFR inhibitors
To investigate the relevance of ATM signaling for PDGFRA upregulation in human GBM, we took

advantage of patient derived human GBM neural stem cells (GNSCs) (Stricker et al., 2013) that

Figure 2 continued

The following figure supplements are available for figure 2:

Figure supplement 1. Histological features of glioblastomas observed in p53DN and AtminDN; p53DN animals.

DOI: 10.7554/eLife.08711.009

Figure supplement 2. Examples of murine neural stem cells in culture.

DOI: 10.7554/eLife.08711.010

Figure supplement 3. AtminDN NSCs proliferate at a similar rate as wild-type NSCs.

DOI: 10.7554/eLife.08711.011

Figure supplement 4. Gross genome stability is unaffected in Atmin/Trp53 double mutant NSCs.

DOI: 10.7554/eLife.08711.012

Figure supplement 5. Radiation-induced arrest is similarly impaired in Trp53-mutant and Atmin/Trp53 double mutant NSCs.

DOI: 10.7554/eLife.08711.013

Figure supplement 6. Tumors arising from orthotopic injection of NSCs are Nestin and Ki67-positive.

DOI: 10.7554/eLife.08711.014

Figure supplement 7. Asymptomatic AtminDN; p53DN-injected animals show persistent GFP-positive cells.

DOI: 10.7554/eLife.08711.015
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Figure 3. Atmin regulates Pdgfra expression in a mutant Trp53 background. (A) Heatmap showing genes deregulated more than 1.5-fold in Trp53 null

NSCs and their corresponding expression in AtminDN; p53DN double null NSCs. (B, C) qRT-PCR validation of GBM implicated genes that show

deregulated expression in p53DN but not AtminDN; p53DN NSCs. (D) Elevated Pdgfra protein expression in p53DN but not AtminDN; p53DN NSCs.

Corresponding p-Akt and total Akt levels were probed to analyze pathway activation. Actin was used as loading control. (E) Tumor section from a GBM

arising from a p53DN animal showing elevated Pdgfra expression. ’N’ denotes the normal brain region adjacent to the tumor mass. Dotted lines

indicate tumor border. (F) Myc-Atmin overexpression increases expression of Pdgfra mRNA in AtminDN; p53DN but not wt cells. (G) Myc-Atmin

overexpression increases Pdgfra protein levels in AtminDN; p53DN NSCs. Tubulin was used as loading control. (H) Atmin silencing using two

independent shRNA constructs reduces Pdgfra expression, assessed by qRT-PCR. (I) Stable Pdgfra silencing using two independent shRNA constructs

Figure 3 continued on next page
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have documented TP53 mutations (lines G26, G166, and G179, Figure 6A). We confirmed that cell

extracts from each of these human tumors were unable to activate a luciferase construct containing

multiple TP53-binding elements (Figure 6—figure supplement 1). PDGFRA expression was signifi-

cantly increased in two out of three human GNSC lines compared with untransformed human neural

stem cells (cb660; (Engström et al., 2012; Pollard et al., 2009) (Figure 6B). To assess whether this

observation is representative of the wider human GBM spectrum, we analyzed the gene expression

patterns in the ’Glioblastoma Multiforme (TCGA, provisional)’ dataset from The Cancer Genome

Atlas. We analyzed 153 RNA-seq and 500 microarray datasets for 518 glioblastoma samples and

completed these with the clinical subgroup information from (Brennan et al., 2013). The gene

expression datasets contained z-scores representing the differences in expression levels of PDGFRA

between cancer and control samples (Figure 6—figure supplements 2 and 3). The RNA-seq and

microarray data were handled separately; for each, we observed higher average PDGFRA expression

in TP53-mutant glioblastoma samples compared with TP53 wild-type samples (Figure 6C,D). We

also observed higher PDGFRA expression levels in the Proneural and GCiMP GBM subtypes when

compared to the Classical, Neural, and Mesenchymal (Figure 6E and Figure 6—figure supplement

4).

In line with the data from our mouse model, treatment with an ATMi strongly reduced PDGFRA

expression in GNSCs, whereas no significant effect on PDGFRA expression was detected in cb660

controls (Figure 6F). To determine whether a reduction in PDGFRA levels would be sufficient to

inhibit the proliferation of primary GNSCs from human tumors, G179 cells were infected with doxy-

cycline (dox)-inducible shRNA constructs targeting PDGFRA (Figure 6G and Figure 6—figure sup-

plement 5), and their proliferation was monitored over a period of 10 days. In agreement with our

results in the mouse, depletion of PDGFRA led to a significant decrease in the proliferation rate of

human GNSCs (Figure 6H). Thus, both murine and human TP53-mutant glioma cells are sensitive to

loss of PDGFRA.

To analyze the physiological effects of ATM inhibition on GNSCs, proliferation was monitored

over a period of 7 days. Similar to our observations in murine NSCs, ATMi treatment reduced the

proliferation rate of human TP53 mutant GNSCs, but not cb660 control cells (Figure 7A). PDGFR

inhibitors (PDGFRi) have previously been shown in vitro and in vivo to reduce tumor growth in a gli-

oma model (Kilic et al., 2000). These advances, however, have so far failed to transition into clinical

practice (Wen et al., 2006; Rich et al., 2004). We reasoned that ATMi-mediated reduction in

PDGFRA protein levels could potentiate the effects of PDGFR inhibition. Consistent with this, we

observed that co-treatment of GNSCs, but not untransformed NSCs (e.g. cb660), with relevant ATM

and PDGFR inhibitor concentrations further reduced cell proliferation (Figure 7A and Figure 7—fig-

ure supplement 1). More detailed analysis revealed that this treatment combination induced sub-

stantial cell death, while untransformed NSCs remained largely unaffected (Figure 7B,C). The

Figure 3 continued

reduces primary tumor cell proliferation, measured using IncuCyte timelapse microscopy. Error bars represent the SEM of at least three biological

repeats and two biological repeats in (I).* p<0.05, ** p<0.01, *** p<0.001. NSC, Neural stem cell

DOI: 10.7554/eLife.08711.016

The following figure supplements are available for figure 3:

Figure supplement 1. The transcriptional profile of p53DN NSCs is most closely related to the human proneural GBM subtype, relative to expected

distances.

DOI: 10.7554/eLife.08711.017

Figure supplement 2. Pdgfra expression is elevated in p53DNtumors, but Egfr is not.

DOI: 10.7554/eLife.08711.018

Figure supplement 3. Some markers frequently altered in GBM are unaltered in p53DN NSCs.

DOI: 10.7554/eLife.08711.019

Figure supplement 4. Pdgf ligand expression is not significantly altered in p53DN NSCs.

DOI: 10.7554/eLife.08711.020

Figure supplement 5. Two independent shRNAs cause Pdgfra knockdown.

DOI: 10.7554/eLife.08711.021

Figure supplement 6. miR34a expression is reduced in p53DN NSCs.

DOI: 10.7554/eLife.08711.022
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Figure 4. Atm inhibition reduces Pdgfra expression and reduces tumorigenic potential in murine p53DN primary tumor cells and NSCs. (A–B) Atm

inhibitor (ATMi) treatment reduces Pdgfra protein levels (A) and Pdgfra expression (B) in p53DN primary tumor cells. (C) ATMi treatment reduces in vitro

proliferation of p53DN primary tumor cells. Error bars represent the SEM of two biological repeats. (D) ATMi reduces Pdgfra expression in p53DN NSCs,

assayed by qPCR. (E–F) Pdgfra expression (E) and Pdgfra protein levels (F) are reduced in Atm-/-; p53DN and AtminDN; p53DN compared with p53DN

NSCs. cDNA is normalized to Actin levels. Error bars represent the SEM of at least three biological repeats. s.e. and l.e. denote short and long

exposures of the same blot, respectively. (G) Genetic loss of Atm reduces in vitro proliferation of p53DN NSCs. Error bars represent the SEM of two

biological repeats. (H) Kaplan-Meier curves indicating increased survival of NOD/SCID mice orthotopically transplanted with Atm-/-; p53DN NSCs

compared with p53DN NSCs. n.s., not significant; * p<0.05, ** p<0.01, *** p<0.001. NSC, Neural stem cell.

DOI: 10.7554/eLife.08711.023

The following figure supplement is available for figure 4:

Figure supplement 1. ATM inhibitor (ATMi) treatment reduces Pdgfra protein levels in p53DN NSCs. NSCs, Neural stem cells.

DOI: 10.7554/eLife.08711.024
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Figure 5. Atm signaling in response to DNA damaging agents is remarkably unaffected in p53DN and AtminDN;

p53DN cells and DNA damaging treatments do not affect Pdgfra expression. (A) p53DN and AtminDN; p53DN NSCs

do not show elevated gh2ax and 53bp1 foci in untreated conditions, suggesting low endogenous damage. Cells

treated with 5Gy IR (wt +IR) are shown as a positive control. (B) Quantification of gh2ax and 53bp1 foci in (A). Error

bars indicate 95% confidence intervals. (C) qPCR of Pdgfra in wt and p53DN NSCs in untreated conditions and after

DNA damage-inducing stimuli. cDNA is normalized to Actin levels. Error bars represent SEM of three biological

repeats. (D) Western blots depicting Atm substrate phosphorylation after the indicated stimuli in NSCs of different

genotypes.

DOI: 10.7554/eLife.08711.025
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Figure 6. ATM inhibitor treatment reduces elevated PDGFRA expression and decreases proliferation in human

GBM tumor cells. (A) Mutational status of TP53, PTEN, IDH1, and EGFR in the indicated glioma neural stem stell

(GNSC) lines. n.e., not expressed. wt, wild type. (B) Western blot depicting PDGFRA, TP53, PTEN, and ACTIN

expression in three GNSC lines (G26, G166, and G179) and cb660 control cells. (C,D) Box plots showing PDGFRA

expression in TP53-wt and TP53-mutant TCGA human glioblastoma datasets, measured by microarray (n=153). (C)

or RNA-Seq (n=500). (D) Data from 518 patient samples in total with an overlap of 135 patients. (E) Box plots

showing PDGFRA expression z-scores in TCGA human glioblastoma subtypes, measured by RNA-Seq (n=150). p-

Values in (C–E) calculated using Wilcoxon’s test. (F) qRT-PCR showing decreased PDGFRA expression in TP53-

mutant GNSC lines after ATM inhibitor (ATMi) treatment. cDNA is normalized to GAPDH levels. Error bars

represent the STDEV of two biological repeats. (G) Western blot showing knockdown of PDGFRA using a

doxycycline (Dox)-inducible shRNA construct. (H) PDGFRA knockdown using doxycycline (Dox)-inducible shRNA

reduces proliferation of TP53-mutant G179 GNSCs. Cell confluence measured by IncuCyte timelapse microscopy.

Error bars represent the SEM of three biological repeats. * p<0.05, *** p<0.001, n.s., not significant.

DOI: 10.7554/eLife.08711.026

Figure 6 continued on next page
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proportion of apoptotic GNSCs receiving the combination treatment was quantifiable by micro-

scopic detection of a caspase-cleaved fluorescent substrate after up to four days of drug treatment;

thereafter, dead cells detached from the plate, precluding accurate quantification. Essentially, all

GNSCs were eventually killed by the combination of ATM and PDGFR inhibitors, as judged by cell

detachment. In contrast, PDGFRi treatment by itself had little effect on cell death and proliferation

(Figure 7 A–C). Seeding GNSCs at higher confluence gave similar results (Figure 7—figure supple-

ment 2), as did a second, independent PDGFRi in combination with the ATMi (Figure 7—figure sup-

plement 3), indicating that cell death was not an indirect consequence of slower proliferation

induced by the ATMi or a side effect of a particular drug. Hence, ATM is required for PDGFRA over-

expression in both murine and human GBM cells, and combined inhibition of ATM and PDGFR indu-

ces lethality in TP53-mutant glioma cells, promising new opportunities for future GBM treatment.

Our data indicate that disruption of Atm/Atmin function not only inhibits GBM initiation in Trp53-

deficient animals, but also reduces the tumorigenic potential of established human glioma cells, sug-

gesting that ATM inhibitors might be valuable tools in GBM therapy.

Discussion
An important goal of personalized cancer medicine is to identify vulnerabilities of specific tumor

genotypes. Since TP53 signaling is the most common genetically altered pathway in human gliomas

(Cancer Genome Atlas Research Network, 2008), it is desirable for future cancer therapies to iden-

tify new molecular targets that affect TP53-deficient cells. Here, we have shown that genetic loss of

Atmin or Atm reduces GBM formation initiated by deletion of Trp53. This finding indicates that

Atm/Atmin is crucial for Trp53-deficient GBM development, and suggests the use of ATM inhibitors,

which have already been developed, for GBM therapy (Basu et al., 2012; Golding et al., 2009;

2012; Batey et al., 2013).

Although other groups have previously observed that loss of Trp53 is sufficient to provoke GBM

formation (Wang et al., 2009; Zheng et al., 2008), the potential advantages of this model system

have largely been overlooked. Even on a mixed genetic background, mice harboring a Nestin-driven

Trp53 deletion show strong consistency in tumor latency, high penetrance of brain tumors and high-

grade GBM formation. Such a model, incorporating the stochastic evolution and genetic heteroge-

neity of human glioblastoma patients, complements existing genetically defined mouse models that

show an accelerated disease course (Chen et al., 2012).

Atm is a rare example of a protein required for formation of a Trp53-deficient tumor that is ame-

nable to pharmacological inhibition, with potential direct therapeutic implications. This pro-tumori-

genic function for Atmin and Atm signaling in brain cancer is unexpected, as systemic Atm deletion

has previously been found to accelerate Pdgf ligand-induced gliomagenesis (Squatrito et al., 2010).

However, the previous study was carried out in Trp53 wild-type animals. It was recently shown that

Figure 6 continued

The following figure supplements are available for figure 6:

Figure supplement 1. Luciferase reporter assay for TP53 activity using the p53-550RE construct in human GNSC

(G26, G166, G179) and control NSC (cb660) lines. NSC, Neural stem cell.

DOI: 10.7554/eLife.08711.027

Figure supplement 2. Correlation of PDGFRA expression levels in TCGA glioblastoma samples represented in

both microarray and RNASeq datasets.

DOI: 10.7554/eLife.08711.028

Figure supplement 3. Comparison of the distribution of PDGFRA expression levels in human glioblastoma

samples measured by RNASeq and by microarray.

DOI: 10.7554/eLife.08711.029

Figure supplement 4. Box plots showing PDGFRA expression z-scores in TCGA human glioblastoma subtypes

measured by microarray (n=487).

DOI: 10.7554/eLife.08711.030

Figure supplement 5. Control for Figure 6G and H showing efficient knockdown of PDGFRA after doxycycline

administration.

DOI: 10.7554/eLife.08711.031
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Figure 7. Combinatorial treatment with both ATM and PDGFR inhibitors induces apoptosis of human glioma stem

cells. (A) Growth curves showing the proliferation of wild-type control human neural stem cells (cb660) and two

independent cell lines isolated from TP53-deficient human gliomas (G166 & G179) over 7 days in the presence of

vehicle control (DMSO), ATM inhibitor (ATMi), PDGFR inhibitor (PDGFRi), or both inhibitors. Error bars depict

STDEV from two biological repeats. (B) Representative bright-field/fluorescent images of the same cell types

treated as above after 4 days. Cells undergoing apoptosis are labeled by emitting GFP. (C) Quantification of

apoptotic cells after the treatments indicated above, represented as % apoptotic cells from total live cells. Error

bars depict STDEV from three biological repeats. After four days, it became impossible to quantify apoptotic

GNSCs receiving the combination treatment, since they detached completely from the culture plate. These

percentages thus represent an underestimate of the total extent of G166 and G179 cell death with ATMi +

PDGFRi.

DOI: 10.7554/eLife.08711.032

The following figure supplements are available for figure 7:

Figure 7 continued on next page
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TP53 status is crucial in determining the cellular response to ATM inhibition in human glioma cell

lines (Biddlestone-Thorpe et al., 2013), so this difference might explain the apparently opposite

function of Atm in our model. TCGA data indicates that ATM mutation/deletion is rare in TP53-

mutant GBM, supporting the hypothesis that ATM loss is not a tumor driver and may even inhibit

tumorigenesis in this context. Because the pleiotropic effects of ATM signaling are highly context

dependent, factors other than TP53 status must also influence the outcome in vivo. For example,

loss of Atm cooperates with Trp53 deficiency and accelerates the progression of T-cell lymphoma

(Westphal et al., 1997). Thus, the relationship between TP53 and ATM signaling in tumorigenesis

may be tissue specific, ranging from cooperation to antagonism.

Adding to this context dependency, ATM’s function in the DNA damage response inhibits tumor-

igenesis in precancerous lesions but can also promote resistance to DNA damaging therapies in

established tumors. Indeed, recently published work has shown that ATM inhibition preferentially

radiosensitizes TP53 mutant GBM cell lines (Biddlestone-Thorpe et al., 2013). Our data reveal an

additional pro-tumorigenic effect of Atm, which acts in the absence of ionizing radiation and involves

non-canonical, Atmin-dependent signaling. It is possible that the effect of Atm inhibition in our

model would also be enhanced by ionizing radiation, since the radiosensitizing effect would be pre-

dicted to be largely independent of Atmin (Kanu and Behrens, 2007). Thus, combination treatment

with ATM and PDGFR inhibitors together with radiotherapy may represent a therapeutic opportunity

for GBM.

Our results indicate that the requirement for the Atm/Atmin pathway in p53DN GBM lies in the ini-

tiation of a program of altered gene expression (Figure 3A) and does not directly involve the DNA

damage response to double-strand breaks induced by IR or HU (Figure 5B and C). Although Atmin

has been implicated directly as a transcription factor for Dynll1 (Jurado et al., 2012b), a broader

role for Atmin in transcriptional regulation had not yet been determined. We find here that Atmin

loss leads to widespread rescue of glioma-associated changes in gene expression in the p53DN back-

ground. Several of these genes could be collectively responsible for suppressing GBM formation in

Atmin
DN

; p53DN animals. The most compelling single candidate, however, is the proto-oncogene

Pdgfra. It has been shown that stimulating Pdgf signaling in vivo is sufficient to induce glioma-like

growths (Jackson et al., 2006). Moreover, PDGFRA is commonly overexpressed in human glioma

(Engström et al., 2012), but only a subset of gliomas display PDGFRA locus amplification

(Furnari et al., 2007) (Cancer Genome Atlas Research Network, 2008), indicating that additional

mechanisms drive its increased expression. PDGFRA overexpression frequently correlates with LOH

on chromosome 17p, where the human TP53 gene is located (Hermanson et al., 1996), supporting

the view that the oncogenic misexpression of PDGFRA might be a direct consequence of TP53 inac-

tivation in human GBM. In our murine and human glioma lines, Pdgfra levels could be dynamically

modulated by depleting Atmin or inhibiting Atm. At present, how Atm/Atmin controls Pdgfra

expression in this background is unclear. Chromatin immunoprecipitation experiments in murine

NSCs indicated that Atmin does not bind the Pdgfra gene (unpublished observations), making the

regulation unlikely to be via direct transactivation, most likely involving currently unidentified inter-

mediate transcriptional regulators of Pdgfra expression. We speculate that Trp53 controls the

expression of a negative regulator of Pdgfra, for example, a repressor or a miR RNA, and that Atm

signalling is required for the expression or function of this factor. As these intermediate factors could

be promising targets for pharmacological inhibition, further investigation into their identity is of ther-

apeutic interest.

Although the oncogenic role of PDGFR signaling in glioma is well established, the clinical efficacy

of PDGFR inhibitors has so far been disappointing (Wen et al., 2006; Rich et al., 2004). Here, we

Figure 7 continued

Figure supplement 1. ATM and PDGFR inhibitors were used at minimally required concentration to achieve

pathway inhibition.

DOI: 10.7554/eLife.08711.033

Figure supplement 2. Bright-field images of timelapse microscopy using cells seeded at high confluency.

DOI: 10.7554/eLife.08711.034

Figure supplement 3. Apoptosis quantification of a second PDGFR inhibitor.

DOI: 10.7554/eLife.08711.035
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demonstrate that the effect of these drugs on the proliferation and survival of human glioma cells

can be greatly potentiated by combining PDGFR inhibitor treatment with ATM inhibitors. Impor-

tantly, the strongest effects of combinatorial treatment on cell proliferation and survival are specific

to tumor cells that have lost TP53 function, suggesting that systemic therapy should target TP53-

deficient tumors with minimal impairment to normal tissue.

A second encouraging result of combining ATM and PDGFRA inhibitors is that they not only

reduce tumor cell proliferation, but also potently induce cell death. While our data support coopera-

tion based on simultaneous inhibition of PDGFR signaling at the transcriptional and protein kinase

levels, it is likely that this synergy also encompasses broader effects of ATM and PDGFRA inhibition.

In addition, current PDGFR inhibitors are not completely specific and also inhibit EGFR, VEGFR,

FLT3, and c-KIT kinases amongst others (Andrae et al., 2008; Homsi and Daud, 2007). Similarly,

ATM inhibitors have also been shown to display broader kinase inhibitor activity, especially at higher

concentrations (Hickson et al., 2004). Thus, PDGFR-independent mechanisms could contribute to

the observed treatment synergy.

In summary, we have identified a novel protumorigenic function of ATM signaling in GBM. Our

results present a rationale for expanding the investigation of ATM inhibitors from radiosensitizers to

potential therapies in their own right, and point toward improvements in the efficacy of PDGFRA

inhibition using combination treatment.

Materials and methods

Ethics statement
Experiments in mice were carried out with the approval of the Crick Institute’s Ethical Review Com-

mittee and under the guidance of the Biological Resources Unit.

Animal models
Atminf/f, p53f/f, Atm-/-, and Nestin-Cre mice have been described previously (Kanu et al., 2010;

Jonkers et al., 2001; Barlow et al., 1996; Tronche et al., 1999). Immunocompromised NOD/SCID

mice were maintained in-house. Mice were maintained and bred on a mixed background in patho-

gen-free conditions, monitored for signs of ill health and culled when moribund. Strain background

had no significant effect on the latency or development of gliomas in p53DNmice.

Cell culture
NSCs were isolated as spheres from fore and midbrains of mouse E13.5 embryos. Cells were initially

cultured as spheres under self-renewal conditions, as previously described. Adherent NSC cultures

were derived as previously described (Pollard et al., 2006; Conti et al., 2005) with minor modifica-

tions (Sancho et al., 2013). Briefly, primary spheres were plated in Neurobasal Medium

(Invitrogen, Grand Island, NY, USA) supplemented with 1% Penicillin/Streptomycin (Invitrogen), 1%

L-glutamine (Invitrogen), 2% B27 supplement (Invitrogen), 1% N-2 supplement (Invitrogen), 20 ng/ml

EGF (PeproTech), 20 ng/ml FGF-basic (PeproTech), and 1 mg/ml laminin (Sigma). All experiments

were performed using undifferentiated adherent NSCs (see Figure 2—figure supplement 2).

Primary tumor cells were generated from brain tumor samples of symptomatic mice (Figure 3—

figure supplement 5). Tissue was subjected to mechanical and enzymatic dissociation, and single

cells initially cultured to form spheres. Tumor spheres formed were then maintained as adherent

tumor cell cultures in NSC media as described above.

Plasmids and reagents
pCMV6-myc-ATMIN was generated by cloning mouse Atmin into a pCMV6 backbone. Silencing and

mismatch constructs for Atmin have been described previously (Kanu and Behrens, 2007). The lucif-

erase p53 response element (pGL3-550RE) was kindly provided by Karen Vousden. The ATM inhibi-

tor Ku55993 (Merck) was used at 10 mM and replenished every 24 hr.

For DNA damage induction, NSCs of the indicated genotypes were either left untreated or sub-

jected to 0.8 Gy irradiation or 2 mM hydroxyurea (HU) and harvested after 1 hr and 3 hr respectively

for RNA extraction or protein lysates.
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Transfection and luciferase assay
For transfection, NSCs and GNSCs were plated at subconfluence and transfected with Lipofectamine

2000 according to the manufacturer’s protocol (Invitrogen).

For luciferase assays, samples were transiently transfected with Firefly and Renilla luciferase

reporters and luciferase activity was measured using the Dual-Luciferase Reporter Assay System

(Promega), 36-hr post-transfection. Data are expressed as fold induction of luciferase activity after

being normalized to expression of thymidine kinase-renilla luciferase (TK-renilla).

Western blots and immunoprecipitation
For Western Blots (WB), NSCs were extracted in RIPA lysis buffer (NEB) supplemented with protease

inhibitors (Sigma). For immunoprecipitation (IP) cells were lysed in IP buffer (20mM sodium phos-

phate buffer, 1 mM EDTA, 0.2% NP40, 150 mM NaCl supplemented with Na-orthovanadate, PMSF,

NaF and protease inhibitor mixture [Sigma]). After sonication and centrifugation, supernatant was

incubated overnight at 4˚C with PDGFRA antibody, followed by 2-hr incubation with Dynabeads M-

280 (Invitrogen), washed with IP buffer (0 mM NaCl, 150 mM NaCl and 1 M NaCl) and eluted in

Laemmli sample buffer. All primary antibodies were used at 1:1000 dilution and secondary antibod-

ies at 1:10000. The following antibodies were used: p53, Pdgfra, p-Pdgfra, p-Chk2, p-Akt, Akt (all

Cell Signaling); Myc-9E10 (CRUK); Smc1 (Abcam); p-Smc1, Chk2, Tubulin (all Merck); p-Kap1, Kap1

(both Bethyl Labs); Atm (Santa Cruz), p-Atm (Epitomics), p-p53, Actin, GAPDH, HRP-conjugated

goat anti-mouse/rabbit IgG (all Sigma).

Quantitative RT-PCR
For qRT-PCR analysis, mRNA was isolated from NSCs using the RNeasy mini kit (Qiagen). Results

(normalized to Actin expression) are presented as fold change relative to control. Sequences of pri-

mers used are listed in Supplementary file 2.

Cell proliferation and hypoxia assays
For cell proliferation assays, NSCs were plated in duplicate in 12-well plates and cell number mea-

sured every day using a ViCell cell counter. The initial number of cells seeded was used to normalize

to 100%. Mean averages were taken from at least four independent lines per genotype taken from

different embryos and crosses. For BrdU profiling, cells pulsed with BrdU for 2 hr were fixed in 70%

ethanol, stained with BrdU antibody and propidium iodide (PI) and analyzed by flow cytometry.

For hypoxia assay, NSCs were seeded in duplicate into 6-well plates and next day placed into a

hypoxic chamber at 0.1% O2 for 72 hr. ATM inhibitor was replenished after 24 hr and 48 hr. For cell

death analysis, control-treated and hypoxia-treated cells were subjected to DAPI staining and ana-

lyzed via flow cytometry. Mean averages were taken from at least three independent experiments.

IR-induced death and arrest
To determine IR-induced death, NSCs were irradiated at 5Gy and after 24 hr incubated with 4’-6-

Diamidino-2-phenylindole (DAPI; Sigma) and assessed for apoptosis via flow cytometry. G1/S phase

arrest was assessed by irradiating NSCs at 5Gy and after 18 hr pulsing with BrdU for 1.5 hr. Cells

were prepared for flow cytometry as described above and gated on BrdU-positive cells. Mean aver-

ages were taken from at least three independent experiments.

Orthotopic transplants
1x105 early passage (p.4) GFP labeled NSCs of the indicated genotypes were injected using a ste-

reotaxic frame into the striatum of 6- to 8-week-old mice (NOD/SCID strain), following administra-

tion of general anaesthesia as previously described. Animals were monitored daily and culled when

moribund.

Human NS and GNS cell culture
Fetal NS cell lines and GNS lines derived from human glioma samples have been described previ-

ously (Stricker et al., 2013; Pollard et al., 2009). The same culture conditions apply as previously

described for mouse NSCs. Cell proliferation was measured over a period of four or seven days

using an incubator microscope system for live cell imaging and measurement of cell confluence over
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several days (IncuCyte) and cell death was quantified using CellPlayer Caspase 3/7 Reagent from

Essen Bioscience. Cells were seeded at 1.2x104 or 2.4x104 into a 48-well plate and images taken

every 30 min. The ATM inhibitor KU55993 was added at 10 mM. PDGFR inhibitors III and V (CAS

205254-94-0 and CAS 347155-76-4 respectively, both Merck) were used at 1mM and replenished

every 24 hr over a period of four or seven days as indicated. Stable shPDGFRA GNSC lines were

generated by viral infection of GNSCs with pTRIPZ-shPDGFRA targeting and control vectors

(Thermo Fisher). Doxycycline was added at a final concentration of 0.5 mg/ml and replenished every

day.

Histological analysis and tumor grading
All mice were euthanized in a CO2 chamber to preserve brain tissue. Brain sections were cut at 4 mm

for Hematoxylin & Eosin (H&E) staining and all antibody staining. The following antibodies were

used for IHC: Nestin (BD Bioscience), Gfap (Dako), Olig2, Neun (both Merck), Synaptophysin

(Sigma), Pdgfra (Cell Signaling), Ki67 (Abcam). Tumor grading was determined on the basis of the

WHO grading system for malignant astrocytoma.

Microarray analysis
Three independent NSC lines from each indicated genotype were pooled and submitted for

genome wide gene expression profiling using the Illumina Mouse ref 8 v3.0 expression bead chip.

Raw data were processed using the ’lumi’ package (Du et al., 2008) within Bioconductor

(Gentleman et al., 2004) first by applying the variance-stabilizing transform, and then carrying out

quantile normalization. Following this, genes were selected on the basis of a 1.5-fold threshold on

the mean of the technical duplicates (technical correlation being higher than 0.996 in all cases). The

microarray data depicted in Figure 3A has been uploaded to the GEO database under the accession

number GSE76296.

Using our normalised microarray data, we calculated the average log fold change between each

condition and the wild-type samples. We then calculated distance (following the procedure of [Dab-

ney, 2006]) of these expression profiles to the centroids of the four GBM subtypes identified in

(Verhaak et al., 2010). We mapped the expression profile from mouse to human by matching up

gene names between the two species, resulting in a correspondence for 674 of the 840 genes in the

GBM signature. To assess informally the specificity of the subtypes, and to gain some insight into

the strength of the similarities to GBM subtypes, we bootstrapped the log fold changes within sam-

ples 1000 times, recording the pairwise distances between bootstrapped samples and fixed GBM

subtype-centroids.

Copy number variation calling
Total genomic DNA was extracted and purified using DNeasy Blood & Tissue Kit (Qiagen). Copy

number variation (CNV) detection was performed using the Affymetrix Mouse Diversity Genotyping

Array (MDGA) at AROS Applied Biotechnology. Genotypes were called from the CEL files using the

BRLMM-P algorithm in Affymetrix Power Tools (APT) (available from: http://www.affymetrix.com/

estore/partners_programs/programs/developer/tools/powertools.affx) using default settings, includ-

ing quantile normalization. PennAffy (available from: http://penncnv.openbioinformatics.org/en/lat-

est/user-guide/download/) was implemented to generate Log R Ratio (LRR) and B-allele frequency

(BAF) using canonical genotype clustering and population frequency of the B-allele (PFB) files kindly

provided by Locke et al. (Locke et al., 2015). Markers that do not probe allelic balance (exon

markers in the MDGA) were removed. GC content was calculated for 1 Mb windows centred by

each marker using BEDTools (Quinlan and Hall, 2010). LRR was then corrected for genomic wavi-

ness by subtracting the median normalised GC content multiplied by a coefficient optimised to gen-

erate the minimum variance when subtracted from the LRR. Copy number states were then called

for mouse autosomes using the ‘CGHcall’ R package (van de Wiel et al., 2007) in Bioconductor

(Gentleman et al., 2004) using the ’sdundo’ option for the undo.splits parameter for segmentation.

Only CNVs larger than 1 Mb were reported.
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TCGA data analysis
Gene expression measurements were obtained by downloading the ’Glioblastoma Multiforme

(TCGA, provisional)’ dataset using the cBioPortal (http://www.cbioportal.org/, version 05/09/2014)

for The Cancer Genome Atlas (http://cancergenome.nih.gov/). The dataset contained 500 microar-

rays and 153 RNA-seq measurements for 518 glioblastoma patients. Glioblastoma expression sub-

group information was obtained from (Brennan et al., 2013), and gene expression levels were

represented as z-scores. The RNA-seq and microarray data were analyzed separately but the z-

scores for PDGFRA are correlated across 135 samples for which both data types are available

(Spearman correlation coefficient = 0.85 for 135 samples with both RNA-seq and microarray data,

Figure 6—figure supplement 2), indicating that the two measurement types are comparable. Differ-

ences in expression z-scores between TP53 mutant and TP53 wt status, as well as glioblastoma sub-

groups (combining GCiMP and Proneural versus Neural, Classical, and Mesenchymal) were tested

using the Wilcoxon’s test. Three outlier points from each of the TP53 wt and mutant groups in

Figure 6D, as well as six outlier points (5 Proneural and 1 Mesenchymal) in Figure 6E are excluded

from the plot for clarity.

Statistical analysis
Tumor-free survival was analyzed using GraphPad Prism 6 and statistical analyses to determine

tumor-free survival were performed using the Mantel-Cox test. For TCGA data analysis p values

were determined using the Wilcoxon’s test. For all other experiments with error bars, the unpaired

Student’s t-test was performed to determine statistical significance.

Acknowledgements
We thank E Sahai for critical reading of the manuscript and C Cremona and E Schröder for assistance
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