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Abstract Several transcription factors (TFs) oscillate, periodically relocating between the

cytoplasm and the nucleus. NF-kB, which plays key roles in inflammation and cancer, displays

oscillations whose biological advantage remains unclear. Recent work indicated that NF-kB displays

sustained oscillations that can be entrained, that is, reach a persistent synchronized state through

small periodic perturbations. We show here that for our GFP-p65 knock-in cells NF-kB behaves as a

damped oscillator able to synchronize to a variety of periodic external perturbations with no

memory. We imposed synchronous dynamics to prove that transcription of NF-kB-controlled genes

also oscillates, but mature transcript levels follow three distinct patterns. Two sets of transcripts

accumulate fast or slowly, respectively. Another set, comprising chemokine and chemokine

receptor mRNAs, oscillates and resets at each new stimulus, with no memory of the past. We

propose that TF oscillatory dynamics is a means of segmenting time to provide renewing

opportunity windows for decision.

DOI: 10.7554/eLife.09100.001

Introduction
Genetic circuits are instrumental for cells to provide adequate transcriptional responses to different

external and internal stimuli, but we are still far from a complete understanding of how they work.

The growing availability of single-cell measurements is bringing unprecedented insights into the

dynamics of transcriptional responses: although it was traditionally thought that gene circuits should

provide a temporally stable response to constant external stimuli, there is increasing evidence that

the dynamics of gene circuits is more elaborate, and is often characterized by pulses of activity

(Levine et al., 2013). A special case is oscillatory dynamics, in which the activity of some element in

the genetic circuit varies periodically, and so does the output of the circuit. Paradigmatic oscillatory

dynamics are associated with circadian clocks, which are present in a wide variety of organisms that

synchronize their activities to the periodic variation in external daylight (Bell-Pedersen et al., 2005).

However, oscillatory dynamics with periods far shorter than 24 hr have been reported in genetic cir-

cuits of bacteria (Suel et al., 2007), yeast (Cai et al., 2008; Hao and O’Shea, 2012) and mammalian

cells (Geva-Zatorsky et al., 2006; Hoffmann et al., 2002; Larson et al., 2013; Nelson et al., 2004;

Shankaran et al., 2009).

The dynamics of transcription factors in gene circuits can play a key role in information transmis-

sion through biochemical networks (Selimkhanov et al., 2014) by selectively modulating the expres-

sion of different genes (Purvis and Lahav, 2013). A paradigmatic example is how different p53

dynamics can selectively activate transcriptional programs that commit the cell to different cell fate

decisions (Purvis et al., 2012).
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A property of free oscillating systems (or free oscillators, as analogy to simple mechanical oscilla-

tors such as the pendulum) is entrainment, by which an oscillator can gradually modulate its phase

and frequency thanks to a small perturbation (forcing) that is itself periodic and oscillating with a

period resonant with the intrinsic period of the oscillator (Pikovsky et al., 2003). A common forcing

can also lead to the synchronous dynamics of multiple oscillators and thus to collective dynamical

states. Entrainment was successfully reproduced in synthetic genetic oscillators, in which single bac-

terial cells (each expressing a fluorescent reporter protein in response to a synthetic genetic circuit)

were entrained collectively to an oscillating provision of arabinose (Mondragon-Palomino et al.,

2011). The forcing to one oscillator can also be provided by other oscillators, and this coupling can

lead to the emergence of different collective dynamical states characterized by different synchro-

nous dynamics (Pikovsky et al., 2003). Inter-cellular coupling has indeed been exploited to geneti-

cally engineer synchronous quorum sensing genetic oscillators in bacteria (Danino et al., 2010). On

the other hand, intra-cellular coupling leads to locked oscillatory states for different cell oscillators,

as recently shown for the circadian rhythm and the cell cycle (Bieler et al., 2014).

In mammalian cells, NF-kB is a typical transcription factor that displays intrinsic oscillatory behav-

ior. NF-kB plays key roles in inflammation, immune responses, development and cancer

(Chaturvedi et al., 2011; Ghosh and Hayden, 2008; Karin, 2006; Ledoux and Perkins, 2014;

eLife digest The process of producing useful biological molecules from genes – known as gene

expression – is not always simple. Many genes are part of complex circuits, some of which show

regular patterns of activity in response to an environmental cue. For example, the expression of

some genes is tied to the 24-hour daily cycle of light and dark.

Transcription factors are proteins that control gene activation and expression, and some

transcription factors periodically move in and out of the cell’s nucleus – the compartment of an

animal cell that houses the vast majority of the genetic material. This behavior is known as

oscillation. A transcription factor called NF-kB oscillates, changing between an inactive form outside

of the nucleus and an active form inside. NF-kB plays important roles in inflammation and cancer,

and is activated by cues from outside the cell. Some of the genes that the active form of NF-kB

activates then produce molecules that inactivate NF-kB, thus helping to establish the oscillations.

The benefits of the oscillations are not clear. However, recent studies suggest that environmental

cues can cause small perturbations that gradually adjust the rate at which the oscillations occur, and

in doing so, synchronize the oscillations amongst neighboring cells.

By using embryo cells from genetically engineered mice, Zambrano et al. investigated how NF-kB

oscillations get synchronized. The experiments showed that the activity of the NF-kB protein and

the expression of the genes it controls synchronize across neighboring cells whenever the external

environmental perturbations come in pulses. However, once the pulsed cues stop, this

synchronization is quickly lost. In essence, the cells reset after each environmental cue with no

memory of previous episodes of NF-kB activity.

Further work revealed that the expression of the genes controlled by NF-kB also cycles and

resets with each new environmental cue. However, the products of these genes accumulate in three

different ways. Some accumulate quickly; some accumulate at a slow and steady pace; and some

oscillate in amount, and this amount resets once the environmental cue has stopped. Each of these

classes of gene products can be related to specific cell behaviors that activate sequentially on well-

defined time schedules.

Overall, Zambrano et al. suggest that the ability of NF-kB to reset its activity with each new

environmental cue gives cells the opportunity to pause and adjust course.

Zambrano et al. now plan to explore what happens to NF-kB synchronization in different cell

types exposed to a collection of inflammatory stimuli. Along the same line, it will be worth exploring

NF-kB behavior in cancer cells, where NF-kB activity is often out of control and drives unrestrained

cell proliferation. These studies would contribute to a deeper understanding of cancer biology and

to the identification of new treatments for the disease.

DOI: 10.7554/eLife.09100.002
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Naugler and Karin, 2008). Strictly speaking, NF-kB is a family of dimers encoded by 5 different

genes, but in what follows we will refer to p65/RELA independently of the dimer it forms. In resting

cells, p65 exists mostly within a cytoplasmic complex bound to the IkB inhibitors (Hoffmann et al.,

2002). Inflammatory signals like tumor necrosis factor alpha (TNF-a) or lipopolysaccharide (LPS)

induce phosphorylation of IkB proteins by IKKs–upstream kinases in the signaling pathway–, ubiquiti-

nation and degradation of IkBs, and the release of active NF-kB that translocates into the nucleus to

activate the expression of several genes, including those encoding for the IkB inhibitors

(Hoffmann et al., 2002). Re-expression of IkBs contributes to relocate NF-kB in the cytoplasm,

which is an inhibitory feedback loop for the system. A second feedback loop is centred on the pro-

tein A20 (Ashall et al., 2009), which upon activation of the system inhibits the IKKs. Thus, these two

layers provide a nonredundant regulation of NF-kB response to external stimuli (Werner et al.,

2008). Of note, the IkB inhibitors also show variable sensitivity to different stimuli and respond on

different timescales to fine-tune the signaling pathway (Paszek et al., 2010; Shih et al., 2009). This

system of negative feedback loops (summarized in Figure 1A upper panel) provides both a tight

control of the response to external stimuli and flexibility. As a consequence of this complex wiring,

upon constant stimulation the nuclear concentration of NF-kB in each cell oscillates with heteroge-

neous dynamics according to each cell’s susceptibility and to the inherent stochasticity of the system

(Nelson et al., 2004; Tay et al., 2010; Zambrano et al., 2014a). Due to such asynchrony at the sin-

gle cell level, the NF-kB response appears almost non-oscillating at the cell population level

(Hoffmann et al., 2002), and it is difficult to correlate NF-kB oscillatory profiles with gene expres-

sion outputs.

Obtaining synchronous NF-kB dynamics in cell populations is therefore important to study gene

expression, and can give insights into the dynamics at a collective level. White’s group showed that

short trains of TNF-a pulses produce rounds of synchronous NF-kB translocation; the stimulation fre-

quency affected both the translocation amplitude and gene expression levels (Ashall et al., 2009). A

study performed while the present one was in progress indicated that entrainment of NF-kB oscilla-

tions at population level arises when 3T3 cells stably transfected with GFP-p65 are perturbed with

regular trains of sawtooth-like profiles of TNF-a (Kellogg and Tay, 2015). Here, we used GFP-p65

mouse embryonic fibroblasts (MEFs) derived from knock-in mice and thus expressing physiological

levels of p65 (De Lorenzi et al., 2009). Using a microfluidic device, we exposed cells to well-defined,

periodic TNF-a stimuli, and eliminated continuously both catabolites produced by the cells and

secreted proteins, which might generate a secondary autocrine/paracrine response. We find that

GFP-p65 MEFs lock their NF-kB oscillations to the periodic external signal, and become synchro-

nized. However, the 1:1 locking is maintained over a wide variety of frequencies of the driving TNF-

a stimulus, does not improve over repeated stimulation and actually disappears fast when the exter-

nal stimulus ceases, all of which suggest that entrainment is not achieved. The mathematical model

we developed indeed suggests that NF-kB can behave as a damped oscillator, analogous to a

mechanical damped harmonic oscillator; damped oscillators do not entrain but follow external forc-

ing while it is present. Taking advantage of the fact that GFP-p65 MEFs under periodic stimulation

behave as a synchronous population, we analyzed the transcriptional output at genome-wide level.

We find that one single NF-kB dynamics translates into 3 different dynamics of transcriptional regu-

lation, all of which can be reproduced by our mathematical model; the key discriminator is the

parameter representing mRNA degradation. Furthermore, the three dynamical patterns correspond

to specific functions, which suggests that group of genes were positively selected by evolution.

Results

Periodic forcing turns heterogeneous NF-kB oscillations into
synchronous oscillations
To characterize the response of the NF-kB oscillatory system to different external stimuli, we made

use of GFP-p65 knock-in MEFs (De Lorenzi et al., 2009; Sung et al., 2009; Zambrano et al.,

2014a) cultured in a microfluidic device to control precisely the concentration and timing of the

TNF-a stimulation (Materials and methods and Figure 1—figure supplement 1A and B). Notably,

the flow rate in the microfluidic device is constant, so that the concentration of TNF-a cannot change

due to the activity of the cells, nor can the medium accumulate catabolites or secreted proteins.
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Figure 1. Periodic forcing turns damped heterogeneous oscillation into synchronous sustained oscillations. (A) The

activity of NF-kB is regulated through different negative feedbacks provided by the inhibitors IkB and A20. The

scheme at the bottom represents a generic forcing with periodically alternating TNF-a doses D1 and D2 of

duration T2+T1 = Tf; Tf is the period of the forcing. (B, C) Oscillations observed in three GFP-p65 cells obtained by

computing the nuclear to the cytoplasmic GFP intensity (NCI) for constant flow of 10 ng/ml TNF-a (B) and upon

alternating doses D1=10 ng/ml TNF-a, D2=0 ng/ml and T1=T2 =45 min (C). Each colour corresponds to a single

cell trace. Oscillatory patterns can be effectively visualised using the phase f of the oscillation, which is 2p in the

maxima of the oscillatory peaks (yellow) and p in the local minima (green) in the colour phase-plot of f(t) below the

panels. Scale-bar for f is on the right. (D) Time lapse images of cells under constant stimulation displaying the

characteristic heterogeneous nuclear-to-cytoplasmic translocations. (E) Phase plot drawn for 50 cells, of 105

analysed, showing the asynchrony of the oscillations except for the first peak. (F) Distribution of the experimentally

computed period of the oscillations Texp, measured as the time between two consecutive oscillatory peaks. The

distribution has a maximum at T0 =90 min, which corresponds to the natural period. (G) Quantification of the

height for each peak. (H) Time lapse images of the cells under periodic stimulation, showing synchronous NF-kB

Figure 1 continued on next page
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Constant stimulation of GFP-p65 knock-in cells in the microfluidic plate with a constant flow of 10

ng/ml TNF-a for up to 15 hr induced nuclear-to-cytoplasmic p65 oscillations (Figure 1B; Video 1

and Figure 1—figure supplement 2D) that are qualitatively similar to the heterogeneous oscillations

observed with static stimulation (Sung et al., 2009; Zambrano et al., 2014a).

Several controls were performed to exclude possible damaging effects related to imaging. Cells

under constant flow of fresh medium without TNF-a divide and show almost no cell death (Video 2);

cell death observed under continuous flow depends on the dose of TNF-a (Figure 1—figure supple-

ment 8 and Video 1) independently of the imaging conditions. UV-induced DNA damage due to

imaging (Cadet et al., 2005) is negligible as assessed by immunostaining for thymine dimers

(Komatsu et al., 1997; Sinha and Hader, 2002). DNA Damage Response (DDR) is also negligible as

assessed by immunostaining of imaged cells for gammaH2AX (Marti et al., 2006; Oh et al., 2011;

Staszewski et al., 2008) (Figure 1—figure supplement 5 and 6). Moreover, neither Hoechst expo-

sure nor TNF-a affect dramatically the cell cycle (Figure 1—figure supplement 11). The controls to

exclude possible effects of the nuclear dye (Ge et al., 2013; Martin et al., 2005) or photo-damage

(Cole, 2014) are described in Materials and methods and in figure captions.

To analyse the oscillatory dynamics, we refined our recently published pipeline (Zambrano et al.,

2014a) to compute the nuclear to cytoplasmic intensity (NCI) of GFP-p65 fluorescence for hundreds

of cells per condition (Materials and methods and Figure 1—figure supplement 1C). Although this

measure implies a partial segmentation of the cytoplasm and thus is more elaborate than the back-

ground-corrected mean nuclear intensity used recently by different authors (Kellogg and Tay, 2015;

Lee et al., 2014; Lee et al., 2009; Sung et al., 2014) it is a ratio of intensities and thus it self-cor-

rects for changes in image intensity in our experimental settings (see e.g. Video 1 or Video 2).

Figure 1 continued

translocations between cytoplasm and nucleus. (I) Phase plot for 50 cells, of 206 analysed, showing a clear

synchrony of the oscillations. (J) Distribution of the period of the oscillations Texp. Texp corresponds almost

perfectly to the period of the forcing. (K) Quantification of peaks height variation as described in G; values for n>1

are slightly higher than those observed under constant stimulation. Figure supplements from 1 to 10 are provided.

DOI: 10.7554/eLife.09100.003

The following figure supplements are available for figure 1:

Figure supplement 1. Experimental set-up and quantification.

DOI: 10.7554/eLife.09100.004

Figure supplement 2. Peaks and phase calculation.

DOI: 10.7554/eLife.09100.005

Figure supplement 3. Damped oscillations for constant TNF-a.

DOI: 10.7554/eLife.09100.006

Figure supplement 4. Scheme of the simple ODE mathematical model used for NF-kB dynamics, with the

feedbacks provided by IkBa and A20.

DOI: 10.7554/eLife.09100.007

Figure supplement 5. Numerical exploration of the mathematical model suggests that damped oscillations are

predominant.

DOI: 10.7554/eLife.09100.008

Figure supplement 6. UV-photodamage is not detectable in imaged cells.

DOI: 10.7554/eLife.09100.009

Figure supplement 7. Ongoing DNA repair is not detectable in cells imaged with Hoechst staining and UV

irradiation.

DOI: 10.7554/eLife.09100.010

Figure supplement 8. TNF-dependent activation of apoptosis in GFP-p65 cells stimulated with increasing doses

of TNF-a.

DOI: 10.7554/eLife.09100.011

Figure supplement 9. UV and 488 laser imaging does not activate NF-kB nor produce altered NF-kB dynamics.

DOI: 10.7554/eLife.09100.012

Figure supplement 10. GFP-p65 levels do not change in the cell population upon TNF-a stimulation.

DOI: 10.7554/eLife.09100.013

Figure supplement 11. Cell cycle analysis of cells exposed to Hoechst and TNF-a.

DOI: 10.7554/eLife.09100.014
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Furthermore, provided that the total amount of

p65 is constant (Figure 1—figure supplement

10), NCI(t) is a monotonic function of nuclear

NF-kB (Figure 1—figure supplement 9B) so

that oscillations are observed in the former if

and only if they are present in the latter (further

details in Materials and methods). Finally, a rig-

orous description of the observed dynamics was

achieved through the automatic identification of

statistically significant peaks (Materials and

methods and Figure 1—figure supplement 2A

and B).

The timing between two consecutive peaks is

the experimental period Texp. Texp has a distribu-

tion with a maximum at 90 min (Figure 1F),

which is the approximate intrinsic period

reported for NF-kB oscillations that we called T0
(Nelson et al., 2004; Tay et al., 2010;

Zambrano et al., 2014a). As observed for static

stimulation (Zambrano et al., 2014a), the

observed oscillations are very heterogeneous

(Figure 1B) and asynchronous (Figure 1—figure

supplement 3A and Figure 1—figure supple-

ment 2D). However, the variety of behaviors

observed, including non-oscillating cells, is com-

patible with the dynamics observed in the same

cells for static culture conditions, see (Sung et al., 2009; Zambrano et al., 2014a). Similar behaviors

are found in the absence of nuclear staining (see Figure 1—figure supplement 9C), which led us to

conclude that imaging conditions do not interfere with NF-kB signaling.

The tail in the period distribution (Figure 1F) and the observed average of four peaks in 12 hr of

stimulation (Figure 1—figure supplement 3B), instead of the expected eight, indicate that in our

cells the heterogeneous oscillations are damped and tend to converge to an equilibrium state under

stimulation (Figure 1B). Indeed, although oscillatory peaks are observed for most of the cells, they

are infrequent and irregular for times beyond 6 hr (Figure 1B and Figure 1—figure supplement

2D) as previously reported for the same cells in static conditions (Sung et al., 2009;

Zambrano et al., 2014a). Hence, we describe here these heterogeneous oscillations as damped in

contrast with the sustained oscillations, which continue regularly and unabated for a very long time

in continuously stimulated cells, see for example (Kellogg and Tay, 2015).

Damped oscillations can easily emerge in the NF-kB genetic circuit. Indeed, a minimal determin-

istic model that takes into account the basic ele-

ments of the NF-kB genetic circuit

(Zambrano et al., 2014b) (Figure 1A, Figure 1—

figure supplement 4, see Materials and meth-

ods for a complete description of the model)

shows that different combinations of the param-

eters can lead to different dynamics. The model

parameters that we used for our explorations

are provided in Supplementary file 2. We

denote as PS those specifying the external signal

and as PNF-kB those used to model the double

IkB and A20 negative feedback; in our explora-

tions, we allow them to vary differently depend-

ing on the associated uncertainty about their

values (Materials and methods and

Supplementary file 2). We generated a library

of randomized parameters and found that the

Video 1. Dynamics for constant flow of TNF-a. Imaging

of GFP-p65 knock-in cells in the microfluidic chamber

stimulated with a constant flow of 10 ng/ml TNF-a for

12 hr. The stimulus induced nuclear-to-cytoplasmic p65

oscillations that are qualitatively similar to the

heterogeneous oscillations observed with static

stimulation. Along time, it is possible to appreciate the

increase of TNF-induced cell death and apoptosis.

DOI: 10.7554/eLife.09100.015

Video 2. Dynamics for Hoechst-stained cells in the

absence of TNF-a. Several controls were performed to

exclude possible damaging effects related to imaging.

This video shows that cells under constant flow of fresh

medium without TNF-a divide and very few events

of cell death are detectable. Left part: GFP channel;

right part HOE channel. Twelve-hour imaging.

DOI: 10.7554/eLife.09100.016
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system presents a fixed point whose stability changes depending on the parameters (details on the

stability analysis are found in the Materials and methods section). The vast majority of parameter

combinations give rise to damped oscillations (when all the eigenvalues have all negative real parts,

see Figure 1—figure supplement 5A,B). A smaller fraction of parameter combinations give rise to

trajectories that converge to a stable limit cycle around the unstable fixed points (so certain eigen-

values have positive real parts, see Figure 1—figure supplement 5A,B). Interestingly, parameters

for oscillating and non-oscillating cells are in similar intervals suggesting that it is the precise combi-

nation of the parameters, rather than a single one, what determines the resulting dynamics (see Fig-

ure 1—figure supplement 5C). Our simulations might also explain why other researchers found

continuous periodic oscillations with T0 = 90 min under a constant flow of TNF-a (Kellogg and Tay,

2015, and see Discussion) and the variety of damped oscillatory dynamics upon LPS recently

reported for fibroblasts (Cheng et al., 2015) and macrophages (Sung et al., 2014). Our exploration

shows further how variations of the parameters can give rise to a variety of dynamics that reflects

what we find in an isogenic population (Figure 1B and Figure 1—figure supplement 2).

Considering the heterogeneity of dynamics, to better visualize the collective oscillatory state of

the population in each condition, following Mondragon-Palomino et al., 2011, we computed and

represented the phase of the oscillation f(t) for each cell by detecting peaks and setting f=0 (2p) at

the maximum of each peak and f(t)=p in the minimum between two peaks (phase plots for the green

time series are depicted in Figures 1B,C. See also Materials and methods and Figure 1—figure sup-

plement 2B,C). Time series for single cells (Figure 1B and C) were converted to phase plots

(Figure 1E,I) where each row represents one cell. Thus, oscillatory peaks can be easily observed. In

the phase plot, the first response to constant TNF-a right after t=0 hr is synchronous in the popula-

tion, but this synchrony is quickly lost, as previously reported (Nelson et al., 2004; Tay et al., 2010;

Zambrano et al., 2014a).

To investigate the response of the NF-kB oscillator to perturbations in the cell’s environment, we

switched periodically the stimulus concentration in the culture chambers in the microfluidics appara-

tus. TNF-a switching between doses D1 and D2 occurs in less than 1 min and generates a tightly con-

trolled square profile of stimulation. Stimuli were applied for intervals of time T1 and T2. We refer to

Tf = T1+T2 as the period of the forcing and to D1–D2 as the amplitude of the forcing (Figure 1A,

lower panel).

We started our analysis by applying a periodic stimulation of 90 min, which is close to the intrinsic

period of the NF-kB oscillatory system. Single-cell traces are provided in Figure 1C for cells stimu-

lated with D1 =10 ng/ml TNF-a, D2 =0 ng/ml with Tf=90 min. (T1=45 min and T2 =45). Peaks are

present in all the forcing cycles (Figure 1C and Figure 1—figure supplement 3C) and synchronous,

in contrast to the asynchronous peaks observed in constantly stimulated cells (Video 3). Hence, we

observe in this condition – a square forcing – a forcing-induced synchronous dynamics reminiscent of

that obtained by applying short trains of pulses (Ashall et al., 2009). Our synchronous oscillations

are visually apparent both in time-lapse images (Figure 1H) and phase plots (Figure 1I). Texp is

sharply distributed around 90 min (Figure 1J), corresponding to the expected eight peaks in 12 hr

(Figure 1—figure supplement 3D). The height of the first peak (Figure 1K) is similar to the height

of the first peak under constant stimulation (Figure 1G), indicating that the experimental conditions

are highly comparable. The height of the subsequent peaks is slightly higher for periodically stimu-

lated cells but still heterogeneous.

Taken together, these results indicate that a periodic external stimulus can lock in step a popula-

tion of cells in a long series of synchronous NF-kB oscillations, in clear contrast with the remarkable

oscillatory asynchrony and heterogeneity under constant stimulation.

Oscillatory synchrony increases with the forcing amplitude
We then systematically analysed the response to variable forcing amplitudes, by applying different

concentrations of TNF-a. The phase plots obtained for TNF-a ranging from 10 to 0.1 ng/ml with D2

= 0 ng/ml show that the coherence of the oscillations decreases with decreasing doses of TNF-a but

still persists at low doses (Figure 2A and Figure 2—figure supplement 1). Texp is less sharply dis-

tributed around 90 min as the forcing amplitude decreases. Concomitantly, a second peak corre-

sponding to multiples of Tf becomes progressively more conspicuous (Figure 2B), suggesting that

for lower doses of TNF-a an increasingly larger fraction of cells do not respond with a peak to some

of the forcing cycles. In the plots of peak maxima (Figure 2C) the height of the first peak is not
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reproduced by the second and the third peaks,

compatible with what reported for this forcing

period (Ashall et al., 2009). However the

heights converge under repeated forcing to a

constant value for all the forcing amplitudes.

This is typical of nonlinear dissipative oscillators

in the presence of periodic forcing

(Goldstein et al., 2001).

The degree of synchrony for each experimen-

tal setting of forcing can be evaluated consider-

ing the distribution of the phase difference Df

between the timing of each oscillatory peak and

the beginning of the forcing (see Materials and

methods). For asynchronously oscillating cells

under constant TNF-a stimulation, such distribu-

tion is flat (Figure 2—figure supplement 2).

When cells are stimulated with different forcing

amplitudes, the distribution of Df is narrower for

higher doses of TNF-a (Figure 2D), indicating a

higher degree of locking of the oscillations to

the forcing for increasing amplitudes.

We then compared the degree of synchrony

of the cell populations using the synchrony

intensity h, an entropy-based quantifier of the distribution of the phase difference Df that is 0 for

flat distributions and 1 for delta-like distributions (Mondragon-Palomino et al., 2011, and Materials

and methods). Synchrony intensity increases with the dose, but is nonzero even when D1=0.1 ng/ml

TNF-a (Figure 2E). To understand if D2=0 was a necessary condition for synchrony we applied

D2>0. Results show that the synchrony is maintained when D1 is threefold D2, while for smaller differ-

ences synchrony is almost lost (Figure 2—figure supplement 3).

We next investigated whether synchrony improved under repeated forcing. We computed hn, the

synchrony intensity at the n-th cycle of forcing (i.e. Df computed for peaks in the time intervals [(n–1)

Tf,nTf) for n�1). We find that hn does not increase (Figure 2F) in successive cycles of external forc-

ing, meaning that the oscillations do not become more synchronous as the system is perturbed

repeatedly.

Taken together, the above results indicate that NF-kB dynamics adapts to varying amplitudes of

periodic inputs. However the system does not seem to learn from the previous periodic forcing

cycles.

Cells oscillate synchronously following a variety of forcing amplitudes
and periods
We then tested the adaptability of the NF-kB system to different forcing periods Tf, ranging from

0.5T0 to 2T0.

We first considered periodic perturbation of Tf=2T0=180 min, with T1=30 min and T2 =150 min,

and TNF-a doses D1 ranging from 10 ng/ml to 0.1 ng/ml, D2 =0 ng/ml. Oscillations are locked to

the forcing even for D1 =0.1 ng/ml (Figure 3A, see also Figure 3—figure supplement 1,A–C and

Video 4). The use of T1=30 min assures the existence of sharp oscillatory and transcription peaks

(see below) and also leads to synchrony of the oscillations for Tf=T0 (see Figure 3—figure supple-

ment 3, bottom panels). For all doses we find a bimodal distribution of the oscillation periods, with

an overall maximum at 180 min and a much smaller relative maximum at 90 min (Figure 3C). This

indicates that after a single pulse of forcing some cells oscillate a second time with a period similar

to the intrinsic one. However, a closer analysis of peak maxima for time intervals of the form [(n–1)T0,

nT0) = [(n–1)Tf/2, nTf/2) (Figure 3E) reveals that peaks arising right after each periodic stimulation

(even n) are higher than the rare ones (odd n) arising when stimulation is absent.

Oscillations in each condition show a good degree of synchrony, as described by the distributions

of the phase differences Df, which are remarkably narrow for all doses (Figure 3G); the synchrony

intensity h is nonzero even for D1 = 0.1 ng/ml and increases with the dose (Figure 3I, blue line).

Video 3. Dynamics for Tf=90 min. Imaging of cells

stimulated with D1 =10 ng/ml TNF-a, D2 =0 ng/ml and

Tf=90 min. (T1=45 min and T2 =45). Peaks are present

in all the forcing cycles and synchronous. Twelve-hour

imaging.

DOI: 10.7554/eLife.09100.017
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Figure 2. Synchronous oscillations arise for different forcing amplitudes. (A) Representative phase plots for 25 cells

(out of 216, 80, 188, 263, 225 cells analysed) stimulated with D1=10, 1, 0.5, 0.25, 0.1 ng/ml TNF-a, D2=0 ng/ml, for

Tf =90 min, T1=T2=45 min. (B) Distributions of the periods for the cells shown in panel (A); distributions become

narrower as the dose D1 increases. The appearance of a second peak at Texp=3 hr at lower doses means that in

some cycles a fraction of cells miss a peak and the interval to the next one is double. (C) Quantification of height

of the nth peak in the different conditions considered in (A). By decreasing the stimulus amplitude, the ratio tends

to stabilize to a constant value. (D) Distribution of the phase difference Df for the forcings considered: Df

becomes narrower as the forcing amplitude is increased. (E) The synchrony intensity h, an entropy-based measure

on how widely distributed the values of Df are, increases with the amplitude of D1 for Tf =90 min. (F) The

Figure 2 continued on next page
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When D2>0 ng/ml we found synchronized oscillations for D1 at least three times D2 (Figure 3—fig-

ure supplement 2).

We considered also the ability of the NF-kB system to respond to stimulations of periodicity

below the intrinsic one. We selected Tf=T0/2=45 min, but T1=30 min led to a poor synchrony (see

Figure 3—figure supplement 3, top panels). We therefore reduced T1 to 22.5 min, and thus

T2=22.5, which proved to be a sufficiently long resetting of the external signal; in these conditions

we obtained a sharply defined dynamical response. Oscillations are locked in step with D1=10 and 1

ng/ml (Figure 3B, Video 5), whereas synchronization is weaker for D1=0.1 ng/ml (this is also evident

in the average NCI dynamics, see Figure 3—figure supplement 1,D–F). The experimentally deter-

mined oscillatory period Texp (Figure 3D) is narrowly distributed around Tf=45 min for D1=10 ng/ml,

but we also find a small peak around Texp=90 min, indicating that some cells skip the oscillation eli-

cited by the forcing. The peak height for each forcing cycle tends to stabilize to a constant value and

to be lower for lower forcing amplitude, although the differences are small (Figure 3F). Also in this

case, the synchrony correlates with the dose: in fact, the phase difference Df tends to be more nar-

rowly distributed for higher values of D1 (Figure 3H), and the synchrony intensity h grows with the

dose (Figure 3I, red line).

It has been recently reported that NF-kB oscillations can be synchronized by entrainment

(Kellogg and Tay, 2015). However, in our experiments the synchrony intensity for each cycle, hn,

does not increase when the system is forced repeatedly, either with periods of 90, 180 or 45 min

(Figures 2F, 3J,K), in contrast to what is observed for entrained oscillators (Mondragon-

Palomino et al., 2011). Furthermore, when oscillators are entrained by external forcing, their oscilla-

tions also show m:n resonant patterns (m oscillations for each n cycles of the forcing) in so-called

Arnold tongues (Pikovsky et al., 2003). However, we only observed 1:1 synchronization patterns for

all the periods of forcing (Figure 3A,B), with no clear evidence of the 2:1 and 1:2 patterns expected

for entrainment. We thus investigated further whether the synchronization mechanism we observed

does correspond to entrainment.

The synchronization mechanism of GFP-p65 knock-in MEFs is not
entrainment
Once the forcing ceases, entrained oscillators dephase gradually, losing their sharply defined com-

mon entrained oscillatory period. We then investigated whether our cells kept a memory of the syn-

chronous dynamics once the periodic forcing ceased. The phase plots for 75 cells forced with

Tf=45 min D1 =10 ng/ml (Figure 4A, washing out after 16 forcing cycles), and for Tf=90 min with D1

=1 ng/ml (Figure 4B, washing out after eight forcing cycles), indicate that when the external stimulus

stops, cells lose quickly their synchrony. This is also evident from single-cell NCI traces and from the

peaks detected in the same conditions (Figure 4C and D respectively). Indeed, only for Tf=45 min

we observed small peaks after the last cycle of the forcing, but these peaks are on average 90 min

away from the last forced peak, and correspond to the intrinsic oscillatory period of our oscillator.

The quick loss of synchrony can also be observed in the evolution of the synchrony quantifier hn for

the two last cycles of the forcing (Figure 4E, n=1,2) and the two subsequent (virtual) ones

(Figure 4E, n=3,4). This is also the case when considering cells forced with Tf=90 min and a high

stimulus amplitude D1 =10 ng/ml, after which we apply a constant flow of 10 ng/ml TNF-a: cells

present a last well-defined translocation (Figure 4F and 4G) and rapidly dephase (Figure 4H).

Figure 2 continued

synchrony intensity hn computed using only the peaks observed in each forcing cycle shows that the synchrony

does not increase with the successive cycles of forcing. Figure supplements from 1 to 3 are provided.

DOI: 10.7554/eLife.09100.018

The following figure supplements are available for figure 2:

Figure supplement 1. NCI and average dynamics for different forcings.

DOI: 10.7554/eLife.09100.019

Figure supplement 2. Distribution of the phase differences for cells stimulated with constant TNF-a.

DOI: 10.7554/eLife.09100.020

Figure supplement 3. Dynamics of alternating doses Tf = 90 min and D2 > 0.

DOI: 10.7554/eLife.09100.021
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Figure 3. Cells adjust oscillations to different periods for a wide range of forcing amplitudes. Representative phase plots for 25 cells stimulated with

D1=10, 1, 0.1 ng/ml TNF-a (out of 151, 77, 123 cells analysed, respectively) D2=0 ng/ml for (A) Tf =180 min with T1= 30 min and (B) Tf =45 min with

T1=22.5 min (analysed 101, 112, 119 cells). (C, D) Plots showing the distributions of the periods for the conditions given in panels (A) and (B),

respectively. (E, F) Average peaks height in the intervals [(n–1) T0, T0) and [(n–1) T0/2, nT0/2), for A and B, respectively. In (E), even n correspond to

peaks right after stimulation, odd n correspond to the small peak arising between two consecutive stimulations. (G, H) Distribution of the phase

difference Df for the forcings in A and B: Df has narrower distributions for higher doses. (I) The synchrony intensity h grows with the doses for Tf=180

min (blue) and Tf=45 min (red). (J, K) Synchrony intensity plots show that hn does not increase as successive cycles of forcing are applied to the system,

both for Tf=180 min and Tf=45 min, respectively. All the analyses included all the tracked cells with no preselection of the responding ones. Figure

supplements 1 to 3 are provided.

DOI: 10.7554/eLife.09100.022

Figure 3 continued on next page
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Kellogg and Tay (2015) found no synchrony for Tf=60 min. However, we found that our cells can

actually be synchronized under periodic stimulations with Tf=60 min (T1 =T2 =30 min) when D1 =10

ng/ml (Video 6) and D2 =0 ng/ml (Figure 4—figure supplement 1A). Furthermore, we found that

synchrony is still visible for D2>0 ng/ml (Figure 4—figure supplement 1B–D), as we had observed

for other stimulation periods. The difference might arise from the fact that we use a forcing different

from the sawtooth-like TNF-a profile used by Kellogg and Tay (2015), which is obtained by periodi-

cally and quickly replacing the medium in contact with the cells with fresh TNF-a. The sawtooth con-

centration profile is assumed to arise due to a clearance process of TNF-a by degradation and

internalization. We then applied sawtooth forcing to our cells (Figure 4—figure supplement 4).

Cells lock their oscillations to the sawtooth forcing of periods Tf=60 min and Tf=90 min at the doses

considered. Interestingly, the synchronization is lost for Tf=180, suggesting that autocrine-paracrine

signalling might introduce a distortion in the cell environment, which is reduced when the medium is

changed more frequently. Alternatively, the different geometry of our microfluidic with respect to

the one used in Kellogg and Tay (2015) might lead to a slower TNF-a degradation and produce

profiles closer to static concentration than to oscillatory stimulation. The profiles observed are

indeed similar to some of the dynamics observed for alternating doses of TNF-a with D2>0 ng/ml,

such as those for Tf=60 min (Figure 4—figure supplement 1B–D), Tf=90 min (Figure 2—figure sup-

plement 3) and Tf=180 min (Figure 3—figure supplement 2), with compatible values of h. How-

ever, it is clear that with sawtooth forcing of Tf=60 min the synchrony is strong, at variance with the

results reported by Kellogg and Tay (2015).

Overall, we conclude that the synchronization mechanism that we observe is not entrainment.

Rather, it is similar to that of simple mechanical damped oscillators, such as the damped harmonic

oscillator, which after a perturbation tend to relax to an equilibrium state. When these mechanical

systems are challenged with an external periodic forcing, the period of the oscillations tends to

match the period of the forcing (Pikovsky et al., 2003). In fact, our minimal mathematical model of

the NF-kB circuit (Figure 1—figure supplement

4) reproduces damped oscillations (e.g. Fig-

ure 1—figure supplement 5A,B,D). In these con-

ditions, the period of the periodically forced

system converges to the period of the forcing

(Figure 4—figure supplement 2). Of note, the

model reproduces the small peaks appearing

between two forcing cycles (Figure 4—figure

supplement 3), similar to the small peaks that we

observed for the same forcing as in Figure 3A.

When behaving as a damped oscillator, the

NF-kB system is well suited to quickly synchronize

its oscillatory period to input signals of a wide

variety of timescales. This is probably a desired

feature for a system that underlies responses to

environmental challenges, which do not come

with a particular periodicity. This is the reverse of

what might be desirable for circadian clocks,

whose design should privilege the entrainment to

the 24-hr light/darkness period. To understand

how the oscillatory pattern of NF-kB affects its

Figure 3 continued

The following figure supplements are available for figure 3:

Figure supplement 1. NCI and average dynamics for different forcings.

DOI: 10.7554/eLife.09100.023

Figure supplement 2. Dynamics of alternating doses Tf=180 min and D2>0.

DOI: 10.7554/eLife.09100.024

Figure supplement 3. Dynamics for cells synchronised with T1=30 min and different TNF concentrations.

DOI: 10.7554/eLife.09100.025

Video 4. Dynamics for Tf=180 min. Imaging of cells

stimulated with D1 =10 ng/ml TNF-a, D2 =0 ng/ml and

Tf=2T0=180 min (T1=30 min and T2 =150). Oscillations

are locked to the forcing. Twelve-hour imaging.

DOI: 10.7554/eLife.09100.026
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biological output, we focused on the transcrip-

tion dynamics of genes controlled by NF-kB.

Synchronous NF-kB dynamics
reveal different patterns of gene
expression
The heterogeneity of NF-kB dynamics in the cell

population under constant stimulation makes it

difficult to establish a direct correspondence

between NF-kB activity and transcription. How-

ever, under conditions of synchronous oscillation

the average dynamics corresponds to the

dynamics of single cells. This is for example the

case for cells stimulated with D1 =10 ng/ml

D2=0 ng/ml TNF-a, T1=30 min and T2 =150 min

(Tf= 2T0) (Figure 5A). Numerical simulations with

a simple mathematical model of transcription

under the control of the regulatory network

using parameters from our previous work (Fig-

ure 5—figure supplement 1, Materials and

methods and Zambrano et al., 2014b) sug-

gested that for some genes there should be a

clear coordination between the input pulsed sig-

nal, the oscillating dynamics of NF-kB and the

transcriptional output (Figure 5B).

To validate the model’s prediction, we tested RNA transcription in the synchronous oscillatory

condition shown in Figure 5A. RNA samples were prepared at time 0 and 20, 40 and 60 min after

each TNF-a pulse. Quantitative RT-PCR was performed for both the nascent unspliced and the

mature mRNA forms of the prototypical early and late genes IkBa and Ccl5/RANTES, respectively

(Figure 5—figure supplement 2 and Materials and methods). Nascent transcription of both genes

starts synchronously with each TNF-a pulse and p65 nuclear localization (Figure 5C,D), and the lev-

els of nascent transcripts clearly oscillate. Mature transcripts of the early gene IkBa follow the oscil-

latory dynamics, show transcription-coordinated splicing and do not accumulate after stimulus wash-

out (Figure 5C). On the contrary, the mature form of the late gene Ccl5 accumulates slowly and pro-

gressively along 12 hr (Figure 5D).

This latter observation extends the notion that the splicing rate for inflammatory genes plays a

key role in regulating the timing of gene expression, as previously reported (Hao and Baltimore,

2013). The induction levels for IkBa in the first hours hardly differ from those under chronic stimula-

tion ((Hao and Baltimore, 2013); Figure 5 and Figure 5—figure supplement 2). Interestingly, we

also find oscillatory dynamics of IkBa and Ccl5 nascent transcripts when cells are stimulated with a

forcing period of Tf= 90 min, although the oscillations are less prominent than for Tf=180 min. The

expression of Ccl5 for Tf= 90 min grows monotonically (Figure 7—figure supplement 1).

We then asked whether our minimal mathematical model (Figure 5—figure supplement 1 and

Figure 1—figure supplement 4) could simultaneously fit NCI dynamics (Figure 5A) and transcrip-

tion profiles. Our model of transcription can be interpreted as a population-level NF-kB–driven tele-

graph model (Suter et al., 2011) that includes non-cooperative transcription activation by NF-kB

(Giorgetti et al., 2010) and the role as transcriptional repressor reported for IkBa (Arenzana-

Seisdedos et al., 1995; Kellogg and Tay, 2015; Lipniacki et al., 2004; Lipniacki et al., 2006a;

Lipniacki et al., 2006b; Tay et al., 2010); we denote the parameters used to fit the transcription as

PG (details in the Materials and methods section). The fittings were performed by keeping constant

the parameters of the external signal PS (which is externally imposed) and using the same parame-

ters regulating NF-kB dynamics, PNF-kB in Figure 5A,E,F, while using different individual transcrip-

tion parameters PG for each gene (Figure 5E,F). Despite being much simpler than other existing

models of NF-kB dynamics (Ashall et al., 2009; Tay et al., 2010), our model fits faithfully the

observed transcription dynamics for both IkBa (Figure 5E) and Ccl5 (Figure 5F).

Video 5. Dynamics for Tf=45 min. Imaging of cells

stimulated with D1 =10 ng/ml TNF-a, D2 =0 ng/ml and

Tf=T0/2=45 min (T1=22.5 min and T2 =22.5 min). Such

short wash-out provides a sufficient resetting of the

external signal; in these conditions we obtained a

sharply defined dynamical response and oscillations are

locked in step. Twelve-hour imaging.

DOI: 10.7554/eLife.09100.027
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Figure 4. Cells do not keep a memory of the synchronous oscillatory dynamics. (A, B) Phase plots of the last two oscillation cycles for Tf =45 min (D1=10

ng/ml) and Tf =90 min forcing (D1= 1 ng/ml) (number of forcing cycles are indicated above) followed by a period of 3 hr with no stimulation (75 cells are

displayed out of 106 and 197 cells analysed, respectively). (C, D) NCI time series at single cell level (green lines) for the two conditions (A) and (B). Blue

triangles indicate the peaks considered in the computing. The thick black line is the average NCI, showing a small peak 90 min after the last forced

peak for Tf =45 min (C), compatible with the natural timescale of the free oscillations. (E) The synchrony intensity hn for the last two forced peaks (n=1,

2) and for the peaks detected in the absence of the stimulus (n=3, 4) illustrates the fast loss of synchrony. (F) Phase plots of the last two oscillation

cycles for Tf =90 min (number of forcing cycles are indicated above) (D1=10 ng/ml) followed by 4.5 hr flow of 10 ng/ml TNF-a (75 cells are displayed out

of 149 cells analysed). (G) NCI time series at single-cell level (green lines). Blue triangles indicate the peaks considered in the computing. The thick

black line is the average NCI, showing a small peak 90 min after the last forced peak, compatible with the natural timescale of the free oscillations. (H)

The synchrony intensity hn for the last two forced peaks (n=1, 2) and for the peaks detected in the presence of the stimulus (n=3,4) illustrates the fast

loss of synchrony. Figure supplements from 1 to 4 are provided.

DOI: 10.7554/eLife.09100.028

The following figure supplements are available for figure 4:

Figure supplement 1. Dynamics of alternating doses Tf=60 min and D2>0.

DOI: 10.7554/eLife.09100.029

Figure supplement 2. The model predicts that NF-kB oscillations follow the forcing period.

DOI: 10.7554/eLife.09100.030

Figure supplement 3. Interpretation of the Tnumerical/Tf ratios close to 0.5 in Figure 4—figure supplement 2.

DOI: 10.7554/eLife.09100.031

Figure supplement 4. Sawtooth-like profiles lead to heterogeneous but synchronous dynamics in GFP-p65 cells.

DOI: 10.7554/eLife.09100.032
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Overall, our results show that the expression of two different genes can follow different dynamical

patterns even if the entire cell population is effectively locked to the dynamics of the transcription

factor that controls both genes.

Transcription dynamics discriminates between groups of functionally
related genes
Genome-wide profiling represents the logical further step to understand whether additional NF-kB

regulated genes follow the diversified dynamics observed for Nfkbia/IkBa and Ccl5. We performed

microarray analysis on RNA purified from GFP-p65 knock-in cells under either constant or pulsed

TNF-a stimulation (Zambrano et al., 2016). Transcriptional outputs were subjected to unsupervised

clustering of standardized profiles to group the transcription profiles by their shape, while minimiz-

ing differences in fold-changes (Materials and methods). For constantly stimulated cells, gene

expression profiles reproduce well the previously observed kinetics (Rabani et al., 2011;

Sivriver et al., 2011), in which the maximum expression level is achieved with different timings for

different genes, and no evidence of the oscillatory dynamics of NF-kB is discerned (Figure 6—figure

supplement 1).

We then quantified genome-wide expression profiles in the population shown in Figure 5, which

oscillates synchronously in the forcing regime of Tf=180 min (Materials and methods). We found 970

genes whose expression responds to TNF-a stimulation, of which 499 increase and 471 decrease rel-

ative to unstimulated cells. Genes distributed in six highly homogeneous clusters; a higher number

of clusters did not reduce significantly the inter-cluster distance (Figure 6—figure supplement 2A).

Three of the clusters contain genes with increasing expression and three contain genes with decreas-

ing expression (Figure 6A, Figure 6—figure supplement 2). The clusters display profiles that range

from the oscillatory dynamics of IkBa (Cluster 1) to the slowly increasing dynamics of Ccl5 (Cluster

3). Notably, while genes contained in the three clusters of increasing expression are enriched with

known NF-kB target genes (10-14 < p < 0.05, Fisher’s exact test, Materials and methods and Fig-

ure 6—figure supplement 3), clusters with decreasing expression are not significantly enriched. The

same is observed in chronic stimulation (Figure 6—figure supplement 4).

We tested if our model would also reproduce the patterns of gene expression dynamics at a

genome-wide level in these conditions, keeping the same parameters PS and PNF-kB as in Figure 5

but using different gene expression parameters PG for each gene. Indeed, the model fits well the

dynamical patterns observed experimentally in clusters with increasing expression (Figure 6B, grey

lines). The median and the intervals of observed and simulated single gene expression levels match

remarkably well (Figure 6B, red and blue lines respectively, individual fittings are shown in Fig-

ure 6—figure supplement 6, bottom-left panels); the average relative error per timepoint is less

than 10% (Figure 6—figure supplement 5, left,

further details on the fittings and metrics used

are given in Materials and methods).

Genes in the clusters with decreasing expres-

sion cannot be fitted with the same accuracy

(the average relative error per timepoint is

above 10%, see Figure 6—figure supplement

5, right, individual gene fitting examples shown

in Figure 6—figure supplement 6, bottom-right

panels), further suggesting that these genes are

not controlled directly by NF-kB. Indeed, an

analysis of the parameters show that gene

expression is essentially fitted for those genes as

a simple RNA degradation with nearly no contri-

bution of the gene activation/inactivation pro-

cesses (low Kon,G and Koff,G, see Figure 5—

figure supplement 1 and Materials and

methods).

Interestingly, our mathematical model indi-

cates that for a given stimulus impinging on NF-

kB, the degradation rate of the mRNA is the key

Video 6. Dynamics for Tf=60 min. GFP-p65 cells can be

synchronized under periodic stimulations with Tf=60

min (T1 =T2 =30 min) when D1 =10 ng/ml and D2 =0

ng/ml. Twelve-hour imaging.

DOI: 10.7554/eLife.09100.033
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Figure 5. Synchronous NF-kB oscillations lead to population-level coordinated transcription. (A) NCI plot of single cell oscillations (green lines) and

population average (black lines) for cells stimulated with D1=10 ng/ml TNF-a, D2=0 ng/ml, T1=30 min and T2=150 min. The open circles represent the

fitting obtained using our minimal mathematical model. (B) The mathematical model predicts waves of transcription (orange plot, right) coordinated

with the stimulus (red plot, top) and p65 oscillations (green plot, left). (C, D) q-PCR time course of nascent and mature mRNAs for the prototypical early

and late genes IkBa and Ccl5, respectively. (E, F) Transcription profiles for mature IkBa (red) and Ccl5 (blue) RNAs (dots) can be accurately fitted (lines)

by our minimal mechanistic mathematical model. The fittings were performed by keeping common the parameters regulating the external signal (PS)

and the dynamics (PNF-kB) in (A), (E) and (F) but using different gene expression parameters PG for (E) and (F). Figure supplements 1 to 2 are provided.

DOI: 10.7554/eLife.09100.034

The following figure supplements are available for figure 5:

Figure supplement 1. Mathematical model based on ODEs to fit single genes transcription; parameter names are reported.

DOI: 10.7554/eLife.09100.035

Figure supplement 2. Hoechst staining does not affect transcription.

DOI: 10.7554/eLife.09100.036
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Figure 6. Synchronized NF-kB dynamics translates into functionally different dynamical patterns of gene expression, each corresponding to distinct

pathways. (A) Clusters 1–6 were obtained by an unsupervised k-means-like clustering from the genome-wide transcription profiling of samples

harvested in the experiment shown in Figure 5A. Line colours are indicative of the membership value of each gene (colour scale at the bottom). Three

clusters contain genes with increasing expression (1–3) and three with decreasing expression (4–6). On the y-axis, standardized expression profile in

arbitrary units (see Materials and methods). (B) Plots show single-gene mRNA traces (median: thick blue line; 85% and 15% intervals, thin blue lines).

The time courses can also be fitted using our minimal mathematical model: shown is the median of the single-gene fits (thick red line) and the 85% and

15% intervals (thin red lines). Fittings were performed using the same parameters for the external signal (PS) and the dynamics (PNF-kB) as in Figure 5,

but using different gene expression parameters PG for each gene. (C) Top five pathways of hierarchical level 2 and 3 in the Reactome database

significantly enriched in each dynamical cluster. Dot sizes are proportional to the percentage of genes in the cluster belonging to that pathway. Dot

Figure 6 continued on next page
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parameter for producing the most distinct dynamical profiles. Of note the highest degradation rates

are specific for oscillating genes, while those for slowly increasing genes are two orders of magni-

tude lower (Figure 6—figure supplement 6, top panels). This further underlines the importance of

mature RNA processing and degradation in the definition of different patterns of gene expression.

Although the role of IkBa as a repressor has been proposed in a number of theoretical analyses

(Kellogg and Tay, 2015; Lipniacki et al., 2004; Lipniacki et al., 2006a; Lipniacki et al., 2006b;

Tay et al., 2010) only limited evidence of this role is experimentally available (Arenzana-

Seisdedos et al., 1995). Thus, to investigate the role of IkBa in patterning gene expression, we built

a model where IkBa does not act as a direct repressor (Figure 6—figure supplement 7A,B). This

alternative model fits the gene expression dynamics of each cluster well (Figure 6—figure supple-

ment 7E), and again better for genes with increasing transcription than for those decreasing (Fig-

ure 6—figure supplement 7C). The mRNA degradation rate is again the key parameter to

discriminate between the different patterns of gene expression (Figure 6—figure supplement 7D).

While our fittings do not provide conclusive evidence on the role of IkBa as a transcriptional repres-

sor, they suggest that this is not needed.

Finally, to understand if the different dynamics observed with Tf=90 min were also present in

other conditions, we used the same clustering approach for gene expression profiles of cells stimu-

lated with Tf=90 min, D1 =10 ng/ml and D2 = 0 ng/ml (as in Figure 1C). Oscillations in transcript lev-

els were observed, although they were not as conspicuous as for Tf=180 min (Figure 7A), probably

due to the fact that 90 min is not long enough for most transcripts to degrade. Enrichment of target

genes is similar to the two previous cases (Figure 7C,D).

We then performed a pathway analysis to determine if each of our dynamical clusters were

enriched in functionally related pathways (see Materials and methods). Indeed, this is the case

(Figure 6C): Cluster 1 is broadly related to chemokines and chemokine receptors and contains so-

called early genes, Cluster 2 to the immune system and so-called intermediate genes, and Cluster 3

to extracellular matrix rearrangements and so-called late genes (Rabani et al., 2011; Tian et al.,

2005a; 2005b). Thus, the clustering also indicates a precedence order in the articulation of the cell’s

response. Genes with decreasing expression comprise pathways related to metabolism (Cluster 4),

cell cycle (Cluster 5) and chromosome maintenance (Cluster 6).

The overlap between clusters is minimal both at gene and pathway level (Figure 6D and

Figure 6E, respectively, and Materials and methods). The correspondence between dynamics and

gene function is also fulfilled in cells forced with Tf=90 min (Figure 7B), with a low intercluster over-

lap at gene level (Figure 7E), and slightly higher overlap at pathway level (Figure 7F). Interestingly,

there is a good correspondence between clusters identified upon both 180 and 90 min forcing. In

Figure 6 continued

colours identify the corresponding p-values (p-value < 0.05 is set as threshold). Scale bars on the right. (D, E) Heatmaps shows the degree of overlap at

gene level (D) and pathway level (E) between each of the 6 clusters. Colour scale bar on the right. Figure supplements from 1 to 6 are provided.

DOI: 10.7554/eLife.09100.037

The following figure supplements are available for figure 6:

Figure supplement 1. Transcription in cells chronically stimulated with TNF-a.

DOI: 10.7554/eLife.09100.038

Figure supplement 2. Mathematical validation of clustering.

DOI: 10.7554/eLife.09100.039

Figure supplement 3. Cluster enrichment analysis for NF-kB targets in genes clustered and displayed in Figure 6.

DOI: 10.7554/eLife.09100.040

Figure supplement 4. Cluster enrichment analysis for NF-kB targets in genes clustered and displayed in Figure 7 (constant stimulation).

DOI: 10.7554/eLife.09100.041

Figure supplement 5. Distribution of fitting distances.

DOI: 10.7554/eLife.09100.042

Figure supplement 6. Degradation rates values are the key parameter to reproduce different gene expression patterns.

DOI: 10.7554/eLife.09100.043

Figure supplement 7. Fitting of transcription data from the 180 min synchronization experiment with an alternative model of transcription.

DOI: 10.7554/eLife.09100.044
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Figure 7. Genome-wide clustering for Tf=90 min. (A) Clusters obtained by unsupervised k-means clustering from

the genome-wide transcription profiling of cells perturbed with a forcing of 90 min, D1=10 and D2=0 ng/ml of

TNF-a. Lines colours: blue and red indicate low and high membership values, respectively. (B) Top five pathways

of hierarchical level 2 and 3 in the Reactome database significantly enriched in each dynamical cluster. Dot sizes

are proportional to the percentage of genes in the cluster belonging to that pathway. Dot colours identify the

corresponding p-values (p-value<0.05 is set as threshold). Scale bars on the right. (C, D) Enrichment analysis for

NF-kB targets from the clusters displayed in panel A. Two lists of NF-kB targets were considered: left: Gilmore’s

web-site (www.bu.edu/nf-kb/); right: data from Brasier and Kudlicki groups (Li et al., 2014). Significance is shown

as -Log(p-value), a dashed line marks the threshold of significance at p=0.05. (E, F) Heatmaps show the degree of

overlap at gene level (E) and pathway level (F) between each of the 6 clusters. (G) Overlap at a gene level between

Figure 7 continued on next page
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particular Cluster 1 (the oscillating cluster) contains almost exactly the same genes in both conditions

(Figure 7G).

Taken together, the above results indicate that different gene expression dynamics identify func-

tionally related categories of genes, suggesting a strict relationship between dynamics and function

in the cell’s response to external stimuli.

Discussion

The NF-kB system synchronizes to external periodic forcing as a
damped oscillator
Our results show that single cells activate NF-kB signalling synchronously to external TNF-

a stimulation, and that repeated forcing elicits synchronous NF-kB oscillations at population level.

However, NF-kB does not behave as a free oscillator: no cell oscillates constantly in the presence of

continuous stimulation (Figure 8A and B left, green lines). Furthermore, synchronization among cells

does not improve upon repeated forcing (“training”), and single cells trained for a dozen forcing

cycles stop oscillating and dephase (“forget”) as fast as cells stimulated only once. Finally, cells can

be synchronized with a wide variety of forcing periods and forcing amplitudes, and synchronize to

the external forcing (Figure 8A and B right, green lines) without showing any preference for periods

resonating with the NF-kB intrinsic period of 90 min; synchronization is more pronounced with high

than with low stimulation amplitude.

The ability of NF-kB to oscillate in tune with a forcing of 45 min illustrates well the plasticity of

synchronization: 45 min is equivalent to one half of the intrinsic period, and entrained cells would

skip one forcing period out of 2 (following the 1:2 resonance), but our data do not support this inter-

pretation, since cells only infrequently skip a forcing period. Simulations with our mathematical

model can actually reproduce the ability of the system to synchronize to different forcing periods.

The ability of our cells to synchronize to a 60 min periodic forcing points in the same direction.

Thus, we find that our GFP-p65 knock-in cells are not entrained, as do not satisfy the essential

precondition – sustained oscillations – and two critical tests for entrainment – increasing synchroniza-

tion upon repeated forcing, and synchronization to the natural frequency of the internal oscillator

(Pikovsky et al., 2003). Our cells appear closer to the classical textbook example of a damped har-

monic oscillator (Goldstein et al., 2001), whose frequency corresponds to the frequency of the

external stimulation, and whose synchronization to the external stimulus increase monotonically with

stimulus amplitude.

We interpret the damped oscillator behaviour of the NF-kB system as an intrinsic characteristic of

the NF-kB system which allows it to adapt to a wide variety of inputs and to quickly reset. In fact,

pathogens and inflammatory signals do not come in regular periodic patterns, and a carefully cali-

brated inflammatory response that would adapt itself to any irregular pattern of stimulation would

be positively selected for.

We explored our minimal mathematical model to understand why we observed damped oscilla-

tions whereas Kellogg and Tay observed sustained oscillations under constant stimulation, a behav-

iour that presumably is the root of the different synchronization mechanisms observed. Our

simulations suggest that sustained oscillations would not be the norm, but rather the result of a spe-

cific set of parameters (see Figure 1—figure supplement 5A,B). Indeed, the NF-kB network has an

equilibrium that depending on the combinations of parameters can be stable, giving rise to damped

oscillations that converge to it, or unstable, giving rise to a stable cycle around it (see e.g.

Figure 7 continued

clusters obtained for 180 min and for 90 min. It is particularly high for Clusters 1, those of oscillating genes. Colour

scale bar on the right. Figure supplement 1 is provided.

DOI: 10.7554/eLife.09100.045

The following figure supplement is available for figure 7:

Figure supplement 1. Synchronous NF-kB oscillations arising with 90 min forcing lead to population-level

coordinated transcription.

DOI: 10.7554/eLife.09100.046
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Figure 8B, left, magenta line); transitions between these two states can be mediated by a Hopf

bifurcation.

The simulations performed with our simple model can thus reconcile our experimental observa-

tions with the detection of sustained oscillations for different cells (Kellogg and Tay, 2015), but also

with the rich variety of damped oscillatory dynamics reported for other cell types in recent works

(Cheng et al., 2015; Sung et al., 2014). Other theoretical analyses have identified the amount of

NF-kB expressed by a specific cell as the determinant of the Hopf bifurcation and the stability of the

oscillator (Mothes et al., 2015). Notably, we used cells with physiological and uniform p65 levels.

We also note that the interplay between different feedback loops, including the A20 feedback

(Werner et al., 2008) can vary between cell types, leading to different degrees of dampening, as

observed experimentally by selective knock-outs (Hoffmann et al., 2002); dissecting the contribu-

tion of each of these feedbacks will be the subject of future experimental and theoretical work.

Figure 8. NF-kB behaves as a damped oscillator that can synchronize to time-varying external stimuli to produce

functionally related transcriptional outputs. (A) The NF-kB system is able to provide different responses to

different inputs, from constant (left) to time-varying ones (right). (B) Our cells show damped oscillations to

a constant stimulus (left, green lines), although for other cell types sustained oscillations might be possible

(magenta line). Damped oscillations can adapt to timevarying inputs (right) and give rise to synchronous

oscillations. (C) These synchronous oscillations produce different patterns of gene expression, from oscillating (left,

orange lines) to slowly increasing (right, blue lines) and intermediate dynamics (pink lines, centre). We find that

each kind of dynamics is typical for genes involved in different cellular functions.

DOI: 10.7554/eLife.09100.047

Zambrano et al. eLife 2016;5:e09100. DOI: 10.7554/eLife.09100 21 of 38

Research article Computational and systems biology Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.09100.047
http://dx.doi.org/10.7554/eLife.09100


Oscillations in the nuclear concentration of NF-kB lead to different
dynamical patterns of gene expression
The oscillatory behaviour of NF-kB consists in periodic relocalization between the nucleus and the

cytoplasm, and entails corresponding cycles of NF-kB binding to cognate binding sites in the

genome. Thus, NF-kB driven transcription should be pulsatile as well, and in fact we detect cycles in

the levels of elongating transcripts in the prototypical early and late NF-kB-controlled genes

IkBa and Ccl5. However, whereas mature mRNA oscillates for IkBa, it slowly accumulates for the

late gene Ccl5, and this held true for different frequencies of the periodic stimulation. Genome-wide

analysis of dynamics, using unsupervised clustering of whole transcriptome profiles, identified six

highly homogeneous sets (“clusters”), three containing genes with increasing transcription and three

containing genes with decreasing transcription. While the genes with increasing transcription are

predicted NF-kB targets, those in the decreasing sets are not.

The train of p65 nuclear translocations is thus decoded by the cell into different transcriptional

dynamics: genes in Cluster 1 display a clear and sustained oscillation in transcript level; instead, tran-

scripts for genes in Clusters 2 and 3 accumulate fast or increase slowly and steadily over many cycles

of NF-kB oscillations, respectively (see Figure 8C). The result is that each new wave of TNF-a elicits

on Cluster 1 genes almost the same responses as the previous waves, and no memory is kept of the

past; the expression of genes of Clusters 2 and 3 allows a long-lasting response that integrates over

time the responses to previous waves.

All three dynamics of genes with increased expression could be reproduced by our minimal math-

ematical model of transcription, which incorporates the features of the paradigmatic telegraph

model (Suter et al., 2011). Our model also suggests that mRNA degradation is the key parameter

that allows a functional and temporal shaping of the NF-kB response, in particular for transcripts in

Cluster 1 (Figure 6—figure supplement 6, top-left panel). The computational results fit well with

the fast turnover of early transcripts, whose degradation depends on positive regulators like Zfp36

(Rabani et al., 2011). Of note, Zfp36 is in Cluster 1, and oscillates sharply and synchronously with

the forcing; this might contribute further to the shaping of peaked responses.

Oscillatory dynamics and functionally related patterns of gene
expression: an adaptive viewpoint
Overall, our most remarkable finding is that NF-kB oscillations drive the expression of distinct sets of

genes whose expression dynamics and functions correlate: the transcripts that oscillate encode

mostly cytokines and cytokine receptors, the ones that rise fast and decrease slowly encode proteins

involved in immunity, and the ones that rise steadily encode proteins involved in the rearrangement

of the extracellular matrix (Figure 8C).

While steady-rise and rise/decline programs of gene expression can be operated by non-oscil-

latory transcription factors, oscillating transcription programs can be best achieved with oscillating

transcription factors. We note that the transcripts that oscillate are involved in the decision of cells

of whether to move or not, which has to be refreshed repeatedly over time. The oscillatory dynamics

of NF-kB allows time to be segmented in units of 90 min cycles, with the option to resume chemo-

kine-directed migration after each single cycle. As seen from this perspective, the operation of the

NF-kB system as a damped, fast-detuning oscillator implies that in the presence of constant stimula-

tion each motile cell will decide for itself, without synchrony to nearby cells. In contrast, in a situation

where stimuli change over time beyond a certain threshold – at least three-fold variation in ampli-

tude – cells would be broadly coordinated. Uncoordinated movement may maximize the volume ran-

domly patrolled by cells, while coordinated movement may be optimal to reach a specific target

location.

We thus speculate that NF-kB oscillations may have adaptive value in achieving oscillatory expres-

sion of genes involved in movement and direction, and the cells’ decision between uncoordinated or

collective action. In conclusion, we suggest that the oscillatory dynamics of NF-kB (and other tran-

scription factors) is a means of segmenting time to provide opportunity windows for decision.
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Materials and methods
Please note that this section contains both technical details and supplemental information explaining

the rationale behind our experimental approaches. We also refer here to Figure supplements that

are also discussed in the main text.

Cell lines and cell culture
GFP-p65 knock-in fibroblasts were provided by M. Pasparakis (details in De Lorenzi et al (2009);

Sung et al (2009)) and cultured in phenol-red free DMEM, with 10% FCS, 50 mM b-mercaptoethanol,

1x L-glutamine, 1x sodium pyruvate, 1x non-essential amino acids, and 1x pen/strep in standard tis-

sue culture plastic.

GFP-p65 fibroblast cultures were started from original aliquots frozen upon arrival from Paspara-

kis’ lab and tested every week to exclude mycoplasma contamination using approved kits. Since

there are no approved STR profiling protocols for mouse cells ((Yu et al., 2015) and http://www.

atcc.org/Global/FAQs/0/A/STR%20Testing%20Service%20-%20STR%20on%20mouse%20cell%

20lines.aspx), we carefully tested our cells for the presence of non-green cells (not expressing GFP-

p65) that could represent a cross-contamination of the original culture.

For imaging experiments, cells were plated one day before the experiment in CellASICÔ ONIX

M04S-03 Microfluidic Plates at low density to avoid confluence on the day of the experiment (e.g.

Figure 1—figure supplement 1A). These plates consist of chambers for cell culture connected

through microfluidic channels to a series of reservoirs containing media with selected concentrations

of stimuli that can be flown through the chambers. Of note, to avoid cell stress or toxicity, the micro-

fluidic plates are primed with 10%FCS in DMEM for 2–4 hr before cell plating.

Before imaging, DMEM-0.1% FCS medium containing 50 ng/ml of the nuclear dye Hoechst33342

was replaced in the microfluidic chambers 3 hr prior to the experiment using the microfluidic plat-

form, see details on the use of the CellASICÔ ONIX below. Mouse recombinant TNF-a (R&D Sys-

tems) was diluted in DMEM-0.1%FCS as specified in the text and added in the plate reservoirs. It is

relevant to note that TNF-a activity is maintained after 12 hr incubation in the plate reservoirs at

37˚C, indicating that TNF-a degradation is negligible when it is not in contact with the cells (Fig-

ure 1—figure supplement 1D).

Microfluidics
The CellASICÒ ONIX Microfluidic Platform allows to apply sharp stimuli by quickly replacing the

medium in the cell chambers. The flexible proprietary software allows the delivery of medium con-

taining different concentrations of TNF-a for specific time sequences for more than 10 hr while cell

are imaged. The protocols are available upon request. The medium flows in the channels around the

microfluidic chambers and diffuses through the perfusion barrier, minimizing the undesirable effect

of shear stress (Babini et al., 2015) (see Figure 1—figure supplement 1A,B). The small volume of

medium in the chambers (less than 1 ml) is replaced fast even at low pressures, as confirmed by the

sharp oscillatory profiles obtained even for high frequency stimuli. In spite of the low pressure

applied (1 psi), the flow rates of 10 ml/hr (manufacturer’s website) are in the same order of magni-

tude as the 200 nl/min used in Kellogg and Tay (2015). We also generated “sawtooth-like” profiles

as in Kellogg and Tay (2015) by periodically replacing the medium with a 15 min pulse and stop-

ping the flow. However, the cell-to-medium ratio in our culture chambers might be different and rel-

evant for TNF clearance due to cell-linked decay needed for the sawtooth profile.

Live imaging and detection of NF-kB dynamics
Live cell imaging of GFP-p65 knock-in MEFs was performed using a Leica TCS SP5 confocal micro-

scope with an incubation system where cells were stably maintained at 37˚C in 5% CO2. Time-lapse

images were acquired at 6 min intervals for more than 15 hr. We used a low magnification objective

(20x, 0.5 NA) and an open pinhole (Airy 3), ensuring that the image depth (10.7 mm) contains the

thickness of the whole cell so that images are a record of the total cell fluorescence. GFP-p65 is

imaged with the 488 nm Argon laser (GFP channel) while Hoechst 33342 stained nuclei are imaged

with the low energy 405 nm UV diode laser at 5% of its maximum intensity (HOE channel). Images

were acquired as 16 bit, 1024�1024, TIFF files. Experiment replicates were acquired on different

days starting from different batches of frozen cells (samples provided as Videos 1–5).
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Nuclei were stained with Hoechst 33342 for imaging, segmentation and tracking

(Zambrano et al., 2014a) without any interference with the natural signalling dynamics (see below

for a description of the controls performed).

Safety assessment for Hoechst staining
Stress from photo-damage during live-cell imaging can hamper cell biology studies (Cole, 2014),

while nuclear dyes can interfere with the natural signaling dynamics (Ge et al., 2013; Martin et al.,

2005). Hence different controls were performed to exclude distortions of the natural signalling in

our imaging conditions.

Apoptosis and cell death
We noticed that cells under a constant flow of fresh medium do not display apoptotic events until

very late in the experiments (10–12 hr; Video 2). Importantly, unstimulated cells are viable and

undergo mitosis despite the presence of low serum concentration (0.1% FCS). In contrast, cells

receiving a constant flow of TNF in the absence of Hoechst and UV imaging undergo apoptosis

(Video 1), with a frequency that is proportional to the TNF concentration (Figure 1—figure supple-

ment 7). The imaging fields contain detectable apoptotic cells after 3, between 6 and 9 or

after 12 hr of stimulation with 10, 1 or 0.1 ng/ml of TNF, respectively. This suggests that cell death

observed in Video 1 was due to the continuous flow of 10 ng/ml TNF-a and not due to the imaging

conditions.

Photo-damage
The cells were either imaged for 15 hr in the presence of Hoechst or left without Hoechst and not

imaged; we then immunostained cells to detect thymine dimers formation. Immunostaining intensi-

ties (Figure 1—figure supplement 6) are extremely low in cells exposed to Hoechst and imaging,

especially when compared to cells exposed to UVC radiation. This suggests that imaging does not

produce thymine dimers or that thymine dimers are repaired fast and do not accumulate in the cells.

To further exclude the possibility of DNA damage, we checked for the presence of gammaH2AX,

which is a marker for early DNA repair after formation of DNA double strand breaks (DSB)

(Turinetto and Giachino, 2015; Yang et al., 2015) and late DNA repair after the formation of UV-

induced thymine dimers (Oh et al., 2011; Staszewski et al., 2008).

Again, the signal for gammaH2AX (Figure 1—figure supplement 7) is extremely low in imaged

cells, when compared to the signal from cells treated with doxorubicin, which induces DSBs. Of

note, the phosphorylated form of H2AX is found at DNA polymerase stalled forks (Turinetto and

Giachino, 2015) as marker of replicative stress. This observation may explain the minimal signal

present in some of the imaged cells. All together these results indicate negligible DNA damage in

the conditions considered.

Interference with NF-kB dynamics
We performed a manual tracking of cells that received a constant flow of TNF-a but were not

exposed to Hoechst nor to UV light (“unstained/non-imaged cells”, Figure 1—figure supplement

9). Manual segmentation of nuclei is simple when nuclei are either empty or full of p65, but becomes

unreliable when concentrations in nucleus and cytoplasm are similar. Despite this caveat, we found a

good qualitative agreement of dynamics in unstained/non-imaged cells with the heterogeneous but

damped oscillatory dynamics observed under Hoechst/UV imaging conditions, as shown in Fig-

ure 1—figure supplement 9. Therefore, the p65 dynamics described in our manuscript represents

the biological effect of stimulation with TNF-a, and is essentially undistorted by imaging.

Immunobloting and immunostaining
Staining was performed according to manufacturers’ instructions. For WB, we used an anti p65 Rab

(dil 1:1000, #sc-372 C20, Santa Cruz; Figure 1—figure supplement 10). For immunostaining we

used anti gammaH2AX Mab (dil. 1:500; #05-636, Millipore; Figure 1—figure supplement 7) and

anti thymine dimers TDM-2 (dil. 1:2000, Cosmo Bio, Japan (Komatsu et al., 1997); Figure 1—figure

supplement 6). UV-photodamage was induced with 254 nm UV irradiation using an UVC 500
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Crosslinker, Amersham. Panels in Figure 1—figure supplements 6 and 7 are representative of 3

independent experiments.

Quantification of NF-kB dynamics
The following short description summarises the whole process in few sentences. Each passage will

be then thoroughly described in the next paragraphs.

The dynamics were quantified by computing the nuclear to cytoplasmic ratio of the intensities

(NCI) of single cells, which is a measure robust against distortions and reflects faithfully the oscilla-

tions in the nuclear concentration of NF-kB oscillatory dynamics. This holds true provided that the

total amount of p65 is constant, as we show for our cells under stimulation (see Figure 1—figure

supplement 9), and is also assumed by mathematical models (see Hoffmann et al (2002) and the

more recent in Kellogg and Tay (2015)). Interestingly, p65 is not constant in macrophages stimu-

lated with LPS (Sung et al., 2014). The analysis of time series relies on the detection of significant

peaks, performed following our previously discussed procedure (Zambrano et al., 2014a) that

allows to distinguish significant peaks from noisy peaks. Once peaks are detected we assign them a

phase: 2p for the “maxima” and p for the “minima” between peaks.

Selection of the quantifier of NF-kB dynamics
In order to assess the oscillations for a larger number of cells, we optimized our software

(Zambrano et al., 2014a) to calculate the nuclear to cytoplasmic ratio of the intensity (NCI) of

NF-kB signal for hundreds of cells; NCI is a quantifier that has been used by other groups

(Ashall et al., 2009; Nelson et al., 2004). As we argue below, thanks to the fact that the total

amount of NF-kB is constant (Figure 1—figure supplement 10), NCI depends univocally and

monotonically on the nuclear amount of NF-kB. More importantly, due to the fact that it is a

ratio of intensities, it is robust and independent of slight changes in the focus and in the laser

intensity, among other possible experimental distortions, which are observed in our setup. The

same rationale brought us to use ratios of intensities in our previous works (Sung et al., 2009;

Zambrano et al., 2014b). Importantly, these distortions imply that the background-adjusted

mean nuclear intensity used in other studies (Kellogg and Tay, 2015; Lee et al., 2014;

Sung et al., 2014), although advantageous for other reasons (it only requires the segmentation

of the nuclei and estimation of the background) would not be appropriate in our imaging experi-

mental setup.

We provide below a more detailed argumentation of these ideas.

Following the notation of Zambrano et al (2014b) we have that the intensity measured in pixel p

of the image at time t in a time lapse experiment can be described as:

Iðp; tÞ ¼Aðp; tÞP ðp; tÞþB p;tð Þ (Q1)

where P(p,t) is the amount of NF-kB in pixel p, A(p,t) is the amplification coefficient between the

protein brightness and the amount of protein and B(p,t) corresponds to the background. In our

experiments with time-varying intensities, it is clear that both A(p,t) and B(p,t) vary in time, and pre-

sumably also in space, due to laser variations and/or slight variations in the illumination uniformity.

Our quantifier NCI, that we estimate using our software, is the ratio of the background corrected

average intensities in the nucleus and the cytoplasm IðtÞh inuc and IðtÞh icyto

� �

respectively, and can

be defined using this notation as:

NCIðtÞ �
IðtÞh inuc
IðtÞh icyto

¼
Scyto

Snucleus

P

p2nucleusIðp; tÞ�Bðp; tÞ
P

q2cytoplasmIðq; tÞ�Bðq; tÞ
¼

Scyto

Snucleus

P

p2nucleusAðp; tÞP ðp; tÞ
P

q2cytoplasmAðq; tÞP ðq; tÞ
(Q2)

so we have that, if we consider that A(p,t) is approximately constant and equal to certain A(t) in the

area occupied by the cell (as it is in our images):

NCIðtÞ ffi
Scyto

Snucleus

AðtÞ
P

p2nucleusP ðp; tÞ

AðtÞ
P

p2cytoP ðq; tÞ
¼

Scyto

Snucleus

ðNF �kBnucðtÞÞ

ðNF �kBcytoðtÞÞ
(Q3)

where Scyto and Snuc are the areas occupied by cytoplasm and the nucleus, respectively. Our quanti-

fier is hence a good indicator of the ratio of the amount of NF-kB in the nucleus and in the
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cytoplasm. However the numerator and denominator of this ratio can fluctuate due to biological rea-

sons and this might blur the existence of oscillations in the nuclear amount of NF-kB. But this is not

the case, due to the fact that the total amount of NF-kB is constant for our stimulated fibroblasts.

This has been assumed in different mathematical models present in the literature, from the seminal

paper (Hoffmann et al., 2002) to more recent papers (Kellogg and Tay, 2015). Interestingly,

though, this view has been challenged by the recent work of Sung et al. (2014), which shows that in

macrophages under LPS stimulation p65 is regulated by a positive feedback. Thus, to confirm that

our assumption is reasonable, we quantified p65 by western blotting for our cells under 10 ng/ml

TNF-a at several timepoints from 1 to 8 hr. The results are shown in (Figure 1—figure supplement

10), showing no significant change in the p65 levels upon stimulation. Hence, we consider our

assumption valid. This implies that:

NCIðtÞ ¼
Scyto

Snucleus

ðNF �kBnucðtÞÞ

ðNF �kBTOT Þ� ðNF �kBnucðtÞÞ
(Q4)

hence we can see that NCI(t) depends monotonously on ðNF � kBnucðtÞÞ, see Figure 1—figure sup-

plement 9B. For this reason, it is intuitively clear that each local maximum or minimum of ðNF �

kBnucðtÞÞ leads to a local maximum or minimum of NCIðtÞ. Hence, oscillations in the nuclear amount

of NF-kB will be observed also using NCI(t). We can put this mathematically by saying that oscilla-

tions in the nuclear concentration of NF-kB occur at times t for which the

condition ðNF � kBnucðtÞÞ
0 ¼ 0. Similarly, oscillations in NCI will depend on the value of the deriva-

tive of NCI, that is:

NCI 0ðtÞ /
ððNF �kBTOT Þ� ðNF �kBnucðtÞÞþ 1Þ

ððNF �kBTOT Þ� ðNF �kBnucðtÞÞÞ
2

NF �kBnuc tð Þð Þ0 (Q5)

so from the above formula it is easy to see that:

NCI 0ðtÞ ¼ 0 !ðNF �kBnucðtÞÞ
0 ¼ 0 (Q6)

Overall, then, imaging, mathematical and biochemical arguments confirm that computing NCIðtÞ

is an adequate way to quantify oscillatory dynamics.

Concerning the background-corrected average intensity, using the above notation it would be

calculated as:

IðtÞh inucleus ¼
1

Snucleus

X

p2nucleus
Iðp; tÞ�B p;tð Þ ¼

1

Snucleus

X

p2nucleus
Aðp; tÞP ðp; tÞ (Q7)

thus IðtÞh inucleus /
P

p2nucleusP ðp; tÞ ¼ NF � kBnucðtÞð Þ for all t only if Aðp; tÞ were constant in all time

frames. As argued previously, this is not the case in our setting and that’s the reason why we pre-

ferred to use NCI.

Finally, variations in the areas of the nucleus and the cytoplasm might introduce small distortions,

although they typically vary seldom and slowly. Notice though that our software discards cells for

which the areas change abruptly, which typically is an indicator of imminent mitosis or cell death. We

cannot totally exclude variations of p65 at single cell level, provided that we measured it using a

population assay; however, p65 turnover is known to be long, so its slow variation would contribute

with a small term in the derivative and thus would just slightly distort the times for which peaks in

NCI appear compared to those of the nuclear concentration. To conclude, we think that NCI would

still capture the peaks and hence would be able to assess the cell’s oscillatory state, which is our aim

here.

The data provided confirm the validity of NCI as a quantifier. First, we have that NCI(t) remains

reasonably constant – except for some spontaneous oscillations, as previously reported

(Zambrano et al., 2014b) for cells that are not stimulated, as shown in Figure 1—figure supple-

ment 9A. This is remarkable because the movie from which these series were obtained present con-

siderable variation in the image intensity (see the Video 2). Along the same lines we do not find

upwards or downwards average trends in our data of NCI time series for different conditions dis-

cussed in the main figures and in the figure supplements, which indicates further that the time series

are properly normalized and reflect well the dynamics. As an additional confirmation, we have plot-

ted together the average nuclear intensity and the NCI values obtained from manual segmentation
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in Figure 1—figure supplement 9C, that show the same kind of qualitative behavior as NCI but

with different trends, as expected. A last indicator of the sensitivity of the quantifier comes from its

ability to detect even small oscillatory peaks, see Figure 3 and Figure 3—figure supplement 1 as

an example. Overall, then, NCI is a faithful measure of the oscillatory state of our cells.

Automated analysis of time-lapse experiments data
The major advantage of considering NCI with respect to the nuclear to total ratio used in

Zambrano et al (2014a) is that it does not require a perfect segmentation of the cytoplasm, which

might be complicated when cells touch each other. We developed a software that uses this quanti-

fier and is thus able to multiply by a factor of 2 the number of cells tracked, and by a factor of 1.5

the average tracking time with respect to the one described in Zambrano et al (2014a).

The software used to calculate NCI is provided as source code and works as follows: for each

time-lapse experiment, we have N frames images in the HOE channel and in the GFP channel,

respectively. Nuclei were segmented and used for cell tracking following the procedure described in

Zambrano et al (2014a). In order to estimate the average cytoplasmic intensity, the background

was computed by taking a square area centred on the cell nucleus, dividing it in tiles and using the

one with the smallest average intensity in the GFP channel to estimate the background intensity (this

procedure gives values compatible with the values obtained using a clustering-based algorithm).

Points belonging to the cytoplasm are those around the nucleus in a size window equal to 1.5 times

the size of the nucleus. The average cytoplasmic intensity is computed from the intensity in the GFP

channel of the pixels from this “ring”. An example is shown in Figure 1—figure supplement 1D.

Dividing or apoptotic cells were identified assessing their geometrical features (abrupt changes in

size of the nucleus and of the “cytoplasmic ring”) and discarded automatically.

Time series analysis
To analyse the resulting NCI time series, we adapted our peak detection algorithm

(Zambrano et al., 2014a). We consider peaks as a sequence of a local minimum, local maximum and

local minimum. The value of the peak q is defined by the height of the peak (from the highest mini-

mum to the maximum). A peak defined by only three consecutive time points is considered a noise

peak. We plot the distribution of the noise peak values obtained from our unperturbed and chronic

stimulation time series (Figure 1—figure supplement 2A), for which we observe our previously

reported spontaneous activations (Zambrano et al., 2014a). We find that these noisy peaks have a

low value, and hence by considering as significant those with a value over q>0.15, we find a reason-

ably good compromise between the need to ignore noise peaks and the need to detect small peaks

of valuable dynamical information. This was tested in a number of time series, and an example of

time series with the significant peaks detected using this threshold is shown in Figure 1—figure sup-

plement 2B. Calculations of magnitudes inferred from peaks take advantage of time series from

cells that were tracked for at least 7 hr.

Following (Mondragon-Palomino et al., 2011) we used the peaks to assign a phase value: peak

maxima are assigned a phase 0 (2p) and a phase p is assigned to peak minima. This was of particular

interest to obtain an assessment of the oscillatory modes present in our system, provided that peaks

can be very heterogeneous and plotting the peak height in colour-plots might make it difficult to

appreciate the smaller ones and hence the possible resonant oscillatory patterns. An example of this

transformation is shown in Figure 1—figure supplement 2C, which is the phase derived from the

peaks obtained of the time series displayed in Figure 1—figure supplement 2B. As in Mondragon-

Palomino et al (2011) we use the phase difference between the time series and the forcing to quan-

tify the degree of synchrony. The phase difference Dj was calculated from the timing DT between

the beginning of each forcing cycle and the closest significant peak, as Dj=2pDT/Tf, where Tf is the

forcing period. The entropy of the distribution of the phase is calculated as:

S ¼�
X

k

pklogpk

where pk is the probability of the kth bin (we use eight bins for all the conditions considered). The

synchrony intensity is then computed as:
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h¼ 1�S=Smax

where Smax is the value obtained for equal values of pk.

Quantitative real-time PCR
Total RNA was isolated using the IllustraRNAspin Mini kit (GE Healthcare), and complementary DNA

(cDNA) was obtained by retro-transcription with Random Hexamers and SuperScript II Reverse tran-

scriptase (Invitrogen) following the manufacturers’ instructions. Primers for the detection of mature

transcripts were designed in adjacent exons and spanned the intervening intron; primers for nascent

transcripts were located across an exon-intron boundary. Primer sequences are listed in

Supplementary file 1.

Quantitative real-time PCR was performed with SYBR Green I protocol using the LightCycler480

(Roche). The results are shown as averages of three technical replicates. Analysis was performed

with the –DCt method corrected for primer efficiencies (Vandesompele et al., 2002) and normalised

with two reference genes (Actb and Rplp1) (Nordgard et al., 2006). Experiments were repeated

twice.

It is important to emphasize that we did not stain our cells nor did we illuminate them with our

UV laser in our transcription experiments, neither in the RT-PCR assays nor in the Microarray experi-

ments described below. The controls described previously show that the nuclear labelling and the

imaging do not interfere with NF-kB signalling dynamics, so we expected the same for NF-kB-driven

transcription. To further confirm this, we compared RT-PCR quantifications of transcription in cells

stimulated with TNF and cultured in imaging medium (0.1% FCS+Hoechst) or standard MEF medium

(10% FCS). The results for nascent and mature IkBa and Ccl5 transcripts reported in Figure 5—fig-

ure supplement 2 show no difference in the transcriptional response in the two conditions.

Microarray experiments
RNA samples were extracted using the IllustraRNAspin Mini kit (GE Healthcare). Following extrac-

tion, RIN (RNA Integrity Number) was >9 (BioAnalyser, Agilent RNA Nano Kit). RNA samples (500

ng) were reverse transcribed with the IlluminaTotalPrep RNA Amplification Kit (Ambion) and copy

RNA (cRNA) was generated with 14 hr in vitro transcription reactions and checked at the BioAna-

lyser. Washing, staining, and hybridization were performed according to standard Illumina protocols.

cRNA samples were then hybridized to IlluminaBeadChip Array MouseRefSeq-8 v2. BeadChips were

scanned with BeadArrayÔ Reader in channel 2. The data have been uploaded on the Dryad Digital

Repository (Zambrano et al., 2016). Experiments were repeated twice.

Bioinformatic analysis of microarray experiments
Genome Studio’s bead summary probe level data – not normalized and not background corrected –

were analyzed using Bioconductor. We performed quality assessment by plotting the intensities of

regular and control probes. Sample intensities were quantile normalized and filtered for expression

and probe quality using beadarray R package: only probes with detection P-value <0.05 in at least

one condition and whose categories is defined “Perfect” or “Good” were kept. Probes were

labelled as deregulated if their absolute log2 fold change relative to the 0 time point were greater

than 1.

Clustering was performed applying a soft clustering of deregulated probes with the Mfuzz R

package, which is suggested for microarray time course-data (Kumar and Futschik, 2007). The opti-

mal number of clusters was assessed with the d.min function. To focus on the shape of the gene

expression profiles, we standardised the gene expression profiles by taking the usual base-two log-

arithm and normalizing to obtain mean 0 and standard deviation 1. The algorithm then groups genes

based on the Euclidean distance between profiles and the c-means objective function, which is a

weighted square error function. Each gene is assigned a membership value between 0 and 1 for

each cluster. Hence, genes can be assigned to different clusters in a gradual manner. The parame-

ters m defines the degree of “fuzzification”. It is defined for real values greater than 1 and the big-

ger it is the more fuzzy the membership values of the cluster. We used an m value estimated by the

“mestimate” function of 1.5. Membership values indicate the similarity of vectors to each other
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defining a cluster cores. To extract list of genes belonging to the cluster cores, we used the “acore”

function taking from each clusters all genes with a membership value of at least 0.5.

Pathway analysis of genes contained in each cluster was performed with the ClusterProfiling R

packages using an adjusted p-value cut-off for enrichment <0.2 based on the hypergeometric distri-

bution (Yu, 2015). We used for our analyses the Reactome database. In order to simplify the result-

ing output we plotted only the top five categories of the second and third level (Yu, 2015).

Conversely, overlaps were calculated based on all categories of the second and third levels. The

overlap coefficient (or Szymkiewicz-Simpson coefficient) between gene sets X and Y is given by:

overlap X;Yð Þ ¼
jX

T

Y j

minðjXj; jY jÞ

For statistical significance we performed a Fisher’s Exact Test for evaluating if the resulting clus-

ters where enriched for NF-kB’s targets. The resulting p-value has been converted in a significance

measure (-Log10(p value)). We used both a list taken from Li et al (2014) and from Thomas Gilmore’s

website, Boston University (http://www.bu.edu/nf-kb/gene-resources/target-genes/).

Mathematical modelling
We propose here a mathematical model based on the one discussed in Zambrano et al (2014b)

that adds the layer of regulation by considering the negative feedback provided by the protein A20

that blocks IKK activation upon stimulation (Figure 1—figure supplement 4). For the sake of com-

pleteness, we describe briefly below the basic process that we considered, together with the bio-

chemical rates involved (values are given in Supplementary file 2) and a summary of our

normalization procedure. Additional details on the motivations underlying certain selection of bio-

chemical reactions and variables of interest can be found in that paper. Being a simple model, it pro-

vides important qualitative insights on the possible variety of single-cell dynamics, but we also use it

to provide quantitative fittings of the average population dynamics and transcription.

NF-kB activation and IkBa feedback
The biochemical reactions described here are essentially the basic ones given in the simple

model given in Zambrano et al (2014b). The basic simplification of our model is to consider that

free NF-kB is nuclear, while the complex with the inhibitor IkBa is cytoplasmic. The formation of

the complex is given by (NF-kB:IkBa)

NF �kBþ IkBa�!
A
ðNF �kB : IkBaÞ

that can also spontaneously dissociate

ðNF �kB : IkBaÞ�!
d

NF �kBþ IkBa

An external signal can lead to the appeareance of IKKa that can free NF-kB by degrading of IkBa

in the complex

ðNF �kB : IkBaÞþ IKKa�!
P

NF �kBþ IKKa

and in its free form

IkBaþ IKKa�!
kP

IKKa:

The negative feedback loop is enabled by the fact that the gene encoding IkBa, Ga, can be acti-

vated by NF-kB

Ga;OFF þNF �kB�!
Kon;I

Ga;ON þNF �kB

while the inactivation is modulated by

Ga;ON þ IkBa �!
Koff;I

Ga;OFF þ IkBa:

Notice that we are assuming here that IkBa plays a role as transcriptional repressor, as suggested

by experimental results (Arenzana-Seisdedos et al., 1995) and used in some mathematical models
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(Kellogg and Tay, 2015; Lipniacki et al., 2007; Tay et al., 2010), but not others (Ashall et al.,

2009; Sung et al., 2014). We show later that this does not have a strong impact on the fittings, but

to facilitate the correspondence with our previous work and in line with the mentioned modelling

approach, we opt to keep this process for all the gene inactivations considered in most of our explo-

rations. We only briefly explore the effect of setting the koff=0 in Figure 6—figure supplement 7,

results are detailed in the text.

We also consider that the gene can be basally activated

Ga;OFF �!
kon0;I

Ga;ON

and inactivated

Ga;ON �!
koff0;I

Ga;OFF

Transcription (mRNA production) is given by

Ga;ON�!
KRI

Ga;ON þ IkBaRNA

while the RNA degradation is given by

IkBaRNA�!
dRI
;:

IkBa translation is given by

IkBaRNA�!
KI

IkBa

while its spontaneous degradation is given by

IkBa�!
dI
;;

a degradation that is also possible while it is forming the complex

ðNF �kB : IkBaÞ�!
gdI

NF �kB

IKK activation and A20 feedback
The protein A20 is known to provide a negative feedback by modulating IKK activation process

(Ashall et al., 2009). We summarize this in our new mathematical model using the following pro-

cesses in which we just model the evolution of the active form, IKKa.

Given a external time dependent TNF-a variation, TNF(t), characterized by certain values of the

alternating doses, D1 and D2 in times T1 and T2, we will assume that the appearance of the active

IKK, IKKa, can be summarized as:

TNF ðtÞ �!
KðA20Þ

IKKa:

In a situation of constant flow of TNF-a the value of TNF(t) would be constant and equal to a

dose D.

The biochemical rate of this equation, K(A20), is the only rate that we consider as variable. In

doing so, we aim to summarize in just one biochemical reaction the fact that A20 contributes to

block IKK activation (Ashall et al., 2009) instead of modelling the whole IKK activation module, so

KðA20Þ ¼
KS

1þ A20
A200

� �n

IKK gets spontaneously inactivated as

IKKa�!
dK
;:

The gene encoding A20 is regulated by the same activation and inactivation processes as IkBa so

GA20OFF þNF �kB �!
Kon;A20

GA20;ON þNF �kB
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GA20;ON þ IkBa �!
Koff;A20

GA20;OFF þ IkBa

GA20;OFF �!
Kon0;A20

GA20;ON

GA20;ON �!
Koff0;A20

GA20;OFF

Transcription is given by

GA20;ON �!
KR;A20

GA2;ON þA20RNA

while the RNA degradation is given by

A20RNA�!
dR;A

;

finally A20 is translated as

A20RNA�!
KA

A20

and it is spontaneously degraded as

A20�!
dA
;

Transcription of an NF-kB controlled gene
As for the genes encoding for A20 and IkBa, we consider that for any NF-kB controlled gene tran-

scription is regulated by the processes

GOFF þNF �kB�!
Kon;G

GON þNF �kB

GON þ IkBa �!
Koff;G

GOFF þ IkBa

GOFF �!
Kon0;G

GON

GON �!
Koff0;G

GOFF

while the RNA produced from the gene is provided by

GON�!
KR

GON þA20RNA

and its degradation is given by

GRNA�!
dR;G

;

Model equations, normalization and parameter selection and uncertainty
The equations of the model are derived using mass-action kinetics and performing a normalization in

much the same way as in Zambrano et al (2014b). We describe below the process, using the same

symbols to represent biochemical species and their copy number.

First, as in previous existing models and as suggested by our experiments, the total amount of

NF-kB, free plus bound to the inhibitor, remains constant and equal to NF-kB0 so we define N=NF-k

B/ NF-kB0. We also normalize the amount of inhibitor as I= NF-kB/ NF-kB0 and the amount of A20

as A= A20/ A200 and K=IKK/IKK0, where A200 and IKK0 are amounts of reference in such a way that

N, I and A are adimensional variables of the order of 1. On the other hand, for any gene we have

that the maximum number of on states is G0=2 (the two alleles), so GI, and GA are a number

between 0 and 1 representing the fraction of active genes encoding for IkBa and for A20, respec-

tively – it is a continuous approximation to a discrete variable. Finally, notice that using our notation

the maximum number of active genes is G0 so it can be proved that the maximum asymptotic value

of the amount of RNA of the biochemical species X is of the form KR,X�G0/dR,X. Hence, we define the
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variables RI, and RA as proportional to the amount of mature RNA of IkBa and A20, respectively, via

the relations

RI ¼ IkBa RNA � dR;I=ðKRI �G0Þ and RA ¼A20RNA � dR;A20=ðKR;A20 �G0Þ:

Overall, these normalizations allow one to pass from biochemical species with copy numbers of

different orders of magnitudes to adimensionalized variables that are of the order of 1.

By using them, and renaming combinations of constants (in such a way that lowercase parameters

are obtained from uppercase biochemical reaction rates), we have the following model of ordinary

differential equations describing the dynamics of our system:

dK

dt
¼�dK �Kþ

1

1þðAÞn
SðtÞ (1)

dN

dt
¼ d � ð1�NÞþg � dIð1�NÞþ p �K � 1�Nð Þ�a � I �N (2)

dGI

dt
¼ konIN þ kon;0;I
� �

ð1�GIÞ� koffIIþ koff;0I
� �

GI (3)

dRI

dt
¼ dRI GI �RIð Þ (4)

dI

dt
¼ d � ð1�NÞ�k � p �K � I�a � I �N þ kI � kRI � dI � I (5)

dGA

dt
¼ kon;AN þ kon;0;A
� �

ð1�GAÞ� koff;AIþ koff;0;A
� �

GA (6)

dRA

dt
¼ dRA GA�RAð Þ (7)

dA

dt
¼ kA �RA� dA �A (8)

The parameters used as starting point in our explorations and the fittings can be found in the

source code folder for mathematical modelling, while the original biochemical rates from which they

were derived can be found in Supplementary file 2. Normalised parameter values are provided in

the source codes. Many of them have the same values as the ones provided in Zambrano et al

(2014b). Additional parameters were manually fitted or extracted from (Tay et al., 2010), as we did

previously. Notice that the degradation rates of the kinase, the RNAs and the proteins appear as

parameters in the equations above, unchanged. The remaining parameters are related to the origi-

nal biochemical rates as p=P�IKK0,a=A�NF-kB0, kI=KI�KR,I�G0/(dR,I�NF-kB0), kA=KA�KR,A�G0/(dR,A�A200),

kon,I=Kon,I� NF-kB0, koff,I=Koff,I� NF-kB0, kon,A=Kon,A� NF-kB0, koff,A=Koff,A� NF-kB0. S(t) is the normal-

ized signal, in such a way that a constant TNF = 10 ng/ml is equivalent to S(t)=2 h-1 in the system of

equations. For lower doses we use lower values of S.

Notice that the adimensionalization leads to a number of parameters smaller than the total num-

ber of biochemical rates and constants of the original system. Equations 2–5 are identical – except

for the inclusion of spontaneous gene activation-inactivation – to the ones proposed in our previous

minimal model of the regulatory network (Zambrano et al., 2014b). Equation 1 models the effect

of A20 as inhibitor of the kinase activation. This second negative feedback is completed with Equa-

tions 6–8, that explicit NF-kB control of A20 expression.

As shown below, we use this model both to fit the observed dynamics and for numerical explora-

tion of the dynamics observed under different stimuli. For simplicity, we call PNF-kB to the set of

parameters of Equations 1–8 and PS to the parameters describing the parameters of the external

signal, that can either be constant or a time varying rectangular forcing signal as shown in

Figure 1A. Following what we did in previous numerical explorations (Zambrano et al., 2014b) we

associate to each parameter an uncertainty degree D, so each parameter can be randomly varied by

multiplying it by a factor in the interval [10-D, 10D] with D smaller or equal than 1. In other words,

parameters with higher uncertainty degree can be varied up to one order of magnitude above or

below their selected initial value, which is itself a moderate variation. Those degrees are specified in

Supplementary file 2: note that we choose higher values of D for manually fitted parameters and
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lower for those from the literature or from our own measurements. We also consider a high value of

D for parameters that summarize many different processes or for those in which our model is less

detailed, as in the IKK activation – A20 regulatory module.

Finally, the equations for a gene under the control of NF-kB are:

dG

dt
¼ kon;GN þ kon;0;G
� �

ð1�GÞ� koff;GIþ koff;0;G
� �

G (9)

dR

dt
¼ dR;GðG�RÞ (10)

where in this case R=G RNA �dR,G/(KR�G0), kon,G=Kon,G� NF-kB0, koff,G=Koff,G� NF-kB0. The parameters

in (9) and (10) are used to model and fit different expression profiles are denoted as PG. Notice that

to model the process of gene expression one needs to set PS, PNF-kB and PG. In this context, two dif-

ferent genes expressed under the same external stimuli conditions would share the parameters PS

and PNF-kB but different values of PG. This idea is used in our fittings of dynamics and transcription in

this work.

Classification of the different dynamical responses for constant stimulus
We have observed experimentally that even for constant stimulation different dynamics are possible,

with trajectories showing different degrees of dampening and sometimes even irregular and non-

oscillating profiles (Figure 1—figure supplement 2D) as pointed out in previous works (Sung et al.,

2009; Zambrano et al., 2014b). Our relatively simple model illustrates why this situation might arise

and how a wider variety of dynamics might arise compared to the regular oscillations documented in

the literature for more complicated models (e.g. (Ashall et al., 2009; Tay et al., 2010)).

To illustrate this, we analyzed the dynamics for a constant external stimulus (S(t)=2 h-1) and vary-

ing simultaneously each parameter of the parameter set PNF-kB according to their uncertainty degree

D. We used them to generate trajectories and selected those giving rise to a response, i.e. those for

which N(t) is bigger than 0.4 in the first 3 hr and whose average values in the last hours was smaller

or equal than N=0.4. To characterized in a systematic way their dynamics, we located the fixed point

of Equations 1–8 and calculated the eigenvalues {li} (i=1,...8) of the Jacobian. In Figure 1—figure

supplement 5A we plot the real and imaginary parts of each set of eigenvalues. We represent with

a red dot the eigenvalues belonging to a set in which the real part of at least one of them is bigger

than zero. This means that the fixed point for those parameters is unstable and hence trajectories

converge to a stable limit cycle around it. In other words, for those parameter combinations sus-

tained oscillations arise. The percentage of parameter sets giving sustained oscillations is below 10%

(Figure 1—figure supplement 5B, right panel), which make us conjecture that parameters giving

rise to sustained oscillations are not the norm.

We also plot in Figure 1—figure supplement 5C the parameter values giving rise to oscillating

and non oscillating (but responding) trajectories. We note that the intervals are very similar except

for parameters n and dA involved in the A20 negative feedback, which indicates that this feedback is

critical in order to obtain a sustained or a damped oscillatory response. In previous works it was

shown experimentally and through mathematical models that the interplay between the IkB and A20

regulatory modules regulate different phases of NF-kB response (Werner et al., 2008). Our numeri-

cal results suggest that it also plays a key role in the type of dynamics observed (oscillatory versus

damped). Overall, this analysis further hints to the fact that it is the precise combination of parame-

ters, rather than the precise single values, what determines the type of dynamics observed and

might account for the different dynamics observed with respect to other groups (Ashall et al., 2009;

Cheng et al., 2015; Kellogg and Tay, 2015; Lee et al., 2009; Sung et al., 2009; Tay et al., 2010).

Finally, we have to notice that being the system given by Equations 1–8 a dynamical system with

real variables, the imaginary eigenvalues come in complex conjugate pairs. The distribution of

parameter combinations with 2, 4 and 6 imaginary eigenvalues are shown in Figure 1—figure sup-

plement 5B (left panel). Notice that an oscillatory frequency can be associated to each couple of

complex conjugate pairs (Goldstein et al., 2001), so having more than one of such couples means

that the dynamics will combine different frequencies.

To further illustrate all this, in Figure 1—figure supplement 5D we present examples of the vari-

ety of trajectories found. Some of them are oscillating (red), showing both smooth and spiky
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oscillatory peaks. Many others are damped and in some cases the concurrence of two oscillating

timescales, fast and slow, is evident. Some others present clearly non-oscillating profiles. Overall,

our numerical exploration of our relatively simple models shows that different dynamics are possible

in presence of constant stimulation, as observed in the experiments of this and previous works

(Sung et al., 2009; Zambrano et al., 2014a).

The model simulation routine was implemented in C code language and compiled using gcc. Rou-

tines for parameter variation and time series analysis and stability analysis (using the function fsolve

of the Nonlinear Equations package) where written using GNU Octave.

Parameter fitting
Routines were written in GNU octave to fit the model to the data by combining Markov Chain Monte

Carlo for initial exploration of the parameter space and a Levenberg–Marquardt algorithm. Parame-

ters of Equations 1–8 were varied within the specified uncertainty degree. The goal is to minimize

the distance between a given goal signal X={X(tk)} for k=1,...,N and the theoretical values x={x(tk)}

obtained from the model. We define the distance of a given fitting to the data as:

dX;x ¼
1

N

X

k

XðtkÞ�x tkð Þj j

max
�

XðtkÞ;xðtkÞ
�

When several data are fitted simultaneously, the total distance between model predictions and

the data were obtained by summing each distance. Notice that the 1/N factor weighs for difference

in the length of the data. For a given computations, this distance gives the average relative error per

timepoint of the fitting.

- To fit NCI, theoretical NCI profiles from the model were obtained as:

NCIðtÞ ¼
Scyto

Snucleus

NðtÞ

1�NðtÞ
:

where Scyto/Snuc is the ratio of the nuclear to total area of the cells in our image, which is estimated

to be of around 1/3.

For parameter fitting of the gene expression obtained from Quantitative Real-Time and microar-

ray experiments (see below), the fold change levels predicted by the models where computed as R

(t)/R(0). For the simultaneous fitting of NCI, IkBa and Cccl5 mRNA shown in Figure 5, common PNF-

kB parameters where found while for IkBa and CCL5 mRNA we independently fitted the respective

set of parameters PG. For the fitting of PNF-kB the parameters were varied within the limits given by

their uncertainty degree.

Fitting of the microarray data was performed by keeping constant the parameters PNF-kB

obtained fitting the data of Figure 5 and varying PG (those of (9–10)) for each gene, as we did for

IkBa and Cccl5. Examples are shown in Figure 6—figure supplement 6. Figure 6—figure supple-

ment 5 shows that the distance between fitting and real data is better for genes with increased tran-

scription with an average fitting error of 9%.
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