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Fast turnover of genome transcription
across evolutionary time exposes entire
non-coding DNA to de novo gene
emergence
Rafik Neme*, Diethard Tautz*

Max-Planck Institute for Evolutionary Biology, Plön, Germany

Abstract Deep sequencing analyses have shown that a large fraction of genomes is transcribed,

but the significance of this transcription is much debated. Here, we characterize the phylogenetic

turnover of poly-adenylated transcripts in a comprehensive sampling of taxa of the mouse (genus

Mus), spanning a phylogenetic distance of 10 Myr. Using deep RNA sequencing we find that at a

given sequencing depth transcriptome coverage becomes saturated within a taxon, but keeps

extending when compared between taxa, even at this very shallow phylogenetic level. Our data

show a high turnover of transcriptional states between taxa and that no major transcript-free

islands exist across evolutionary time. This suggests that the entire genome can be transcribed into

poly-adenylated RNA when viewed at an evolutionary time scale. We conclude that any part of the

non-coding genome can potentially become subject to evolutionary functionalization via de novo

gene evolution within relatively short evolutionary time spans.

DOI: 10.7554/eLife.09977.001

Introduction
Genome-wide surveys have provided evidence for ’pervasive transcription’, i.e., much larger portions

of the genome are transcribed than would have been predicted from annotated exons (Clark et al.,

2011; Hangauer et al., 2013; Kellis et al., 2014). Most are expected to be non-coding RNAs

(lncRNAs) of which some have been shown to be functional. However, the general conservation level

of these additional transcripts tends to be low, which raises the question of their evolutionary turn-

over dynamics (Kutter et al., 2012; Kapusta and Feschotte, 2014). They are currently receiving

additional attention, since they could be a source for de novo gene formation via a proto-gene stage

(Carvunis et al., 2012; Ruiz-Orera et al., 2014; Neme and Tautz, 2014). It has been shown that de

novo gene emergence shows particularly high rates in the youngest lineages (Tautz and Domazet-

Loso, 2011), indicating that there is high turnover of such transcripts and genes between closely

related species. Indeed, comparative studies of de novo genes between Drosophila species

(Palmieri et al., 2014) and within Drosophila populations (Zhao et al., 2014) have confirmed this.

A number of possibilities have been discussed by which new transcripts are generated in previ-

ously non-coding regions, including single mutational events, stabilization of bi-directional transcrip-

tion and insertion of transposable elements with promotor activity (Brosius, 2005; Gotea et al.,

2013; Neme and Tautz, 2013; Wu and Sharp, 2013; Sundaram et al., 2014; Ruiz-Orera et al.,

2015). Detailed analyses of specific cases of emergence of a de novo gene have shown that single

step mutations can be sufficient to generate a stable transcript in a region that was previously not

transcribed and translated (Heinen et al., 2009; Knowles and McLysaght, 2009). The unequivocal

identification of de novo transcript emergence can only be made in a comparison between very

closely related evolutionary lineages, where orthologous genomic regions can be fully aligned, even
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for the neutrally evolving parts of the genome (Tautz et al., 2013). While the available genome and

transcriptome data for mammals and insects are sufficient to screen for specific cases of de novo

transcript emergence, they are still too far apart of each other to allow a comprehensive genome-

wide assessment. Our analysis here is therefore based on a new dataset that reflects a very shallow

divergence time-frame for relatives of the house mouse (Mus musculus).

Results
We selected populations, subspecies and species with increasing phylogenetic distance to the Mus

musculus reference sequence (Keane et al., 2011). This reference was derived from an inbred strain

of the subspecies Mus musculus domesticus and we use samples from three wild type populations of

M. m. domesticus as the most closely related taxa, separated from each other by about 3,000–

10,000 years. Further, we use samples from the related subspecies M. m. musculus and M. m. casta-

neus, which are separated since 0.3–0.5 million years. The other samples are recognized separate

species with increasing evolutionary distances (Figure 1). We call this set of populations, subspecies

and species collectively ’taxa’ in the following. Altogether they span 10 million years of divergence,

which corresponds to an average of 6% nucleotide difference for the most distant comparisons.

We obtained genome sequence reads for all taxa and mapped them to the mouse reference

genome, using an algorithm that was specifically designed to deal efficiently with problems that

occur in cross-mapping between diverged genomes (Sedlazeck et al., 2013; see Appendix 1 for val-

idation). All regions that could be unequivocally mapped for all taxa were then used for further anal-

ysis. We refer to this as the ’common genome’ which allows comparisons on those regions of the

genomes which have not been gained or lost along the phylogeny, i.e., are common across all taxa

(Figure 1—figure supplement 1). It represents 71.7% of the total reference genome length (Fig-

ure 1—figure supplement 2). Hence, we are nominally not analyzing about a third of the total

genome length, but this corresponds to the highly repetitive parts for which unique and reliable

mapping of transcriptomic reads would not be possible. Also, changes in transcription derived from

gain or loss of genomic regions do not contribute to the patterns described below.

We chose three tissues for transcriptome sequencing, including testis, brain and liver. Previous

studies had shown that testis and brain harbor the largest diversity of transcripts (Necsulea and

Kaessmann, 2014). We sequenced only the poly-A+ fraction of the RNA, i.e., our focus is on coding

and non-coding exons in processed RNA.

We use non-overlapping sliding windows of 200nt to assay for presence or absence of reads

within the windows and express overall coverage as the fraction of windows showing transcription

eLife digest Traditionally, the genome – the sum total of DNA within a cell – was thought to be

divided into genes and ‘non-coding’ regions. Genes are copied, or “transcribed”, into molecules

called RNA that perform essential tasks in the cell. The roles of the non-coding regions were often

less clear, although it has since become apparent that some are also transcribed and generate low

levels of RNA molecules. However, many debate how significant this transcription is to living

organisms.

Neme and Tautz have now used a technique called deep RNA sequencing to study the RNA

molecules produced in several different species and types of mice whose last common ancestor

lived 10 million years ago. Different species produced RNA molecules from different portions – both

genes and non-coding regions – of their genomes. Comparing these RNA sequences suggests that

changes to the regions that are transcribed occur relatively quickly for a large portion of the

genome. Furthermore, there have been no significant areas of the common ancestor’s genome that

have not been transcribed at some point in at least one of its descendent species.

This therefore suggests that over a relatively short evolutionary period, any part of the genome

can acquire the ability to be transcribed and potentially form a new gene. The next challenge is to

find out how often these transcribed non-coding parts of the genome show important biochemical

activities, and how they find their way into becoming new genes.

DOI: 10.7554/eLife.09977.002
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(see methods for details). We use only uniquely mapping reads, implying that we neglect the contri-

butions and dynamics at repetitive loci. We display three thresholds of window coverage, the mini-

mum being coverage by at least a single read, while the higher ones represent at least 10 and 100

reads respectively. The first serves as a very inclusive metric of low-level transcription, with the draw-

back of potentially including noise into the analysis, due to stochasticity in sampling, while the others

represent thresholds for more abundant transcripts that are unlikely to be affected by sampling

noise.

Among the three tissues analyzed, liver has the lowest overall read coverage while brain and tes-

tis have similar overall levels (Figure 2A–C). Combining the data from all three tissues or triplicating

the read depth for one tissue (brain) increases the overall coverage in a similar way (Figure 2D,E).

Figure 2F shows the total coverage across all tissues and all sequencing runs, which amounts to

an average of 50.0 ± 2.5% per taxon. Hence, for each tissue, as well as in this combined set, we

observe a very similar coverage in all taxa, with only a slight increase in the low expressed fraction

for the most distant comparisons (see also legend Figure 2). This more or less stable pattern across

phylogenetic time could either be due to the same regions being transcribed in all taxa, or a more

or less constant rate of turnover of gain and loss of transcription between taxa.

To test these alternatives, we have asked which part of the transcribed window coverage is

shared between the taxa and which is specific to the taxa. For this, we consider three classes: i) win-

dows that are found in a single taxon only, ii) windows that are found in 2–9 taxa, i.e. more than one

but not in all and iii) windows shared among all taxa (Figure 3; Figure 3—figure supplement 1

shows an extended version where class ii) is separated into each individual group). However, such an

analysis could potentially be subject to a sampling problem, i.e. not finding a transcript in a taxon

does not necessarily imply true absence, but could also be due to failure of sampling. This would be

particularly problematic for singleton reads, since the probability of falsely not detecting one in a

second sample that expresses it at the same level is about 37%. However, given that we ask whether

Figure 1. Phylogenetic relationships and time estimates for the taxa used in the study. New genome sequences

were generated for taxa with *. A common genome was constructed across all taxa (Figure 1—figure

supplement 1) based on a mapping algorithm that is not affected by the sequence divergence between the

samples (Appendix 1). Figure 1—figure supplement 2 shows the intersection of genome coverage between the

named species.

DOI: 10.7554/eLife.09977.003

The following figure supplements are available for figure 1:

Figure supplement 1. Scheme for the establishment of the ’common genome’ using genomic reads and the

mouse reference genome.

DOI: 10.7554/eLife.09977.004

Figure supplement 2. Venn diagrams of representation of the common genome, derived from 200bp windows

covered in genomic reads in species with more than one million years divergence to the reference.

DOI: 10.7554/eLife.09977.005
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it is detected in any of the other 9 taxa, the probability of falsely not detecting it if it exists across all

of them becomes small (0.01%) (see also further analysis on singletons below).

Between 1 and 7% of transcribed windows are unique to one taxon only, with the more distant

taxa showing the higher percentages (Figure 3). Most of these taxon-specific transcripts are lowly

expressed (<10 reads per window), but the more distant taxa (MAT and APO in Figure 3I,J) show

also some more highly expressed ones. We find a total of 6566 windows with read counts >50 that

occur in a single taxon only, mostly in the long branches leading to MAT (1638 windows) and APO

(4485 windows), but some also between the most closely related taxa (43 windows for DOM, includ-

ing populations; 38 windows for MUS, including populations).

Approximately 18% of windows show transcripts shared across all taxa. These include most of the

very highly expressed ones (>100 reads per window), but also a fraction of the low expressed ones

(Figure 3). They are also enriched in annotated genes, especially in exons of protein coding genes,

but also in non-coding genes (Figure 3—figure supplement 2). The class ii) windows (sharing

between 2 and 9 taxa in Figure 3) represents the genes showing more or less turnover between

taxa, with more turnover the more distant they are of each other (Figure 3—figure supplement 1).

This class constitutes cumulatively the largest fraction (between 26 and 33% of whole genome cover-

age - Figure 3), supporting the notion of a fast turnover of most of the transcribed regions between

taxa.

The taxon-specific turnover of transcripts is also reflected in a distance tree of shared coverage.

Taxa that are phylogenetically closer to each other share more transcripts, i.e. the tree topology

mimics that of a phylogenetic tree based on molecular sequence divergence (Figure 4A,B). This

implies that the turnover of the transcripts is not random, but time dependent. However, the relative

Figure 2. Transcriptome coverage of the common genome per taxon. (A–C) Liver, brain and testis, respectively, sequenced at approximately the same

depth. (D) Combination of samples from A–D. (E) Additional sequencing of brain samples at 3x depth, compared to B. (F) Combination of all samples,

including additional brain sequencing. Three coverage levels are represented by colors from light blue to dark blue: window coverage with at least 1,

10 and 100 reads. Taxon abbreviations as summarized in Figure 1, with closest to the reference genome to the left of each panel and most divergent

one to the right. Note that the slight rise in low read coverage for the distant taxa could partially be due to slightly more mismapping of reads at this

phylogenetic distance (see Appendix 1 for simulation of mapping efficiency), but is also affected by a larger fraction of singleton reads (compare

Figure 4—figure supplement 1).

DOI: 10.7554/eLife.09977.006
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branch lengths are much extended for the more closely related taxa compared to the molecular dis-

tances, implying that there is a particularly high turnover between them.

To assess in how much this could be due a sampling variance problem at low expression levels,

we have separately analyzed the transcripts that are represented by single reads only, since these

should be most sensitive towards sampling problems. Depending on read depth and tissue, they

constitute about 2–12% of the common windows when assessed on a per sample basis (Figure 4—

figure supplement 1). However, most of these singletons in a given sample were re-detected in

another tissue or another taxon (Figure 4—figure supplement 1), such that less than 2% are present

in a given taxon (Figure 4—figure supplement 1) and less than 7% cumulatively throughout the

whole dataset (Figure 4—figure supplement 2). We used the extended brain sample reads, split

them into three non-overlapping sets of about 100 Mill reads for each taxon and constructed trees

out of these sets using only the singleton reads. This is the equivalent of repeating the same experi-

ment three times. We find indeed differences in the resulting trees, i.e. there is a measureable sam-

pling variance. By constructing a consensus tree, we can partition the data into a variable and a

common component. We find that 88% of the branch length is influenced by sampling variance,

while the remaining 12% still recover the expected topology (Figure 4C). When we use a read cover-

age of 1–5 for the same analysis, we find that 52% of the branch length are subject to sampling

Figure 3. Distribution of shared and non-shared windows with transcripts for each taxon, based on the aggregate dataset across all three tissues. Three

classes are represented: i) windows that are found in a single taxon only, ii) windows found in 2–9 taxa and iii) windows shared among all 10 taxa (from

left to right in each panel). Windows with transcripts were first classified as belonging to one of the three classes, independent of their coverage, and

were then assigned to the coverage classes represented by the blue shading (from light blue to dark blue: window coverage with at least 1, 10 and 100

reads). Taxon names as summarized in Figure 1. Figure 3—figure supplement 1 shows an extended version where class ii) is separated into each

individual group. Relative enrichment of annotated genes in the conserved class is shown in Figure 3—figure supplement 2.

DOI: 10.7554/eLife.09977.007

The following figure supplements are available for figure 3:

Figure supplement 1. Distribution of shared transcripts according to the number of taxa shared, based on the aggregate dataset across all three

tissues.

DOI: 10.7554/eLife.09977.008

Figure supplement 2. Windows transcribed across most species (9 or more) are strongly enriched in genes known from the reference genome, while

windows transcribed in some taxa (8 or less) are strongly depleted from known genes.

DOI: 10.7554/eLife.09977.009
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variance and for all reads combined it is 35% (Figure 4—figure supplement 3). Hence, at the 100

Mill read level, we have a noticeable effect of sampling variance, but this does not erase the underly-

ing signal. Also, the analysis in Figure 4B is based on 600 Mill reads per taxon, where sampling vari-

ance is expected to be further lowered.

The high dynamics of transcriptional turnover between taxa raises the question whether all parts

of the genome might be accessible to transcription at some point in evolutionary time. To explore

this possibility, we used a rarefaction approach to simulate the addition of one taxon at a time and

used the curve to predict the behavior of adding more taxa than the ones in the present study. We

compared this approach to a curve of increasing depth of sequencing, by taking subsets at 10%

intervals to understand whether depth or taxonomic diversity have different behavior in this respect.

We assume that in each species only a subset of the genome is transcribed, therefore the increase in

depth of sequencing would saturate at some point below 100%. Conversely, if each taxon is tran-

scribing slightly different portions of the genome due to a steady turnover, increasing the total num-

ber of sampled taxa should increase the saturation more than the increase that could be achieved

by sequencing depth. This is indeed what we find. The addition of taxa indeed leads to a further

increase in transcriptomic coverage, with a generalized linear model best describing the data as

increasing in a logarithmic fashion (Figure 5A). In contrast, we observe an asymptotic behavior of

the curve for increasing depth of sequencing, with apparent saturation reached at 84.1%, close to

the 83.2% that we have already achieved (Figure 5B).

Combined with the previous results, this allows two major conclusions. First, random transcrip-

tional noise (technical or biological) or deficiencies in sampling low level transcripts should not be

major factors in our analysis, since saturation with sequencing depth would not be possible under a

singleton dominated regime. Furthermore, low level transcripts (including singletons) have detect-

able biological signal (Figure 4C). Second, the data are consistent with the above outlined ideas

that the evolutionary turnover leads to steady – and almost unlimited – transcriptional exploration of

the genome, when summed over multiple parallel evolutionary lineages and taxa.

Figure 4. Distance tree comparisons based on molecular and transcriptome sharing data. (A) Molecular phylogeny based on whole mitochondrial

genome sequences as a measure of molecular divergence (black lines represent the branch lengths, dashed lines serve to highlight short branches). (B)

Tree based on shared transcriptome coverage of the genome, using correlations of presence and absence of transcription of the common genome. All

nodes have bootstrap support values of 70% or more (n = 1000). (C) Tree based on shared transcriptome coverage of singleton reads only from

subsampling of the extended brain transcriptomes. Left is the consensus tree with the variance component between samples depicted as triangles,

right is the same tree, but only for the branch fraction that is robust to sampling variance. Taxon names as summarized in Figure 1. Figure 4—figure

supplement 1 shows the fraction of singletons in dependence of each sample in each taxon, Figure 4—figure supplement 2 in dependence of read

depth. Figure 4—figure supplement 3 shows an extended version of the analysis shown in 4C for higher coverage levels.

DOI: 10.7554/eLife.09977.010

The following figure supplements are available for figure 4:

Figure supplement 1. Fraction of windows with singletons (one paired read) of the common genome per taxon.

DOI: 10.7554/eLife.09977.011

Figure supplement 2. Reduction of singletons in dependence of aggregate sequencing depth.

DOI: 10.7554/eLife.09977.012

Figure supplement 3. Trees based on shared transcriptome coverage of the genome, using binary correlations.

DOI: 10.7554/eLife.09977.013
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The above overall statistical consideration would still allow for the possibility of the existence of a

few scattered genomic islands that are not accessible to transcription because of structural reasons

(so-called transcriptional deserts – Montavon and Duboule, 2012) or heterochromatically packed

because they are not encoding genes required in the respective tissues. Hence, we analyzed also

the size distribution of transcript-free genomic regions in our dataset. We find that the maximum

observed length of non-transcribed regions is 6 kb (Figure 6), suggesting that apparent transcrip-

tional deserts in one taxon are readily accessible to transcription in other taxa, at least for the non-

repetitive windows of the genome that are analyzed here.

Discussion
Various studies have shown that many more regions of the genome are transcribed than are anno-

tated as exons (Ponting and Belgard, 2010; Kapranov and St. Laurent, 2012). The significance of

this additional transcription has been largely unclear and it has even been considered as noise, either

biological or technical. Here we were able to trace the turnover of these extra transcripts. Our data

suggest that many have sufficient stability to reflect a phylogenetic distance distribution that mimics

the phylogeny of the taxa. Hence, they should not simply be considered as noise. Rather, their life-

time should be sufficient to expose them to evolutionary testing and in this way they become a sub-

strate for de novo evolution of genes. On the other hand, they appear to have only a limited lifetime

in case they do not acquire a function, i.e. there is also high turnover of the transcribed regions

between taxa. This turnover has as a consequence that within a timespan of a few million years prac-

tically the whole genome is covered by transcription at some point in time, i.e. no major transcript-

free islands exist.

We have here sampled only three tissues. If more tissues and more life stages were sampled, one

would expect an even higher coverage of the genome within a given taxon. Such deep analyses

have been done in the ENCODE projects (http://www.genome.gov/10005107) and they have con-

firmed pervasive transcription (Clark et al., 2011; Hangauer et al., 2013; Kellis et al., 2014) at the

single-taxon level. Still, we expect that the turnover of transcribed regions between taxa would also

apply to the other tissues and stages, i.e. evolutionary testing of new transcripts would relate to all

Figure 5. Rarefaction, subsampling and saturation patterns using all available samples and reads. (A) Sequencing depth saturation as estimated from

an increase in the number of taxa. (B) Sequencing depth saturation as estimated from increasing read number. Blue dots indicate increases per sub-

sampled sequence fraction or taxon added from our dataset. Gray dotted line indicates the predicted behavior from the indicated regression, and gray

area shows the prediction after doubling the current sampling either by additional taxa (A) or in sequencing effort (B). Each analysis was tested for

logarithmic and asymptotic models. Best fit was selected from DBIC, with Bayes factor shown and qualitative degree of support shown. Standard

deviations are shown as black lines in A, and are too small to display in B (note that due to the sampling scheme for this analysis, the values above 50%

are not statistically independent and that the 100% value constitutes a single data point without variance measure).

DOI: 10.7554/eLife.09977.014
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tissues and stages. This turnover is contrasted by the set of conserved genes across taxa, for which

even the expression levels may be maintained across larger evolutionary distances

(Pervouchine et al., 2015).

We see a particularly large number of lineage-specific transcripts among the most closely related

taxa. This becomes most evident in the distance tree in Figure 4B where the branch length of the

three populations of M. m. domesticus, which have separated only a few thousand years ago, are

almost as long as those of the sister species M. spretus that has separated almost 2 Mill. years ago.

Although this is partially influenced by sampling variance of low expressed transcripts (Figure 4C),

this suggests that at the very short evolutionary distances (thousands of years) there is an even

higher turnover of transcripts than at the longer time frames (millions of years). Such a pattern of

unequal rates suggests that weak selection could act against many newly arising transcripts, such

that they can exist for a short time at a population scale, but not over an extended time. Hence, we

expect that the presence of such transcripts will be polymorphic at the population level, similar as it

has been shown in Drosophila (Zhao et al., 2014). We have done a preliminary analysis of transcrip-

tional variance between four individuals of each of the taxa and find this expectation fulfilled, but a

more extensive study is required to obtain reliable data at this level.

We expect that a fraction of new transcripts interacts with other genes and cellular processes,

either via providing a positive function or via being slightly deleterious. Our data do not allow at

present to speculate on how large this ’functional’ fraction would be, but this could become subject

to future experimental studies. It is also as yet open whether the transcripts exert their functions as

RNAs or via translation products. The analysis of ribosome profiling data has shown that many RNAs

that were initially classified as non-coding can be associated to ribosomes, i.e. are likely translated

(Wilson and Masel, 2011; Carvunis et al., 2012; Ruiz-Orera et al., 2014). On the other hand, when

tracing the origin of de novo genes, one finds frequently that they act first as RNA and acquire open

reading frames only at a later stage (Cai et al., 2008; Kapranov and St. Laurent, 2012;

Reinhardt et al., 2013 - see discussion in Schlötterer, 2015). For some of the de novo evolved

genes in Drosophila it has been shown that they have assumed essential functions for the organism,

such that knockouts of them are lethal (Chen et al., 2010). Global analyses of new gene emergence

trends suggest that the de novo evolution process has been active throughout the evolutionary

Figure 6. Comparative analysis of lengths of regions transcribed or not transcribed across all data (including

deeper brain sequencing) in all samples. Size distribution of regions not covered in any transcript (green) versus

size distribution of regions with at least one transcript (blue).

DOI: 10.7554/eLife.09977.015
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history (Neme and Tautz, 2013). Hence, the possibility of a transition from new transcript emer-

gence over acquisition of reading frames towards assuming essential genetic functions is well

documented.

The idea that many de novo transcripts are slightly deleterious is concordant with the fact that

various cellular processes maintain a balance between RNA transcription and degradation

(Houseley and Tollervey, 2009; Jensen et al., 2013). In yeast and mammals it has been shown that

several molecular pathways exist that degrade excess transcripts, in particular the ones from bidirec-

tional promoter activity (Jensen et al., 2013; Wu and Sharp, 2013). Hence, the fact that many of

the transcripts found by deep sequencing occur only at low levels does not necessarily imply a low

level of transcription, but could alternatively be due to fast targeting by a degradation machinery.

Our results provide an evolutionary dynamics perspective where emergence, functionalization

and decay of gene functions should be seen as an evolutionary life cycle of genes (Neme and Tautz,

2014). De novo gene birth should no longer be considered as the result of unlikely circumstances,

but rather as an inherent property of the transcriptional apparatus and thus a mechanism for testing

and revealing hidden adaptive potential in genomes (Brosius, 2005; Masel and Siegal, 2009).

Within this evolutionary perspective, any non-genic part of the genome has the possibility to

become useful at some time.

Material and methods

Sampled taxa
The youngest divergence point sampled, at about 3,000 years, corresponds to the split between

two European populations of Mus musculus domesticus(Cucchi et al., 2005) one from France (Massif

Central = DOMMC) and one from Germany (Cologne-Bonn area = DOMCB) (Ihle et al., 2006). These

European populations in turn have diverged from an ancestral M. m. domesticus population in Iran

(Ahvaz = DOMAH) about 12,000 years ago (Hardouin et al., 2015). The European M. m. domesticus

are also the closest relatives of the reference genome, the C57BL/6J strain Didion and de Villena,

2013).

We included two populations of Mus musculus musculus; one from Austria (Vienna = MUSVI) and

one from Kazakhstan (Almaty = MUSKH). These two populations are supposed to have a longer

divergence between then the European M. m. domesticus populations, but a more accurate esti-

mate is currently not available. We set the divergence for analyses at around 10,000 years as an

approximate estimate. M. m. domesticus has diverged from M. m. musculus and Mus musculus cas-

taneus about 0.4 to 0.5 million years ago, with a subsequent divergence, not long after, between M.

m. musculus and M. m. castaneus (Suzuki et al., 2013). We included M. m. castaneus (CAS) from

Taiwan as a representative of the subspecies.

To account for longer divergence times, we included Mus spicilegus (SPI; estimated divergence

of 1.2 million years); Mus spretus (SPR; estimated divergence of 1.7 million years)(Suzuki et al.,

2013); Mus matteyii (MAT; subgenus Nannomys), the North African miniature mouse (estimated

divergence of 6.6 million years) (Catzeflis and Denys, 1992; Lecompte et al., 2008), and Apode-

mus uralensis, the Ural field mouse (APO; estimated divergence of 10.6 million years)

(Lecompte et al., 2008).

The population-level samples (M. m. domesticus and M. m. musculus) included are maintained

under outbreeding schemes, which allows for natural polymorphisms to be present in the samples.

All other non-population samples are kept as more or less inbred stock, and therefore fewer poly-

morphisms are expected. All mice were obtained from the mouse collection at the Max Planck Insti-

tute for Evolutionary Biology, following standard rearing techniques which ensure a homogeneous

environment for all animals. Mice were maintained and handled in accordance to FELASA guidelines

and German animal welfare law (Tierschutzgesetz § 11, permit from Veterinäramt Kreis Plön: 1401–

144/PLÖ-004697).

A total of 60 mice were sampled, as follows: Eight male individuals from each population-level

sample (outbreds), Iran (DOMAH), France (DOMMC), and Germany (DOMCB) of Mus musculus domes-

ticus, and Austria (MUSVI) and Kazakhstan (MUSKH) of Mus musculus musculus. Four male individuals

from the remaining taxa (partially inbred): Mus musculus castaneus (CAS), Mus spretus (SPR), Mus

spicilegus (SPI), Mus mattheyi (MAT) and Apodemus uralensis (APO). Mice were sacrificed by CO2
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asphyxiation followed immediately by cervical dislocation. Mice were dissected and tissues were

snap-frozen within 5 min post-mortem. The tissues collected were liver (ventral view: front right

lobe), both testis and whole brain including brain stem.

Genome sequencing
One individual from each of M. spicilegus, M. spretus, M. mattheyi, and Apodemus uralensis were

selected for genome sequencing. DNA was extracted from liver samples. DNA extraction was per-

formed using a standard salt extraction protocol. Tagged libraries were prepared using the Genomic

DNA Sample preparation kit from Illumina, following the manufacturers’ instructions. After library

preparation, the samples were run in IlluminaHiSeq 2000 at a depth of approximately 2.6 lanes per

genome. Library insert size is ~190bases and paired-end reads were 100 bases long. Library prepara-

tion and sequencing was performed at the Cologne Center for Genomics. Sequencing read statistics

are provided in Table 1. Data are available under the study accessions PRJEB11513, PRJEB11533

and PRJEB11535, from the European Nucleotide Archive (http://www.ebi.ac.uk/ena/).

Transcriptome sequencing
The sampled tissues of each taxon were used for RNA extraction with the RNAeasy Mini Kit (QIA-

GEN) and RNA was pooled at equimolar concentrations. RNA quality was measured with the Agilent

RNA Nano Kit, for the individual samples and pools. Samples with RIN values above 7.5 were used

for sequencing. Library preparation was done using the Illumina TruSeq library preparation, with

mRNA purification (poly-A+ selection), following manufacturers’ instructions. Sequencing was done

in Illumina HiSeq, 2000 sequencer. Libraries for each group were tagged, pooled and sequenced in

a single lane, corresponding to approximately one third of a HiSeq2000 lane. Library insert size is

~190bases and paired-end reads were 100 bases long. Additional sequencing of the brain samples

was performed to identify potential limitations in depth of sequencing. For this, each brain library

was sequenced on a full lane of a HiSeq2000. All library preparation and sequencing was done at

the Cologne Center for Genomics (CCG). Sequencing read statistics are provided in Tables 2 and

3. Data are available under the study accessions PRJEB11513 and PRJEB11533, from the European

Nucleotide Archive (http://www.ebi.ac.uk/ena).

Raw data processing
All raw data files were trimmed for adaptors and quality using Trimmomatic (Lohse et al., 2012).

The quality trimming was performed basewise, removing bases below quality score of 20 (Q20), and

keeping reads whose average quality was of at least Q30. Reads whose trimmed length was shorter

than 60 bases were excluded from further analyses, and pairs missing one member because of poor

quality were also removed from any further analyses.

Mapping
The reconstruction of transcriptomes using high-throughput sequencing data is not trivial when com-

paring information across different species to a single reference genome. This is due to the fact that

Table 1. Genome sequencing and read mapping information relative to the C57Bl/6 reference strain (GRCm38.3/mm10).

Species
Uniquely mapping
reads (MAPQ >25)

Mean coverage depth
(window based)

Reference
coverage
(% windows)

Total sequence
divergence*

Accession
Reads

Accession
BAMs

Apodemus uralensis 4.46E+08 40x 78.23% 5.60% ERS942341 ERS946059

Mus mattheyi 5.58E+08 52x 77.19% 4.50% ERS942343 ERS946060

Mus spretus 7.71E+08 52x 93.91% 1.70% ERS946096**

Mus spicilegus 6.16E+08 57x 84.39% 1.60% ERS942342 ERS946061

* The percentage of divergence was estimated from mappings using NextGenMap (Sedlazeck et al., 2013). Only uniquely mapping reads were consid-

ered and mapping quality greater than 25. Variation was estimated from the alignments using samtools mpileup (Li et al., 2009). Divergence was calcu-

lated as number of changes divided by the genome size.

** Corresponds to study accession PRJEB11535. All other accessions deposited under studies PRJEB11513 and PRJEB11533.
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most of the tools designed for such tasks do not work in a phylogenetically aware context. For this

reason, any approximation which deals with fractional data (i.e. any high-throughput sequencing

setup available to this date) is limited by the detection abilities of the software of choice and by the

quality of the reference (transcriptome and genome).

Given the high quality state of the mouse genome repositories, we decided to take a reference-

based approach, in which all analyses are centered in the reference genome of the C57BL/6 labora-

tory strain of Mus musculus domesticus, which enables direct comparisons across all species based

on the annotations of the C57BL/6 laboratory strain.

Transcriptome and genome sequencing reads were aligned against the mm10 version of the

mouse reference genome (Waterston et al., 2002) from UCSC (Karolchik et al., 2014) using Next-

GenMap which performs extremely well with divergences of over 10% compared to other standard

mapping software (Sedlazeck et al., 2013), as confirmed by our own simulations (Appendix 1). The

program was run under default settings, except for –strata 1 and –silent-clip. The first option enfor-

ces uniquely mapping reads and the second drops the unmapped portion of the reads, to avoid

inflating coverage statistics. This is particularly relevant around exon-intron boundaries, where exonic

reads are forced into intronic regions unless this option is set.

We produced normalized versions of the alignments per tissue. This was achieved by counting

the total amount of uniquely mapped reads in each taxon for each tissue, and sampling without

replacement a fraction of each file which would result in the roughly the same absolute number of

uniquely mapped reads for all samples of the same tissue (summarized in Table 2 and Table 3).

Coverage statistics
We performed coverage statistics on 200 bp windows, to minimize problems derived from the frac-

tional nature of the data, in which a few nucleotides could be absent from a sequenced fragment

due to the preparation of the samples, low quality towards read ends, or a few mismatches during

mapping. Coverage statistics were computed from normalized alignment files with the feature-

Counts program from the Subreads suite (Liao et al., 2014). In order to avoid counting reads twice

if they would span two windows (which would be the case for most reads), we assigned reads to the

window where more than half of the read was present.

Genomic reads were used as a metric of empiric mapability for the coverage statistics, i.e. to

identify which regions can be reliably detected. For this, we removed from the mapping results

against the reference genome (see above) all regions that were not mapped across the phylogeny

based on the genomic reads from the taxa more than 1 Mill years apart. The remaining portion we

call the ‘common genome’ in all analyses. It is important to highlight that this is not the same as syn-

teny, since we did not perform any co-linearity analyses between fragments, but rather represent

the mere presence in the species, in any possible order. The common genome serves to limit map-

ping artifacts, since the reads observed in each window must not only be uniquely mapping, but also

be present and detectable in all the genomes considered.

We report coverage only from windows in the common genome for several reasons. First, we

want to compare changes in transcription in regions which are present across all taxa, so the region

must be present at the genome level. Second, the observation of transcriptome coverage on a

region of the reference genome without genomic coverage from the respective taxon could repre-

sent mapping artifacts. Thus by enforcing coverage on both levels, and in all taxa at the genomic

level, we reduce mapping artifacts and errors. Third, we assume that the transcriptional properties

of the common genome should be general enough that they represent the properties of each of the

genomes of the taxa under study. Summary data for coverage of all genomes and transcriptomes

are available under the Dryad accession associated with this manuscript (doi:10.5061/dryad.8jb83).

Reconstruction of phylogenetic relationships
We performed genome-wide correlations of coverage to infer distance between the taxa under

study. Correlations of two types were initially used: rank-based (spearman correlation) and binary

(phi correlation). From correlation matrices, we constructed Manhattan distance matrices and from

those we further constructed neighbor-joining trees to describe the proximity between any two taxa

based on shared transcriptome information. We focus mostly on the presence or absence of tran-

scriptional coverage. For this reason, we used only the binary correlations in the figures. In this
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representation, closely related organisms have more shared transcriptomic coverage than distantly

related organisms. Analyses were performed in R, using the function dist() from the stats package

and nj() from the ape package (Paradis et al., 2004).

Additionally, whole mitochondrial genomes were obtained for each taxon as consensus sequen-

ces from mapped reads using samtools mpileup (Li et al., 2009). The sequences were aligned with

MUSCLE (Edgar, 2004), and a NJ tree was constructed with the dist.dna() and nj() functions from

the ape package Paradis et al., 2004). All trees were tested with 1000 bootstraps with the boot.

phylo() function from the ape package. Reported nodes have a support of 70% or greater.

Estimation of sampling variance from brain samples
The extensive sequencing of brain samples were used to obtain estimates of how sampling might

affect the terminal branch lengths of trees based on low coverage regions. For this, we split the

alignments into three non-overlapping sets of 100 million reads per taxon, such that each set would

Table 2. Transcriptome reads from each sample sequenced, mapped and normalized.

Taxon
Code Tissue Lanes

QC-passed
reads

Mapped
reads (% total)

Normalized
subset (%total) (% mapped)

Accession
Reads*

Accession
BAMs**

DOMCB Brain 0.33x 1.30E+08 1.26E+08 96% 9.15E+07 70% 73% ERS946023 ERS942305

DOMCB Liver 0.33x 1.41E+08 1.17E+08 83% 9.07E+07 64% 77% ERS946025 ERS942306

DOMCB Testis 0.33x 1.26E+08 1.22E+08 96% 1.19E+08 94% 98% ERS946026 ERS942307

DOMMC Brain 0.33x 1.17E+08 1.13E+08 96% 9.15E+07 78% 81% ERS946027 ERS942309

DOMMC Liver 0.33x 1.34E+08 1.09E+08 81% 9.07E+07 68% 84% ERS946029 ERS942310

DOMMC Testis 0.33x 1.42E+08 1.37E+08 96% 1.19E+08 83% 87% ERS946030 ERS942311

DOMAH Brain 0.33x 9.49E+07 9.15E+07 96% 9.15E+07 96% 100% ERS946019 ERS942301

DOMAH Liver 0.33x 1.16E+08 1.02E+08 88% 9.07E+07 78% 89% ERS946021 ERS942302

DOMAH Testis 0.33x 1.61E+08 1.55E+08 96% 1.19E+08 74% 77% ERS946022 ERS942303

MUSKH Brain 0.33x 1.33E+08 1.28E+08 96% 9.15E+07 69% 72% ERS946035 ERS942313

MUSKH Liver 0.33x 1.03E+08 9.07E+07 88% 9.07E+07 88% 100% ERS946037 ERS942314

MUSKH Testis 0.33x 1.36E+08 1.31E+08 96% 1.19E+08 87% 91% ERS946038 ERS942315

MUSVI Brain 0.33x 1.23E+08 1.19E+08 96% 9.15E+07 74% 77% ERS946031 ERS942317

MUSVI Liver 0.33x 1.23E+08 9.47E+07 77% 9.07E+07 74% 96% ERS946033 ERS942318

MUSVI Testis 0.33x 1.32E+08 1.27E+08 96% 1.19E+08 90% 93% ERS946034 ERS942319

CAS Brain 0.33x 1.21E+08 1.16E+08 96% 9.15E+07 76% 79% ERS946039 ERS942321

CAS Liver 0.33x 1.23E+08 1.01E+08 82% 9.07E+07 74% 90% ERS946041 ERS942322

CAS Testis 0.33x 1.23E+08 1.19E+08 96% 1.19E+08 96% 100% ERS946042 ERS942323

SPI Brain 0.33x 1.34E+08 1.29E+08 96% 9.15E+07 68% 71% ERS946043 ERS942325

SPI Liver 0.33x 1.05E+08 9.82E+07 93% 9.07E+07 86% 92% ERS946045 ERS942326

SPI Testis 0.33x 1.44E+08 1.38E+08 96% 1.19E+08 83% 86% ERS946046 ERS942327

SPR Brain 0.33x 1.09E+08 1.05E+08 96% 9.15E+07 84% 87% ERS946047 ERS942329

SPR Liver 0.33x 1.35E+08 1.20E+08 89% 9.07E+07 67% 76% ERS946049 ERS942330

SPR Testis 0.33x 1.34E+08 1.29E+08 96% 1.19E+08 88% 92% ERS946050 ERS942331

MAT Brain 0.33x 1.12E+08 1.04E+08 93% 9.15E+07 82% 88% ERS946051 ERS942333

MAT Liver 0.33x 1.23E+08 1.12E+08 91% 9.07E+07 74% 81% ERS946053 ERS942334

MAT Testis 0.33x 1.32E+08 1.23E+08 93% 1.19E+08 90% 97% ERS946054 ERS942335

APO Brain 0.33x 1.36E+08 1.18E+08 87% 9.15E+07 67% 78% ERS946055 ERS942337

APO Liver 0.33x 1.13E+08 1.00E+08 89% 9.07E+07 80% 91% ERS946057 ERS942338

APO Testis 0.33x 1.38E+08 1.20E+08 87% 1.19E+08 86% 99% ERS946058 ERS942339

All accessions deposited under studies PRJEB11533* and PRJEB11513**.
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contain sets of independent observations. Paired-read relationships were maintained, so that pairs

of the same fragments would be in the same set. From this, we obtained trees as mentioned before,

and the portions of the branches of each taxon which were shared across sets were considered as

robust to sampling biases, while the discordant portions between samples were considered to be

due to sampling variance. Summary data from subsampled sets are available under the Dryad acces-

sion associated with this manuscript (doi:10.5061/dryad.8jb83).

Rarefaction and subsampling
Transcriptome experiments tend to be limited by the depth of sequencing, with highly expressed

genes being relatively easy to sample, and rare transcripts becoming increasingly difficult to find.

Given the large amount of data generated, we investigated whether our data show signals of cover-

age saturation from subsets of the data of different sizes. The total experiment, comprising ten taxa,

corresponds to 6.4 x 109 reads (or 6.4 billion reads). We subsampled (samtools view -s) portions of

mapped reads for each taxon, ranging between 10% to 100%, at 10% intervals. The observation of

coverage saturation in this case would indicate that our sequencing efforts likely cover most of the

transcribed regions of the common genome. Summary data are available under the Dryad accession

associated with this manuscript (doi:10.5061/dryad.8jb83).

In parallel, we estimated the individual and combined contribution of each taxon to the transcrip-

tomic coverage of the common genome. Not all samples have the same phylogenetic distance to

each other (some species have more representatives than others). To account for this we generated

one hundred arrays of the ten taxa with random order, and recorded the coverage after the addition

of each taxon in each array. The observation of coverage saturation in this setup would indicate that

taxonomic sampling is sufficient to cover most of the potentially transcribed regions of the common

genome.

In order to estimate whether our data continued to increase or approached saturation, we tested

two alternative models: a generalized linear model with logarithmic behavior (ever increasing) or a

self-starting nonlinear regression model (saturating). The best fit was decided based on the minimum

BIC value between the two models, and an estimate of the Bayes factor was computed from the dif-

ference of BIC values and support was obtained from standard criteria (Kass and Raftery, 1995).

Analyses were performed in R, using the functions glm(), nls(), SSasymp(), and BIC() from the stats

package (R Core Team, 2014).

Analysis of transcribed and non-transcribed regions across the genome
Transcribed and non-transcribed windows of the common genome were defined by the continuous

presence or absence of transcriptomic coverage from mapping information of each taxon and tissue.

Neighboring transcribed regions across species were combined to obtain stretches of transcription-

ally active common genome.

Table 3. Additional sequencing effort, focused only on brain samples. Reads sequenced, mapped and normalized.

Taxon
Code Tissue Lanes

QC-passed
reads

Mapped
reads (% total)

Normalized
subset (% total) (% mapped)

Accession
Reads

Accession
BAMs

DOMCB Brain 1x 3.89E+08 3.76E+08 97% 3.19E+08 82% 85% ERS946024 ERS942308

DOMMC Brain 1x 3.76E+08 3.64E+08 97% 3.19E+08 85% 88% ERS946028 ERS942312

DOMAH Brain 1x 3.46E+08 3.35E+08 97% 3.19E+08 92% 95% ERS946020 ERS942304

MUSKH Brain 1x 4.64E+08 4.49E+08 97% 3.19E+08 69% 71% ERS946036 ERS942316

MUSVI Brain 1x 4.13E+08 4.00E+08 97% 3.19E+08 77% 80% ERS946032 ERS942320

CAS Brain 1x 4.35E+08 4.21E+08 97% 3.19E+08 73% 76% ERS946040 ERS942324

SPI Brain 1x 4.31E+08 4.16E+08 97% 3.19E+08 74% 77% ERS946044 ERS942328

SPR Brain 1x 3.87E+08 3.73E+08 96% 3.19E+08 82% 85% ERS946048 ERS942332

MAT Brain 1x 3.62E+08 3.40E+08 94% 3.19E+08 88% 94% ERS946052 ERS942336

APO Brain 1x 4.33E+08 3.77E+08 87% 3.19E+08 74% 84% ERS946056 ERS942340

All accessions deposited under studies PRJEB11533* and PRJEB11513**.
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http://dx.doi.org/10.7554/eLife.09977


Enrichment of annotations from the mouse reference
Annotations of Mus musculus from Ensembl v81 (Cunningham et al., 2015) were used to infer the

relative contribution of known genes to the observed transcription across species. We partitioned

the sets between genes, exons, and introns, and those were further partitioned between protein-

coding and non-coding genes. To determine if the overlaps are significantly different from a random

distribution of the features along the genome, we randomized 1000 times each of the annotated

intervals (genes, exons, introns, and subsets of coding and non-coding) along the genome using

shuffleBed from the bedtools suite (Quinlan and Hall, 2010), and compared the overlap to various

transcribed regions (single taxa, less than 9 taxa, more than 8 taxa, 10 taxa, and transcribed in any

taxon). Multiple testing corrections were performed and significant comparisons are reported at 5%

FDR. Furthermore, since we assume that most annotations fall within transcribed regions in any spe-

cies, we used the total transcriptomic coverage across all taxa to calculate potential discrepancies in

the shuffling method. The ratios of expected and observed coverage of total transcription across

taxa for a given feature were calculated to define the range of ratios for which comparisons were

also non-significant, i.e., where we could not rule out method bias.
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Appendix 1

Simulation of mapping efficiency depending on sequence
variation
We performed simulations of the mapping efficiency of two mappers NextGenMap (NGM) and

Bowtie2 (standard mapper) across a range of divergences based on the chromosome 19 of the

mouse reference genome (mm10 from UCSC). Mutated versions of chromosome 19 were

generated with a python script by choosing to randomly substitute a given fraction of the

nucleotides in the sequence in random positions along the genome. From each mutated

version we simulated sequencing reads with ART (Huang et al., 2012), with a mean fold

coverage of 5x (1x standard deviation) and using the same conditions as in our main

sequencing experiment (100 bp paired end reads, 190bp fragments) and the options for

empirical read quality of the Illumina HiSeq2000 sequencer.

Reads were subsequently mapped to the chromosome 19 reference sequence with

NextGenMap using the default parameters except for –strata 1 –silent-clip to obtain uniquely

mapping reads and to remove the non-mapping regions from reads. Reads were also mapped

with Bowtie2, following default parameters except for –very-sensitive. Information about

uniquely mapping reads from NGM was derived directly from the bam files and from Bowtie2

was derived from the standard error log files. From Appendix 1—table 1 and Appendix 1—

figure 1, we observe that NextGenMap performs extremely well with increasing divergences,

and greatly outperforms the standard mapper. While the average difference between the

most distant genomes analyzed is about 6%, it must be noted that fast evolving regions of the

genome can quickly exceed the mean. NextGenMap is able to capture most of the regions of

the genome to allow comparisons across very divergent taxa.

In addition to this, we used the set of reads simulated from the chromosome 19 reference

sequence and mapped them with NextGenMap to each mutated version of the reference

chromosome 19 using the same parameters mentioned above (Appendix 1—figure 2;

Appendix 1—tables 2 and 3). This allowed the control of accuracy in read placement across

divergent sequences by testing the position of each read in each mapping exercise

(Appendix 1—figure 2A; Appendix 1—table 2). This was done with the bedtools suite,

intersecting reads from each divergent genome to the original, and counting the reads which

were in the same location. Reads were allowed to be offset by 20% (80% overlap), for example

in in cases where ends would not map successfully. From this we also derived comparable

statistics for total uniquely mapped reads, proper paired reads, paired reads regardless of

location and single reads mapped where the pair failed to map (Appendix 1—figure 2B;

Appendix 1—table 3).

Appendix 1—table 1. Simulations comparing bowtie2 to NextGenMap. Divergent reads were

mapped to a common reference.

Total
simulated
reads

% simulated
divergence
(reads)

Uniquely
mapped reads
Bowtie2

Uniquely mapped
reads NGM

Percentage
unique from
total reads
Bowtie2

Percentage
unique
from total
reads
NGM

2910370 0% 2621200 2873481 90.1% 98.7%

2910982 2% 2650274 2868279 91.0% 98.5%

2911312 4% 2674738 2863581 91.9% 98.4%

2910286 6% 2583320 2856060 88.8% 98.1%

2910978 8% 2124958 2836119 73.0% 97.4%

2910446 10% 1321494 2779837 45.4% 95.5%

Appendix 1—table 1 continued on next page
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Appendix 1—table 1 continued

Total
simulated
reads

% simulated
divergence
(reads)

Uniquely
mapped reads
Bowtie2

Uniquely mapped
reads NGM

Percentage
unique from
total reads
Bowtie2

Percentage
unique
from total
reads
NGM

2910610 12% 587862 2675011 20.2% 91.9%

2910196 14% 186828 2510840 6.4% 86.3%

2910090 16% 42986 2296917 1.5% 78.9%

2909992 18% 7488 2041437 0.3% 70.2%

2910022 20% 936 1759924 0.0% 60.5%

DOI: 10.7554/eLife.09977.019

Appendix 1—table 2. Accuracy of NextGenMap. The same set of reads was mapped to

divergent genome versions of the reference. We are assuming that the reads coming from the

same reference are correctly mapped, and used that as a standard for the divergent genomes,

so the estimates should be slightly inflated.

% divergence

Accurately
mapped
reads %

0% 2910370 100.0%

2% 2842076 97.7%

4% 2816628 96.8%

6% 2798936 96.2%

8% 2778608 95.5%

10% 2756194 94.7%

12% 2717420 93.4%

14% 2648472 91.0%

16% 2531728 87.0%

18% 2358964 81.1%

20% 2120922 72.9%

DOI: 10.7554/eLife.09977.020

Appendix 1—figure 1. Performance of NextGenMap compared to Bowtie2.

DOI: 10.7554/eLife.09977.021
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Appendix 1—figure 2. Performance of NextGenMap in terms accuracy of mapping using the

same set of reads and increasingly divergent versions of the reference genome (A), and

paired-end mapping statistics (B).

DOI: 10.7554/eLife.09977.022

Appendix 1—table 3. Performance of NextGenMap. Same set of reads was mapped to

divergent genomes. Mapped indicates uniquely mapped reads; proper indicates read with

both pairs mapped one next to the other; mate mapped indicates that both reads in a pair are

mapped, although not necessarily as pairs; singletons indicates the amount of pairs in which

only one of both mates was mapped.

% simulated
divergence
(reference) Total reads Mapped (%) Proper (%) Mate mapped (%) Singletons (%)

0% 2910370 2873481 (99%) 2869482 (99%) 2872432 (99%) 1049 (0.1%)

2% 2910370 2883094 (99%) 2860794 (98%) 2878634 (99%) 4460 (0.1%)

4% 2910370 2885714 (99%) 2844842 (98%) 2877808 (99%) 7906 (1%)

6% 2910370 2882035 (99%) 2810920 (97%) 2866362 (98%) 15673 (1%)

8% 2910370 2859215 (98%) 2722782 (94%) 2817502 (97%) 41713 (3%)

10% 2910370 2810639 (97%) 2575954 (89%) 2722242 (94%) 88397 (6%)

12% 2910370 2712723 (93%) 2305232 (79%) 2536014 (87%) 176709 (12%)

14% 2910370 2562495 (88%) 1961916 (67%) 2266582 (78%) 295913 (20%)

16% 2910370 2369165 (81%) 1571078 (54%) 1945446 (67%) 423719 (29%)

18% 2910370 2144444 (74%) 1193318 (41%) 1609114 (55%) 535330 (37%)

20% 2910370 1882993 (65%) 844628 (29%) 1265102 (43%) 617891 (42%)

DOI: 10.7554/eLife.09977.023
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