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eLife Assessment
This study is important, with the potential to greatly impact future research on the evolution of 
chemical defense mechanisms in animals. The authors present compelling evidence for the pres-
ence of low quantities of alkaloids in amphibians previously thought to lack these toxins. They then 
integrate these findings with existing literature to propose a four- phase scenario for the evolution of 
chemical defense in alkaloid- containing poison frogs, emphasizing the role of passive accumulation 
mechanisms.

Abstract Understanding the origins of novel, complex phenotypes is a major goal in evolutionary 
biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids 
from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has 
been biased towards colorful species, without similar attention paid to inconspicuous ones that are 
often assumed to be undefended. As a result, our understanding of how chemical defense evolved 
in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, 
species from each undefended poison frog clade have measurable yet low amounts of alkaloids. 
We confirm that undefended dendrobatids regularly consume mites and ants, which are known 
sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended pheno-
type. Our data support the existence of a phenotypic intermediate between toxin consumption 
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and sequestration — passive accumulation — that differs from sequestration in that it involves no 
derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. 
We discuss the concept of passive accumulation and its potential role in the origin of chemical 
defenses in poison frogs and other toxin- sequestering organisms. In light of ideas from pharmaco-
kinetics, we incorporate new and old data from poison frogs into an evolutionary model that could 
help explain the origins of acquired chemical defenses in animals and provide insight into the molec-
ular processes that govern the fate of ingested toxins.

Introduction
Overview
Complex phenotypes can evolve by leveraging phenotypic plasticity in existing traits with concerted 
change in developmental modules (West- Eberhard, 2003). However, the evolutionary trajectory that 
animals take to traverse an adaptive landscape from one phenotype to another may be difficult to 
reconstruct given that they often must cross or avoid adaptive valleys, which include phenotypes that 
are not always readily observed in populations (e.g. Martin and Wainwright, 2013). Nevertheless, 
phenotype diversity can help us unravel origins of novel traits and reveal the physiological trade- offs 
associated with their evolutionary trajectory (Tarvin et al., 2017).

Acquired chemical defenses, or the ability to sequester and use chemicals from the environment 
against predators or parasites, is one complex phenotype whose evolutionary history has proved diffi-
cult to characterize (Berenbaum, 1995; Santos et al., 2016). Although human interest in poisonous 
plants and animals is old — dating back millennia (Charitos et al., 2022) — we have only recently 
begun to elucidate the specific mechanisms involved in acquired chemical defenses (Beran and 
Petschenka, 2022). This persisting gap in knowledge may be partly explained by a historical lack 
of integration between systems biology and pharmacology (Rostami- Hodjegan, 2012). Here, we 
incorporate ideas from pharmacokinetics with data from poison frogs (Anura: Dendrobatidae) into an 
evolutionary model that could help explain the origins of acquired chemical defenses in poison frogs 
and more generally in other animals.

In the following text, we use the terms alkaloid and toxin interchangeably, although the toxicity of 
each poison frog alkaloid is not always known or very straightforward (Lawrence et al., 2023). Simi-
larly, for simplicity we broadly bin species as defended (high alkaloid content) or undefended (low or 
zero alkaloid content), although little information exists regarding the defensive efficacy of specific 
alkaloids. In this context, we use the term alkaloid to refer to compounds with nitrogen- containing 
rings, specifically the subset of lipophilic alkaloids representing classes previously described in anuran 
integument, for example ‘N- methyldecahydroquinolines’ or ‘lehmizidines’ (e.g. Daly et  al., 2009; 
Daly et al., 2005).

The history of research leading to the current paradigm: the diet-
toxicity hypothesis
In the 1980s, Toft characterized several types of foraging behaviors in neotropical frogs and found 
that active foraging for ants was common in poisonous frogs (Dendrobatidae and Bufonidae), while 
sit- and- wait predation on larger prey was common in non- poisonous species (Toft, 1981; Toft, 1980). 
Toft hypothesized that chemical defenses protected poisonous species from the greater predation risk 
incurred by active foraging. At the time, it was thought that poisonous dendrobatids synthesized their 
own alkaloids (the biosynthetic hypothesis; reviewed by Saporito et al., 2009), so differences in diet 
were not considered mechanistically relevant to differences in levels of chemical defense. However, 
Daly et al., 1994a later demonstrated that chemically defended dendrobatid frogs obtained alkaloids 
from their diet. This dietary hypothesis led researchers to reevaluate the evolutionary importance 
of active foraging and hypothesize that specialization on ants promoted the evolution of chemical 
defense in Dendrobatidae (Caldwell, 1996). Later, a more detailed phylogenetic analysis of Dend-
robatidae revealed that chemical defense and diet specialization co- evolved independently several 
times (Santos et al., 2003). The new information helped generate the diet- toxicity hypothesis, which 
posits that shifts from a generalist to a specialist diet are correlated with origins of alkaloid uptake 
(Darst et al., 2005; Santos and Cannatella, 2011). Since then, many studies have focused on the 
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diet of poison frogs in an effort to directly connect diet with chemical defense in specific species (e.g. 
McGugan et al., 2016; Osorio et al., 2015; Sanches et al., 2023; Sánchez- Loja et al., 2024) and 
to identify sources of poison frog alkaloids (e.g. Saporito et al., 2007b; Saporito et al., 2004). In 
general, most of the studies of poison- frog ecology since the 1990s emphasize or assume that diet is 
a primary determinant of defense.

A new paradigm: the passive-accumulation hypothesis
Although in the 1990s Daly and his colleagues proposed that an alkaloid uptake system was present 
in the ancestor of Dendrobatidae and is overexpressed in aposematic species (Daly, 1998; Daly et al., 
1994b; Saporito et al., 2009), no details about this purported system were given, and little focus was 
placed on the physiological processes of alkaloid sequestration in poison frogs for nearly 20 years. 
Santos et al., 2016 noted that the study of acquired chemical defenses is ‘essentially a study in phar-
macokinetics’. Pharmacokinetics (or toxicokinetics, for toxins; Spurgeon et al., 2020) is the study of 
how bioactive compounds are processed by animals. Organismal processes are often binned into 
four categories together known as ADME, which stands for Absorption, or movement into the blood-
stream, Distribution, or movement into and out of body compartments, Metabolism, or biotransfor-
mation of the compound, and Excretion, or elimination from the body (Ruiz- Garcia et  al., 2008). 
Herein we use similar terms that are more directly relevant to the study of acquired chemical defenses: 
toxin intake, or the amount of toxin consumed; toxin elimination, or the metabolic detoxification and/
or elimination of toxins from the body (equivalent to Metabolism +Excretion); toxin sequestration, 
or the transport and storage of toxins to a specific location such as the skin (a modified version of 
Distribution); and toxin accumulation, or the retention of toxins in an animal, whether or not it is by 
sequestration processes.

eLife digest For most animals, the ability to deter predators is vital for survival. Some organisms, 
such as poison frogs, use bad tasting or toxic chemicals to ward off predators. In the 1990s, scientists 
discovered that poison frogs acquire their defensive alkaloid chemicals from the mites, ants and other 
arthropods they eat.

Many poison frog species use bright or contrasting colors to advertise their defenses to preda-
tors; this strategy is known as ‘aposematism’. Aposematic frogs have evolved biochemical mecha-
nisms to transport, store and even modify the alkaloid toxins. Although aposematism has evolved 
independently in three poison frog clades, most of the frogs in this family are dull- colored. These 
dull- colored frogs are generally assumed to not be able to accumulate alkaloid toxins from their diet. 
However, very little is known about how animals evolve to be able to use chemicals they eat as toxins 
to defend themselves.

To learn more about this phenomenon, Tarvin et al. screened different ‘undefended’ frog lineages 
for alkaloids to determine whether the frogs lacked them, as previously assumed. The researchers 
used highly sensitive chromatography and mass spectrometry, techniques that can detect and identify 
specific compounds in chemical mixtures, even at very low concentrations.

The results showed that nearly every ‘undefended’ poison frog had alkaloids, but at substantially 
lower levels than aposematic species. Tarvin et al. propose that these frogs do not have the transport 
or storage systems that aposematic frogs employ to use the toxic alkaloids they consume. Rather, 
the dull- colored frogs accumulate alkaloids passively. This ‘passive accumulation’ appears to be a 
stepping stone on the path to evolving the ability to accumulate toxins from the diet. Tarvin et al. also 
found that all of the studied poison frogs ate ants and mites, the main arthropod sources of alkaloids 
in poison frogs.

The findings of Tarvin et al. suggest that specialized diets are not enough to explain how poison 
frogs evolved the ability to accumulate toxins. Changes in toxin absorption, distribution, metabo-
lism and excretion are also required for frogs to be able to use alkaloids from their diet as poison. 
This provides new insights into the evolution of chemical defense in poison frogs and could help 
researchers to better understand how this type of defense evolved in other animals.

https://doi.org/10.7554/eLife.100011
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Applying ideas from pharmacokinetics to acquired chemical defenses leads us to propose a four- 
phase evolutionary model, which we call the passive- accumulation hypothesis: (1) consistent exposure 
to a toxic compound; (2) prior existence or evolution of some resistance to the toxin; (3) change in 
the elimination rate of the compound that leads to its prolonged retention, hereafter passive accu-
mulation; and (4) adaptation of molecular pathways to transport and store the compound in a specific 
location, hereafter sequestration, which results in the chemical defense phenotype. Phases 3 and 4 
may both select for increased toxin resistance, initiating a positive feedback loop that could intensify 
chemical defense and resistance over time. Note that while we focus on the physiological processes 
underlying toxin resistance and sequestration, other selection pressures including predators may influ-
ence these patterns (Other factors that may shape the evolution of acquired chemical defenses).

Savitzky et al., 2012 defined ‘sequestration’ as ‘the evolved retention within tissues of specific 
compounds, not normally retained in the ancestors of the taxon in question, which confers a selective 
advantage through one or more particular functions’. We define passive accumulation as a type of 
toxin accumulation that is temporary and results from the delay between toxin intake and elimination; 
an example would be the temporary accumulation then clearance of ibuprofen in blood plasma in 
humans following ingestion (Albert and Gernaat, 1984). We differentiate passive accumulation from 
sequestration, a term that we argue implies the existence of a derived form of a transport or storage 
mechanism absent in the ancestor of the taxon, which would permit greater levels of and more long- 
term toxin accumulation than passive accumulation. In other systems such as insects, mechanisms of 
sequestration are sometimes described as passive (occurring by diffusion) or active (energy- consuming; 
Petschenka and Agrawal, 2016). Given the general lack of data regarding the mechanisms under-
lying sequestration in frogs, we refrain from applying these modifiers to the sequestration term.

To develop and refine this hypothesis, we gathered diet and toxin data from a broad selection of 
aposematic and inconspicuously colored poison- frog species. Approximately 100 of the 345 dendro-
batid poison- frog species (AmphibiaWeb, 2023) fall into three conspicuously colored and alkaloid- 
sequestering (aposematic) clades: Ameerega, Epipedobates, and Dendrobatinae. The other 245 
species compose several other primarily inconspicuously colored clades that for the most part have 
been assumed to lack alkaloid defenses: that is, all Aromobatinae (e.g. Allobates, Rheobates, Anom-
aloglossus, and Aromobates), all Hyloxalinae (Ectopoglossus, Hyloxalus, Paruwrobates), and some 
Colostethinae (Colostethus, Silverstoneia, Leucostethus; Figure  1). According to the phylogenetic 
placement of defended and undefended species within Dendrobatidae, poison frogs have evolved 
sequestration of lipophilic alkaloids from consumed arthropods at least three times (Santos et al., 
2014; Santos et al., 2003), making them a suitable group to study complex phenotypic transitions 
like the evolution of chemical defense.

In total, we surveyed 104 animals representing 32 species of Neotropical frogs including 28 dend-
robatid species, 2 bufonids, 1 leptodactylid, and 1 eleutherodactylid (see Methods). Each of the major 
undefended clades in Dendrobatidae (Figure 1, Table 1) is represented in our dataset, with a total of 
14 undefended dendrobatid species surveyed. Next, we review old and new evidence from poison 
frogs in the context of the four- phase model (Phases 1 and 2: Consistent exposure to toxins may select 
for resistance in poison frog and Phases 3 and 4: Evidence for passive accumulation and sequestra-
tion in poison frogs). Then we describe major predictions that need further testing to validate and/or 
revise the proposed model (Predictions arising from the passive- accumulation hypothesis). Finally, we 
discuss other factors that might influence the evolution of chemical defenses (Other factors that may 
shape the evolution of acquired chemical defenses), the passive accumulation phenotype in a broader 
evolutionary context (The passive- accumulation phenotype in a broader evolutionary context), and 
possible limitations of this study (Limitations). Overall, we propose that further integrating ideas from 
pharmacokinetics into studies of acquired chemical defenses will lead to new insight in the field, with 
clear applications to human and ecosystem health. In that vein, we suggest that evolutionary changes 
in toxin resistance and metabolism are critical physiological shifts that facilitate origins of acquired 
chemical defenses in animals.

https://doi.org/10.7554/eLife.100011
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Results and discussion
Phases 1 and 2: Consistent exposure to toxins may select for resistance 
in poison frogs
Several of the lipophilic alkaloids found in dendrobatid frogs have been traced to arthropod sources, 
specifically mites (Saporito et  al., 2007b), ants (Saporito et  al., 2004), and beetles (Dumbacher 
et al., 2004), although the extent to which such arthropod prey vary in alkaloid diversity and quantity 
remains relatively unstudied. Regardless, broad- scale shifts in diet content towards a higher propor-
tion of ants and mites have been hypothesized to play an important role in the origin of chemical 
defense in poison frogs (Darst et al., 2005; Santos and Cannatella, 2011).

Figure 1. A new evolutionary model of toxin sequestration in Dendrobatidae. We propose that alkaloid consumption, some level of alkaloid resistance, 
and passive accumulation were present in the most recent common ancestor of Dendrobatidae; enhanced resistance and sequestration mechanisms 
then arose later, resulting in the chemical defense phenotype. Our model places less emphasis on dietary changes compared to prior studies, and more 
strongly emphasizes novel molecular mechanisms (e.g. binding proteins and target- site insensitivity; Alvarez- Buylla et al., 2023; Tarvin et al., 2017; 
Tarvin et al., 2016). Purple lines indicate lineages with chemical defense. Gray lines indicate lineages that putatively lack chemical defense. All images 
of frogs were taken by RDT and are identified by their museum number.

https://doi.org/10.7554/eLife.100011
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We quantified gut contents for 32 species of Neotropical frogs. Both undefended and defended 
dendrobatid species consume a large proportion of ants and mites (Figure 2; Supplementary file 
1). Although the defended dendrobatid clades tend to consume proportionally more ants and 
mites, as in other studies, the undefended lineages do consume a high proportion of ants and 

Table 1. Range and median of alkaloid quantity (estimated by the sum of integrated areas) and alkaloid diversity (number of different 
compounds) by species from the GC- MS assessment.
The presumed chemical defense phenotype for poison frogs is given according to Santos and Cannatella, 2011. Purple rows 
highlight defended species. *From a UHPLC- HESI- MS/MS dataset for which alkaloids were not quantified. Note that the UHPLC- 
HESI- MS/MS and GC- MS assays differed in both instrument and analytical pipeline, so ‘Alkaloid Number’ values from the two assay 
types should not be compared to each other directly.

Family Subfamily Species Phenotype Sample Size (frogs)

Log (Total Integrated Area) Alkaloid Number

Range Median Range Median

Dendrobatidae Aromobatinae Rheobates palmatus undefended 4 13.07–14.24 14.00 1–4 1.5

Dendrobatidae Aromobatinae Allobates insperatus undefended 8 13.47–15.44 14.99 1–9 5.0

Dendrobatidae Aromobatinae Allobates juanii undefended 1 14.10 14.10 1 1.0

Dendrobatidae Aromobatinae Allobates kingsburyi undefended 1 13.63 13.63 2 2.0

Dendrobatidae Aromobatinae Allobates talamancae undefended 3 14.89–16.27 15.09 2–4 3.0

Dendrobatidae Aromobatinae Allobates zaparo undefended 1 16.78 16.78 8 8.0

Dendrobatidae Colostethinae Leucostethus fugax undefended 8 12.57–15.33 14.00 3–8 4.5

Dendrobatidae Colostethinae Ameerega bilinguis defended 1 21.97 21.97 133 133.0

Dendrobatidae Colostethinae Ameerega hahneli defended 4 20.21–22.29 21.68 85–140 128.5

Dendrobatidae Colostethinae Silverstoneia flotator* undefended 12 NA NA 0–1 0.0

Dendrobatidae Colostethinae Silverstoneia aff. gutturalis undefended 9 11.80–17.33 15.40 1–10 3.0

Dendrobatidae Colostethinae Silverstoneia erasmios undefended 2 14.70–16.11 15.41 15–15 15.0

Dendrobatidae Colostethinae Epipedobates aff. espinosai defended 2 18.44–20.20 19.32 83–131 107.0

Dendrobatidae Colostethinae Epipedobates anthonyi defended 1 20.54 20.54 127 127.0

Dendrobatidae Colostethinae Epipedobates boulengeri defended 2 18.87–19.39 19.13 77–94 85.5

Dendrobatidae Colostethinae Epipedobates currulao defended 2 19.49–19.68 19.59 99–105 102.5

Dendrobatidae Colostethinae Epipedobates espinosai defended 2 18.82–21.33 20.08 85–146 115.5

Dendrobatidae Colostethinae Epipedobates machalilla defended 2 12.98–15.67 14.32 8–38 23.0

Dendrobatidae Colostethinae Epipedobates tricolor defended 2 18.36–19.07 18.72 91–114 102.5

Dendrobatidae Hyloxalinae Hyloxalus awa undefended 7 0.00–16.05 13.58 0–12 3.0

Dendrobatidae Hyloxalinae Hyloxalus shuar undefended 1 14.92 14.92 5 5.0

Dendrobatidae Hyloxalinae Hyloxalus sp. Agua Azul undefended 1 14.30 14.30 8 8.0

Dendrobatidae Hyloxalinae Hyloxalus toachi undefended 2 0.00–0.00 0.00 0–0 0.0

Dendrobatidae Dendrobatinae Phyllobates aurotaenia defended 4 17.72–21.08 18.88 48–118 67.5

Dendrobatidae Dendrobatinae Dendrobates truncatus defended 3 20.05–23.95 20.42 111–172 115.0

Dendrobatidae Dendrobatinae Oophaga sylvatica defended 5 22.86–24.85 23.76 152–189 175.0

Dendrobatidae Dendrobatinae Andinobates fulguritus defended 2 20.09–20.51 20.30 80–85 82.5

Dendrobatidae Dendrobatinae Andinobates minutus defended 4 16.57–18.77 18.07 34–80 66.0

Bufonidae Amazophrynella siona NA 2 14.12–14.40 14.26 1–1 1.0

Bufonidae Atelopus aff. spurrelli NA 1 11.58 11.58 4 4.0

Eleutherodactylidae Eleutherodactylus cystignathoides* NA 3 NA NA 0–0 0.0

Leptodactylidae Leptodactylinae Lithodytes lineatus NA 2 0.00–0.00 0.00 0–0 0.0

https://doi.org/10.7554/eLife.100011
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Figure 2. From left to right: an ultrametric tree showing phylogenetic relationships inferred previously (Wan et al., 2023) among sampled species 
with the three defended poison frog clades highlighted in purple, the undefended clades in dark gray, and non- dendrobatids in light gray (Bufonidae: 
Amazophrynella siona and Atelopus aff. spurrelli; Leptodactylidae: Lithodytes lineatus). Tile color indicates the log of the total quantity of alkaloids 
in each class as measured by the sum of integrated areas of alkaloids of that class from GC- MS data per individual. The number in each tile indicates 

Figure 2 continued on next page
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mites. Other data support this general pattern: ants and mites respectively constituted up to 51% 
and 60% of the stomach contents of the undefended dendrobatids Allobates talamancae (Mebs 
et al., 2018) and Hyloxalus sauli (Darst et al., 2005). Ants and mites compose nearly 50% of the 
arthropods (36% and 10%, respectively) found in the Silverstoneia flotator stomachs we analyzed 
(Supplementary file 1). Sympatric populations of the undefended Hyloxalus awa and defended 
Epipedobates espinosai (formerly E. darwinwallacei López- Hervas et  al., 2024) are both diet 
specialized, with the former consuming mostly ants and beetles and the latter consuming mostly 
mites and springtails (Sánchez- Loja et al., 2024). In a lab experiment, the defended species Dend-
robates tinctorius preferred fruit fly larvae over ants when given the choice (Moskowitz et  al., 
2022b), suggesting that even in defended species, consumption of possible alkaloid- containing 
prey is not necessarily a preference. Another study revealed that Oophaga sylvatica alkaloid 
quantity is inversely correlated with numbers of consumed ants and mites; however, this species 
consumed more mites and ants than sympatric Hyloxalus elachyhistus (Moskowitz et al., 2022a). 
The few bufonids that we assessed also show a high proportion of ants and mites in their diet 
(Figure 2). Thus, if we assume that many ants and mites contain alkaloids, it is likely that most if 
not all dendrobatids and their most recent common ancestors have long been exposed to toxins 
through their diet.

Few if any experiments have been done to quantify the relationship between natural toxin exposure 
and toxin resistance in poison frogs. Given the broad diversity of alkaloid classes found in poison frogs 
(Daly et al., 2005), it is very difficult to predict or quantify all possible types or variations of alkaloid 
resistance that exist across species, or in their ancestors. In animals, the general mechanisms of toxin 
resistance are avoidance, metabolism, and target modification (Tarvin et al., 2023). If an animal does 
not or cannot avoid toxin exposure, it will need to survive exposure using toxin metabolism or target 
modification mechanisms such as biotransformation, elimination, alternative targets, and target- site 
resistance (see Tarvin et al., 2023 for more details). Given their diet, dendrobatids clearly do not 
completely avoid toxin exposure, and thus they are likely to survive exposure using some manner of 
toxin metabolism or target modification. Indeed, target- site resistance to some alkaloids evolved in 
several defended dendrobatid clades and in some undefended species (Tarvin et al., 2017; Tarvin 
et al., 2016). A few defended species have alternative target mechanisms including binding proteins 
like alpha- binding globulin (Alvarez- Buylla et al., 2023) and saxiphilin (Abderemane- Ali et al., 2021) 
that might prevent alkaloids from accessing their molecular targets (e.g. ion channels). Other mecha-
nisms may also exist. For example, poison frogs may biotransform alkaloids into less toxic forms until 
they can be eliminated from the body, for example using cytochrome p450s (Caty et al., 2019). The 
mechanism of resistance employed might differ between undefended and defended species, but 
more research is necessary to understand these patterns.

Although more data are necessary to understand the evolution of toxin resistance in dendrobatids 
(Coleman and Cannatella, 2024), existing data suggest that all or nearly all dendrobatids are exposed 
to alkaloids (Figure 2) and that alkaloid resistance varies among lineages.

the number of alkaloids (including isomers) detected in each individual for each class. On the right are prey items recovered from the stomach of 
each individual, colored by arthropod group and scaled to 1 (total number of prey identified are shown under N). Note the large proportion of ants 
(Formicidae, dark purple) and mites (Acari, light purple) in many of the individuals compared to other prey types. See Supplementary file 1 for raw 
diet data and Supplementary file 4 for full alkaloid data. Poison- frog genera names are abbreviated as follows: All., Allobates; Ame., Ameerega; 
And., Andinobates; D., Dendrobates; E., Epipedobates; H., Hyloxalus; Le., Leucostethus; O., Oophaga; P., Phyllobates; R., Rheobates; S., Silverstoneia; 
Alkaloid class abbreviations are based on Daly et al., 2009; Daly et al., 2005 and are as follows: HTX, histrionicotoxins; PTX, pumiliotoxins; PTXB, 
pumiliotoxin B; aPTX, allopumiliotoxins; DeoxyPTX, deoxypumiliotoxins; hPTX, homopumiliotoxins; deoxy- hPTX, deoxy- homopumiliotoxins; DHQ, 
decahydroquinolines; NMeDHQ, N- methyldecahydroquinolines; HO- DHQ, hydroxy- decahydroquinolines; 3,5 P, 3,5- disubstituted pyrrolizidines; HO- 
3,5- P, hydroxy- 3,5- disubstituted pyrrolizidines; 5- I, 5- substituted indolizidines; 3,5- I, 3,5- disubstituted indolizidines; 5,6- I, 5,6- disubstituted indolizidines; 
5,8- I, 5,8- disubstituted indolizidines; Dehydro- 5,8- I, dehydro- 5,8- indolizidines; 5,6,8- I, 5,6,8- trisubstituted indolizidines; HO- 5,6,8- I, hydroxy- 5,6,8- 
trisubstituted indolizidines; 1,4- Q, 1,4- disubstituted quinolizidines; 4,6- Q, 4,6- disubstituted quinolizidines; 3,5- Q, 3,5- disubstituted quinolizidines; 1,3,4- 
Q, 1,3,4- trisubstituted quinolizidines; Lehm, lehmizidines; Epiquinamide, epiquinamide; 2- Pyr, 2- substituted pyrrolidine; 3- Pyr, 3- substituted pyrrolidine; 
2,5- Pyr, 2,5- disubstituted pyrrolidines; Pyr, pyrrolizidine of indeterminate substitution; 2,6- Pip, 2,6- disubstituted piperidines; Pip, other piperidines; Pyri, 
pyridines (including epibatidine); GTX, gephyrotoxins; Tricyclic, coccinelline- like tricyclics; SpiroP, spiropyrrolizidines; Necine, unspecified necine base; 
Unclass, unclassified alkaloids without known structures.

Figure 2 continued
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Phases 3 and 4: Evidence for passive accumulation and sequestration in 
poison frogs
To understand the major evolutionary transition from consuming to sequestering toxins, it is essential 
to characterize the metabolism and sequestration of alkaloids in defended and undefended dendro-
batid lineages (Gonzalez and Carazzone, 2023). However, many of the undefended lineages have 
not been carefully evaluated for the presence or absence of chemical defense. By reviewing existing 
data, we found that only 31 of the 245 inconspicuous poison frog species described to date Amphib-
iaWeb, 2023 have been assessed for toxins, sometimes using methods that would not necessarily 
detect lipophilic alkaloids (Supplementary file 2). Further, prior studies have sometimes misinter-
preted or not fully incorporated these data (Supplementary file 2, and see below). Our review and 
reassessment of these studies suggest that at least 11 undefended species might have lipophilic 
alkaloids: Allobates femoralis, Allobates kingsburyi, Allobates zaparo, Colostethus ucumari, H. elachy-
histus, Hyloxalus nexipus, Hyloxalus vertebralis, Hyloxalus yasuni, Leucostethus fugax, Paruwrobates 
erythromos, and Silverstoneia punctiventris (Daly et al., 1987; Darst et al., 2005; Gonzalez et al., 
2021; Grant, 2007; Moskowitz et al., 2022a; Santos and Cannatella, 2011).

We tested for possible alkaloid presence in additional aposematic and inconspicuously colored 
poison- frog lineages. Using Gas- Chromatography Mass- Spectrometry (GC- MS), we surveyed 89 
animals representing 30 species of Neotropical frogs including 27 dendrobatid species, 1 leptodac-
tylid, and 2 bufonids (Figure 2). We also performed a highly sensitive, untargeted analysis —ultra- 
high- performance liquid- chromatography heated- electrospray- ionization tandem mass spectrometry 
(UHPLC- HESI- MS/MS) — of a dendrobatid from an undefended clade (S. flotator; 12 individuals) and 
a species of eleutherodactylid (Eleutherodactylus cystignathoides; 3 individuals), in which alkaloid 
diversities and types, but not quantities, were assessed. Each of the major undefended clades in 
Dendrobatidae (Figure 1, Table 1) is represented in our dataset with a total of 13 undefended dend-
robatid species surveyed with GC- MS and 1 undefended dendrobatid species surveyed with UHPLC- 
HESI- MS/MS. As far as we are aware, we provide alkaloid data for the first time for six undefended 
dendrobatid species (Rheobates palmatus, Allobates juanii, Hyloxalus shuar, Hyloxalus sp. Agua Azul, 
Silverstoneia aff. gutturalis, and Silverstoneia erasmios) and one defended species (Epipedobates 
currulao). We also provide the first alkaloid data for the non- dendrobatids Amazophrynella siona, El. 
cystignathoides, and Lithodytes lineatus (but see de Lima Barros et al., 2016). Because chemical 
standards for most poison frog alkaloids do not exist, it is not possible to provide absolute quanti-
fication of alkaloids. Reported values for GC- MS data are in units of integrated area, which do not 
directly correspond to alkaloid quantity because of differences in ion yield. Nevertheless, qualitative 
comparisons of integrated areas can provide insight into how species differ in degrees of magnitude.

Overall, we detected alkaloids in skins from 13 of the 14 undefended dendrobatid species included 
in our study, although often with less diversity and relatively lower quantities than in defended 
lineages (Figure  2, Table  1, Supplementary file 3, Supplementary file 4). The pervasiveness of 
low alkaloid levels in undefended dendrobatid lineages (Aromobatinae, Hyloxalinae, some species of 
Colostethinae) contrasts with the mixed or opposing evidence from previous analyses (Supplemen-
tary file 2). In addition, our GC- MS assessment revealed substantially higher diversities of alkaloids 
in defended dendrobatid species than previously reported (Cipriani and Rivera, 2009; Daly et al., 
1987; Lawrence et al., 2023; Moskowitz et al., 2022a,), and expands knowledge on major classes 
of alkaloids within genera.

The large number of structures that we identified is in part due to the way we reviewed GC- MS 
data: in addition to searching for alkaloids with known fragmentation patterns, we also searched for 
anything that could qualify as an alkaloid mass spectrometrically but that may not match a previ-
ously known structure in a reference database. Similarly, the analysis of UHPLC- HESI- MS/MS data 
was untargeted, and thus enables a broader survey of chemistry compared to that from prior GC- MS 
studies. Structural annotations in our UHPLC- HESI- MS/MS analysis were made using CANOPUS, a 
deep neural network that is able to classify unknown metabolites based on MS/MS fragmentation 
patterns, with 99.7% accuracy in cross- validation (Dührkop et al., 2021).

Although contamination across samples is possible, it is unlikely to invalidate the identification of 
alkaloids in undefended species based on the following. (1) At several sites, we only sampled unde-
fended species, and these individuals were found to contain alkaloids (e.g. Las Brisas: R. palmatus; 
El Valle: S. aff. gutturalis; Santa Maria: H. sp. Agua Azul); that is these cannot possibly have come 
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from contamination by defended species. (2) At one site where we collected both undefended 
and defended species, the undefended species shows no alkaloids (Lita: Hyloxalus toachi); i.e., the 
preparation of both types does not imply cross- contamination of samples. (3) At two sites where the 
undefended species were prepared on a different day from the defended species (Valle Hermoso: 
H. awa and Epipedobates boulengeri; Canelos: L. fugax and Ameerega hahneli) and could not have 
been cross- contaminated, the undefended species still show evidence of alkaloids. (4) All chromato-
grams in the GC- MS sequence and integration data were inspected manually. Peaks with low areas 
or following samples with high areas and subject to carryover were excluded from further analysis. (5) 
Data collected by a different team and analyzed with different methods also identify alkaloids in an 
undefended dendrobatid (S. flotator) from Panama.

Aromobatinae
For Aromobatinae, we surveyed the undefended genera Rheobates and Allobates. Alkaloids 
were detected in all four R. palmatus individuals sampled, with one individual having at least four 
classes of compounds represented (4,6- disubstituted quinolizidines, 3,5- disubstituted indolizidines, 
3,5- disubstituted pyrrolizidines, and unclassified). We found that five species of Allobates all had 
detectable levels of alkaloids. Allobates insperatus had a relatively high level of alkaloid diversity, 
with at least 18 alkaloids from nine classes detected, and at least one class found in each of the eight 
sampled individuals. In contrast, only one unclassified alkaloid was identified in a single individual of 
Al. juanii while two were found in one individual of Al. kingsburyi. At least two alkaloids were identified 
in each of the three sampled individuals of Al. talamancae (including the lehmizidine 277 A and five 
new alkaloids). Eight alkaloids were identified in the single surveyed Al. zaparo individual (including 
the spiropyrrolizidines 222–1 and 222–2 as well as six unclassified alkaloids). Prior assessments using 
thin- layer chromatography suggested the presence of alkaloids in three Al. kingsburyi (Santos and 
Cannatella, 2011), but none in 12 Al. insperatus (Darst et al., 2005). Four studies (Supplementary 
file 2) failed to identify any alkaloids in Al. talamancae. Allobates zaparo was shown to possibly have 
trace alkaloids, although the interpretation of these data was absence of alkaloids (Darst et al., 2005). 
There are no known defended species from this subfamily, although we note conflicting evidence for 
the presence of alkaloids in Al. femoralis (Amézquita et al., 2017; Daly et al., 1987; Sanchez et al., 
2019; Saporito and Grant, 2018; Supplementary file 2).

Colostethinae
Within Colostethinae, we surveyed individuals from two undefended clades, Leucostethus and Silver-
stoneia, and from two defended clades, Epipedobates and Ameerega. From L. fugax, we identified a 
total of twelve 5- substituted indolizidine, 5,6- disubstituted indolizidine, pyrrolidine, spiropyrrolizidine, 
and unclassified alkaloids (196 A, 225 C, 222–1, 222–2, and eight new alkaloids), with three to eight 
unique compounds detected in each of the eight sampled individuals. Our data are consistent with 
prior thin- layer chromatography data showing that L. fugax tested positive for skin compounds 
(Santos and Cannatella, 2011), although prior interpretations of these data were different (Supple-
mentary file 2). We also surveyed two species of Silverstoneia with GC- MS. We found alkaloids in 
all nine S. aff. gutturalis, with a total of 14 alkaloids identified across seven classes (196 A, 223I, 
233 A, 235B, 237 U, three isomers of 239AB, two isomers of 239 CD, and four new alkaloids). In 
just two individuals of S. erasmios, we detected a total of 26 alkaloids, including some pumiliotoxins 
(325B, 323B) and pyrrolizidines (225 C). Silverstoneia erasmios and S. aff. gutturalis had not been 
surveyed for alkaloids previously, but thirteen alkaloids were found in eight individuals of a congener 
(S. punctiventris; Gonzalez et al., 2021). In addition, in our more conservative UHPLC- HESI- MS/MS 
analysis of S. flotator, from which we only report compounds with formulae or from classes previously 
known for lipophilic alkaloids of frogs (Daly et al., 2005), we identified the presence of alkaloids in 
5 of 12 sampled individuals (a quinolizidine and epibatidine; Supplementary file 5, Supplementary 
file 6). When we expand our analysis to include any compound assigned to the ‘alkaloid pathway’ 
by NPClassifier (>99% alkaloid pathway probability; Supplementary file 5), we identified a total of 
67 compounds, some of which were present in each individual (Supplementary file 5). Although 
the assignments made by this pipeline are broad and include diverse nitrogen- containing metabo-
lites such as biogenic amines (Supplementary file 6), it is possible that some represent additional 
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lipophilic alkaloids whose structures and formulae are undescribed. Note that UHPLC- HESI- MS/MS 
data should not be directly compared to GC- MS data (see Table 1 legend).

In terms of the defended clades of Colostethinae that we sampled, most of the individual skins 
of Epipedobates and Ameerega contained dozens to more than one hundred unique alkaloids (see 
Supplementary file 4 for full details). For Ameerega, we surveyed five individuals representing two 
species, all of which had integrated areas that were more than 75,000 x greater compared to indi-
viduals of its sister clade, Leucostethus (Table 1). Similarly, alkaloid diversity was 10–20 x greater in 
Ameerega than in Leucostethus. Histrionicotoxins and decahydroquinolines were considered previ-
ously to be the dominant alkaloid classes in genus Ameerega Daly et al., 2009; here we also found 
high levels of indolizidines (Figure 2). Patterns for Epipedobates as compared to sister genus Silver-
stoneia were similar, although less extreme. We surveyed 13 individuals representing seven species in 
Epipedobates and identified at least 370 alkaloids, which contrasts with studies using a less sensitive 
method (thin- layer chromatography) that found mixed evidence for the presence of alkaloids in E. 
aff. espinosai (then referred to as E. boulengeri) and E. machalilla (Darst et al., 2005; Santos and 
Cannatella, 2011). However, the quantity and diversity of alkaloids in Epipedobates machalilla was 
substantially lower than in other Epipedobates species, occurring at levels similar to Silverstoneia 
spp. (Table 1, Figure 2). Except for E. machalilla, each Epipedobates species had about 10 x greater 
quantities and diversities of alkaloids compared to members of Silverstoneia. We found trace levels 
of epibatidine in Epipedobates anthonyi but not in other Epipedobates species. Epibatidines have 
also been detected in E. espinosai, Ameerega silverstonei, S. flotator (Daly et al., 1999; this study), 
and Ameerega petersi or a closely related, undescribed species (reported as Dendrobates pictus from 
Loreto, Peru in Daly et al., 1987, but see taxonomic revision by Guillory et al., 2020).

Hyloxalinae
Hyloxalinae is generally considered an undefended clade (Supplementary file 2). We surveyed four 
species of Hyloxalus, three of which had detectable levels of alkaloids. We identified 17 different alka-
loids in H. awa (197D, 197 H, 199B, 217B, 221 P, 223AB, 231 A, 231 C, 247E, and eight previously 
undescribed alkaloids), with the seven sampled individuals having 0–12 alkaloids each. We detected 
five alkaloids in a single individual of H. shuar (197D, 199B, 237 G, and two isomers of 239 K) and 
eight alkaloids in a single individual of H. sp. Agua Azul (195 C, 197D, 199B, 251 K, and four new 
alkaloids). Our detection of low levels of alkaloids in H. awa is consistent with the observations that 
avian predators consume H. awa (Darst and Cummings, 2006). No alkaloids were detected in two 
individuals of H. toachi, the only undefended dendrobatid species from which we failed to detect alka-
loids. Previously, a GC- MS assessment revealed that P. erythromos contained 5,8- disubstituted indol-
izidine 251B, allopumiliotoxin 267 A, and unclassified alkaloid 281D (Daly et al., 1987). Hyloxalus 
azureiventris is also thought be able to accumulate alkaloids (Daly, 1998; Saporito et al., 2009) and 
thin- layer chromatography suggested the presence of alkaloids in two assessed H. yasuni (previously 
identified as Hyloxalus maculosus), one of three H. nexipus, and two of five H. vertebralis (Santos and 
Cannatella, 2011), although prior interpretation of these data differed (Supplementary file 2). Our 
data support the widespread presence of low levels of alkaloids in this group.

Dendrobatinae
According to the most recent phylogenetic reconstructions (Santos et al., 2014), the sister clade to 
Hyloxalinae is Dendrobatinae (Figure 1). Dendrobatinae contains exclusively (or near exclusively) toxic 
species. From this subfamily, we surveyed 18 individuals representing five species using GC- MS. We 
identified a total of 187 unique alkaloids from four Phyllobates aurotaenia, 316 alkaloids from five O. 
sylvatica, and 213 alkaloids from three Dendrobates truncatus. These three species are all relatively 
large poison frogs (snout- vent lengths 20–35 mm; Supplementary file 3), which may in part explain 
their high alkaloid diversities and quantities (Jeckel et al., 2015; Saporito et al., 2010). In Andino-
bates minutus and Andinobates fulguritus, which are members of the same subfamily but are much 
smaller in size (11–15 mm; Supplementary file 1, Supplementary file 3), we detected 129 and 109 
alkaloids, respectively. Three of the An. minutus individuals were juveniles. The total alkaloid quantities 
(integrated areas) in D. truncatus and O. sylvatica were comparable to those of Ameerega but were 
higher than quantities detected in Epipedobates. We also report for the first time, to the best of our 
knowledge, the occurrence of N- methyldecahydroquinolines outside of the genera Adelphobates, 
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Ameerega, Dendrobates, Oophaga, and Ranitomeya (in E. aff. espinosai, E. currulao, S. aff. gutturalis, 
An. minutus, An. fulguritus, P. aurotaenia, and Al. insperatus; Daly et al., 2009; Hovey et al., 2018; 
Jeckel et al., 2019; Lawrence et al., 2019; Stuckert et al., 2014). The ability to N- methylate deca-
hydroquinoline (demonstrated experimentally in Adelphobates galactonotus, Dendorbates auratus, 
and Ranitomeya ventrimaculata Jeckel, 2021; Jeckel et al., 2022) may thus be conserved in dendro-
batids, or, non- exclusively, arthropod sources of the alkaloid class (likely myrmicine ants Jones et al., 
1999) are widespread.

Other frog families
Outside of Dendrobatidae, we detected a new unclassified alkaloid, New159, in each of two A. siona 
(Bufonidae) and four alkaloids in one individual of Atelopus aff. spurrelli (Bufonidae; 3,5- disubstituted 
pyrrolizidine 237 R- 1, decahydroquinoline 243 A- 3, 5,8- disubstituted indolizidine 251B-2, and an 
unclassified alkaloid, New267- 2). As far as we know, the detection of a decahydroquinoline and a 
3,5- disubstituted pyrrolizidine in a bufonid frog other than Melanophryniscus (Rodríguez et al., 2017) 
is novel and may provide useful context for understanding the evolution of chemical defense in the 
family. We detected no alkaloids in two Li. lineatus (Leptodactylidae) individuals, which is surprising 
because Li. lineatus has been hypothesized to be a Müllerian mimic of poison frogs, although the 
composition of its chemical defenses may be primarily proteinaceous (Prates et al., 2012). These 
findings are also interesting in light of the fact that Li. lineatus live and breed in ant colonies using 
chemical signals that provide camouflage (de Lima Barros et al., 2016). In addition, while we recov-
ered no alkaloids in three sampled individuals of the frog El. cystignathoides (Eleutherodactylidae) 
with UHPLC- HESI- MS/MS when we applied our stringent search criteria, we identified 55 metabolites 
assigned to the alkaloid pathway at >99% probability. Forty of these appear to be identical to those 
identified in S. flotator according to our analyses (Supplementary file 5, Supplementary file 6). Some 
of these could be widespread byproducts of frog metabolism (or symbiont metabolism). A few species 
of Eleutherodactylus frogs from Cuba are thought to sequester alkaloids (Rodríguez et al., 2013) and 
alkaloid sequestration evolved in the bufonid genus Melanophryniscus (Daly et al., 1984; Hantak 
et al., 2013). The presence of low levels of alkaloids in other (non- sequestering) species of Bufonidae 
and the possibility of some exogenous but as of yet undescribed alkaloids in El. cystignathoides 
reflect that passive accumulation may have evolved in an older ancestor shared by the three families, 
predating convergent origins of sequestration in all three groups.

Predictions arising from the passive-accumulation hypothesis
Data from this and other studies point to the ubiquity of mites and ants in nearly all dendrobatid diets, 
and possibly more generally in other leaf- litter dwelling frogs (Figure 2). This finding in concert with 
the detection of low levels of alkaloids in the lineages that putatively lack chemical defenses leads us 
to hypothesize that dietary shifts are not sufficient to explain the presence or absence of the chemical 
defense phenotype within Dendrobatidae or possibly in other families (Bufonidae). The total amount 
of alkaloids accumulated is a result of multiple processes including toxin intake, elimination, and 
sequestration (Figure 3) — not just intake alone.

For example, dendrobatid species vary in their ability to eliminate alkaloids. Some appear to lack 
specific transport and storage mechanisms for consumed alkaloids (‘sequestration’), yet they have 
detectable levels of alkaloids in their skin; we refer to this phenotype as passive accumulation and 
suggest that it is an evolutionary intermediate between toxin consumption (with no sequestration) 
and sequestration (Figure  3). We predict that the ancestral state of poison frogs and potentially 
other clades with alkaloid- sequestering species (e.g. Bufonidae: Melanophryniscus, Eleutherodactyl-
idae: Eleutherodactylus, and Mantellidae: Mantella) is alkaloid consumption and low levels of alkaloid 
resistance, accompanied by passive alkaloid accumulation (e.g. see Figures 1 and 3). Alternatively, 
passive accumulation may have arisen in an even earlier ancestor. That we detected alkaloids in 
two genera of bufonid toads could reflect a single origin of passive accumulation in the ancestor of 
the clade that includes Dendrobatidae and its sister group (the clade comprised of the Terranana 
[including Eleutherodactylidae], Bufonidae, Leptodactylidae, and Odontophrynidae; AmphibiaWeb, 
2023; Blackburn and Wake, 2011; Feng et al., 2017; Streicher et al., 2018; Yuan et al., 2019). 
Further sampling for alkaloids within Eleutherodactylidae and Leptodactylidae could reveal whether 
passive accumulation has persisted in these clades. Discriminating a single origin — no matter the 
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timing — from multiple ones would require more 
extensive alkaloid surveys, as we only assessed 
four non- dendrobatid species.

Here, we propose and discuss three additional 
predictions arising from the passive- accumulation 
hypothesis that would help further evaluate the 
validity of a four- phase model.

Prediction (1) We predict that some 
toxin resistance evolves prior to or in 
concert with passive accumulation, 
and that it increases or changes once 
sequestration mechanisms evolve
Alkaloid resistance is associated with alka-
loid sequestration in dendrobatid poison frogs 
(Tarvin et  al., 2017; Tarvin et  al., 2016). We 
anticipate that some alkaloid resistance evolved 
in the ancestor of Dendrobatidae or in an even 
older ancestor, but is yet to be described (Darst 
et al., 2005; Santos et al., 2016; Figure 1). Such 
resistance may be difficult to characterize using 
the comparative method if it involves mutations 
of small effect (Ffrench- Constant et  al., 2004), 
pleiotropic processes, or undescribed physio-
logical adaptations (e.g. Alvarez- Buylla et  al., 
2023). Regardless, it appears that arthropods 
likely to contain alkaloids are widespread among 
the regular diets of defended and undefended 
dendrobatid poison frogs (Figure 2; Darst et al., 
2005; Santos and Cannatella, 2011; Toft, 1995). 
Short- term alkaloid feeding experiments e.g. 
Daly et al., 1994b; Sanchez et al., 2019 demon-
strate that both defended and undefended frogs 
can survive the immediate effects of alkaloid 
intake, although the degree of resistance and 
the alkaloids that different species can resist vary. 
An experiment conducted by Abderemane- Ali 
et  al., 2021 showed that both aposematic and 
(presumably) undefended frogs can withstand 
several highly toxic alkaloids in quantities greater 
than what the frogs are likely to experience in 
nature. Two aposematic dendrobatids (D. tinc-
torius and Phyllobates terribilis), an aposematic 
Mantella (Mantella aurantiaca), and the putatively 
undefended rhacophorid Polypedates leucomy-
stax (a congener is reported to contain TTX Tanu 
et al., 2001) — recovered from injections of the 
highly toxic alkaloids batrachotoxin and tetro-
dotoxin delivered at 20 x the mouse LD50 value. 

The three aposematic species also survived a third potent alkaloid (saxitoxin), but P. leucomystax did 
not. Other work revealed no signs of intoxication in two undefended hylids (Hyla cinerea and Boana 
bandeirantes) after 2 wk of oral administration of histrionicotoxin 235  A and decahydroquinoline 
(Jeckel, 2021). In an epibatidine- feeding experiment with five aposematic dendrobatid species (E. 
anthonyi, Ranitomeya variabilis, Ranitomeya imitator, Phyllobates vittatus, and D. tinctorius), Waters 
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Figure 3. Hypothesized physiological processes 
that interact to determine the defense phenotype: 
toxin intake, toxin elimination (Elim.), and toxin 
sequestration (Seq.). A new paradigm: the passive- 
accumulation hypothesis for definitions. Although 
toxin intake sets a maximum for the total possible 
amount of toxin accumulation (Acc.), it cannot fully 
explain the defensive phenotype. We hypothesize 
that an undefended “no accumulation” phenotype 
is characterized by the absence of any ability to 
sequester toxins in combination with a high rate of 
elimination, resulting in 0 toxin accumulation (dashed 
gray lines); this phenotype is a likely ancestral state 
for many animals. In contrast, we hypothesize that 
an undefended passive- accumulation phenotype 
is characterized by lower elimination than the no 
accumulation phenotype, leading to a low amount of 
toxin accumulation (yellow lines). We hypothesize that 
a defended sequestration phenotype evolves from an 
intermediate passive- accumulation phenotype through 
the addition of novel sequestration mechanisms, and 
possibly even lower elimination rates, that result in 
high toxin accumulation and the defended phenotype 
(purple lines).
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et al., 2024 found that E. anthonyi was adversely affected by the initial dose of epibatidine, reflecting 
either a body- size effect or species- level variation in epibatidine resistance.

Different types of resistance may be important during different evolutionary phases leading to 
chemical defense. For example, many mechanisms of toxin metabolism are common to all animals and 
were likely used by the ancestors of most if not all animals that eventually evolved toxin sequestration, 
including poison frogs (Tarvin et al., 2023). Although one might expect that toxin metabolism may 
also prevent toxin sequestration, the ability to metabolize toxins can in some cases augment toxin 
defenses (Douglas et al., 2022), increase the toxicity of a compound (e.g. pumiliotoxin to allopum-
iliotoxin in the poison frogs Ad. galactonotus, Adelphobates castaneoticus, D. auratus, D. tinctorius, 
and R. ventrimaculata Alvarez- Buylla et  al., 2022; Daly et  al., 2003; Jeckel, 2021), or result in 
some amount of passive accumulation through increased toxin exposure (Douglas et al., 2022; Kara-
georgi et al., 2019). If toxin intake increases or is sustained over long evolutionary periods, selection 
may favor other mechanisms of resistance, such as target- site resistance, which can eliminate the 
cost of toxin exposure by making the targeted protein insensitive to the toxin (Tarvin et al., 2017). 
Indeed, other toxin- sequestering animals often have specialized mechanisms of toxin resistance when 
compared to toxin- free relatives (Tarvin et al., 2023). For example, three amino acid replacements in 
the ATPα protein evolved in association with cardenolide sequestration in Danainae butterflies (Kara-
georgi et al., 2019; Petschenka et al., 2013) and predatory fireflies that sequester lucibufagins have 
ATPα gene duplications that enhance lucibufagin resistance (Yang et al., 2023).

These data suggest that some dendrobatids and other frog species have a minimal level of resis-
tance to alkaloids, yet more data from undefended frogs will be necessary to reconstruct the evolu-
tionary history of the trait.

Prediction (2) We predict that in species with passive accumulation the rate 
of toxin elimination is slower than in those with no accumulation and faster 
than in those with sequestration
Only a few studies have reviewed toxin metabolism and elimination (clearance from the body) in 
dendrobatids. One study demonstrated that the undefended Al. femoralis and undefended hylid Hy. 
cinerea accumulated less than 1% of orally administered alkaloids into the skin, yet the alkaloids were 
absent (or present in only trace amounts) in the feces (Jeckel, 2021). In the same experiment, the 
defended dendrobatids Ad. galactonotus and D. tinctorius efficiently sequestered the alkaloids, with 
only trace quantities detected in the feces. These results hint at an unknown but possibly conserved 
mechanism for metabolism of alkaloids in anurans. Even among defended dendrobatids, there 
appears to be species- level variation and plasticity in the metabolism and elimination of alkaloids. 
Epipedobates anthonyi, Ra. variabilis, and Ra. imitator accumulate more than twice as much ingested 
epibatidine compared to P. vittatus and D. tinctorius (Waters et al., 2024). Oophaga sylvatica and 
D. tinctorius upregulate detoxification genes such as cytochrome p450s upon alkaloid consumption 
(Alvarez- Buylla et al., 2022; Caty et al., 2019). Adelphobates galactonotus sequesters the alkaloids 
histrionicotoxin 235 A and decahydroquinoline less efficiently at higher doses (Jeckel et al., 2022). 
Some species metabolically alter the structure of alkaloids: Ad. galactonotus, Ad. castaneoticus, D. 
auratus, D. tinctorius, and Ra. ventrimaculata can hydroxylate pumiliotoxin 251D (Alvarez- Buylla et al., 
2022; Daly et al., 2003; Jeckel, 2021), making it more toxic (to mice); Ad. galactonotus, D. auratus, 
and Ra. ventrimaculata can also N- methylate decahydroquinoline (Jeckel, 2021; Jeckel et al., 2022). 
These studies indicate that alkaloid elimination rate and metabolism vary among defended species, 
but not enough information exists to infer much about elimination rates in undefended lineages with 
or without passive accumulation. Given the experimental demonstration of less efficient alkaloid 
uptake in undefended frogs — in combination with our data that show that despite likely ingesting 
alkaloid- bearing prey regularly in the wild, undefended frogs show much lower levels of alkaloids in 
the skin (Figure 2) — we hypothesize that toxin elimination rates in undefended lineages are faster 
or more efficient than rates in defended lineages and are slower than lineages with no accumulation 
(e.g. Figure 3). More nuanced versions of this model could also be envisioned. For example, elimina-
tion rates in defended species could still modulate the amount of toxins ultimately accumulated, with 
lower elimination rates resulting in a higher proportion of toxin accumulation overall. Additional data 
are necessary regarding toxicokinetics of consumed alkaloids in several tissues.

https://doi.org/10.7554/eLife.100011
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Prediction (3) We predict that sequestration mechanisms are absent in unde-
fended lineages
Daly, 1998; Daly et al., 1994b hypothesized that there was an alkaloid uptake system present in the 
ancestor of Dendrobatidae that is “overexpressed” in the defended lineages. This hypothesis remains 
to be tested. Our model posits that sequestration mechanisms (Figures 1 and 3) are unique to chem-
ically defended species. Alternatively, if the mechanisms of toxin transport and/or storage exist in 
undefended species, they seem to be expressed at such a low level that they only result in a trace 
level of toxin accumulation. In order to distinguish between these two possibilities, we first will need 
to better understand the molecular mechanisms underlying toxin sequestration.

To date, little is known regarding the mechanisms of toxin sequestration in poison frogs or in other 
toxin- sequestering animals. An alkaloid- binding globulin was recently characterized in the poison 
frog O. sylvatica (Alvarez- Buylla et al., 2023). While plasma assays demonstrated that the defended 
species O. sylvatica, Epipedobates tricolor, and D. tinctorius can bind and sequester a pumiliotoxin- 
like photoprobe, plasma from the undefended Al. femoralis showed no binding activity. In addition, 
the evolutionarily distant mantellid species M. aurantiaca, which sequesters alkaloids, did not show 
binding activity. These data hint at variation in molecular mechanisms for alkaloid uptake across 
lineages, which may be tuned to availability of specific alkaloids in each species’ diet.

The potential absence of sequestration mechanisms in the undefended Al. femoralis are consis-
tent not only with our alkaloid data from wild- caught frogs, but also with experimental data. 
Using GC- MS, researchers did not detect any alkaloids in the skins of two undefended dendro-
batids (Al. talamancae and Colostethus panamansis) after the frogs consumed fruit flies dusted with 
5,8- disubstituted indolizidine 209B, decahydroquinoline 195 A, and histrionicotoxin 285 C for five 
weeks (Daly et al., 1994b). Other unpublished data suggest that the brightly colored but undefended 
H. azureiventris are unable to accumulate alkaloids from fruit flies (the sample size and alkaloid iden-
tities are unknown), although H. azureiventris apparently accumulated four distinct alkaloids from 
a methanol- saline solution (Saporito et al., 2009). After oral administration of decahydroquinoline 
and histrionicotoxin 235 A, the undefended hylid Hyla cinerea cleared almost all consumed alkaloids 
(accumulating between 0.01 to 0.1%), the undefended Al. femoralis accumulated only trace amounts 
of decahydroquinoline (~1%), and the defended Ad. galactonotus and D. tinctorius sequestered on 
average ~10% (decahydroquinoline) or ~50% (histrionicotoxin 235 A) (Jeckel, 2021). Sparteine, a 
quinolizidine structurally similar to the common ‘izidine’ alkaloids in poison frogs, was detected in 
the skin of a single Al. femoralis individual after the frog was fed sparteine- dusted fruit flies for over 
a month, but the experimental methods prohibited quantification of the alkaloid (Sanchez et al., 
2019).

Additional data on potential uptake mechanisms in dendrobatids exist for benzocaine, a synthetic 
lipophilic compound that is used for anesthesia and euthanasia in amphibians. Benzocaine is readily 
taken up orally to the skin in the defended poison frog D. auratus, the undefended ranid (Lithobates 
clamitans), and the alkaloid- sequestering bufonid Melanophryniscus moreirae (Saporito and Grant, 
2018). Although the same amount of benzocaine was injected into each frog, twice as much benzo-
caine was recovered from D. auratus than Li. clamitans and three times as much was recovered from 
Me. moreirae (see their Fig. 2), suggesting that lipophilic compound uptake occurs without special-
ized mechanisms of sequestration in Li. clamitans (e.g. possibly passive accumulation) but that D. 
auratus and Me. moreirae likely have distinct sequestration mechanisms that result in much higher 
levels of benzocaine accumulation.

In contrast to sequestration, passive accumulation would be expected to result in the diffusion of 
alkaloids across many tissues, rather than concentration of alkaloids within a specific tissue. Desorp-
tion electrospray ionization mass spectrometry imaging data indicate that alkaloids diffuse across 
various tissues in the defended dendrobatid D. tinctorius immediately following intake, possibly an 
evolutionary trace of the low elimination rates that may have initially evolved in an ancestor with the 
passive accumulation phenotype (Jeckel et al., 2020). It would be beneficial to conduct a time- series 
study to show how tissue- specific accumulation patterns change after feeding in different species. 
Clearly, more data will be necessary to evaluate phylogenetic patterns and mechanisms of sequestra-
tion, and to test the hypotheses presented here regarding passive accumulation as an intermediate 
evolutionary phase.

https://doi.org/10.7554/eLife.100011
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Other factors that may shape the evolution of acquired chemical 
defenses
Many animals occasionally or frequently consume toxins, and a multitude have evolved toxin resis-
tance. Some invertebrate pests resist pesticides (Andreev et al., 1999; Chiu et al., 2008; Daborn 
et al., 2002; Ffrench- Constant, 2013), many insect herbivores resist plant toxins (Agrawal et al., 
2012; Dobler et al., 2011), some predators resist toxic prey (Arbuckle et al., 2017), and many animals 
resist environmental pollutants (Whitehead et al., 2017). Our model predicts that some or many of 
these may be on their way towards evolving acquired chemical defenses. Yet, not all toxin- exposed 
or toxin- resistant species inevitably evolve chemical defenses, presumably because the ecological 
context or physiology that favors accumulation is absent or because resisting and accumulating toxins 
is too costly.

Acquired chemical defenses usually evolve within the context of a tri- trophic interaction: animals in 
the middle of the food web accumulate toxins from their prey, and possible predators or parasites are 
deterred by the accumulated toxin (Agrawal, 2000). This phenomenon is referred to as enemy- free 
space, i.e., escape from parasitism or predation (Jeffries and Lawton, 1984). If there is no predator 
or parasite present to exert selection on a toxin- consuming animal, there may be no benefit for the 
animal to accumulate the toxins. Furthermore, some chemicals may not be able to be accumulated 
because of how they interact with the physiology of an animal (e.g. Mebs et al., 2016). Thus, the 
evolution of chemical defenses may be constrained by the specific chemicals present in an ecosystem, 
the existing trophic interactions among species, and the physiology of predators and parasites in 
relation to the chemicals in question.

Origins of chemical defenses are also shaped by the cost of resisting and accumulating toxins, 
which can change over evolutionary time as animals adapt to novel relationships with toxins. In poison 
frogs and other toxin- accumulating animals, it is common to observe a few amino acid substitutions 
in ion channels that provide target- site resistance to alkaloids but adversely affect the function of the 
protein; these substitutions are often accompanied by additional, compensatory substitutions that 
restore protein function without affecting resistance (Karageorgi et al., 2019; Mohammadi et al., 
2021; Reid et al., 2016; Tarvin et al., 2017; Zhang et al., 2016). It is rare but possible to observe 
species that lack (known) compensatory substitutions (Tarvin et al., 2017), suggesting that species 
are under strong selection to overcome some costs of target- site resistance. In one species of garter 
snake (Thamnophis sirtalis), the cost of target- site resistance in a voltage- gated sodium channel is 
not completely offset as animals with target- site resistance have reduced crawl speeds (Hague et al., 
2018). In some insects, resistance to insecticides comes with a cost in fecundity or survival (Kliot 
and Ghanim, 2012). For example, the aphid Aphis nerii experiences trade- offs between population 
growth and defense effectiveness (Züst et al., 2018). As far as we are aware, the possible lifetime 
fitness costs (e.g. in reproductive success) of alkaloid consumption in dendrobatids have not been 
measured.

Once chemical defenses evolve, they are often further shaped by co- evolution between the 
defended prey and their predators (Brodie and Brodie, 1990; Bucciarelli et al., 2022), which can 
result in the appearance of visual or morphological signals, mimicry, and even the loss of defenses 
in the prey if the predator evolves sufficient resistance (Brodie and Brodie, 1991; Brown and Trigo, 
1994; Crothers et  al., 2016). These additional ecological factors in turn shape the physiology of 
an animal in ways that may further promote evolutionary innovation (Loeffler- Henry et al., 2023; 
Przeczek et al., 2008; Santos et al., 2014). In sum, various factors interact in a dynamic equilibrium 
over short and long timeframes to shape chemical defenses.

The passive-accumulation phenotype in a broader evolutionary context
Passive accumulation of toxins is not a novel concept, as it has been discussed previously in terms 
of self- medication (Clayton and Wolfe, 1993; Singer et al., 2009) and bioaccumulation (e.g. of 
environmental pollutants; Butler, 1978; Spurgeon et al., 2020; Streit, 1992), and we propose that 
it is also conceptually analogous to some medical treatments in humans such as chemotherapy. 
Any organism that consumes something toxic might simultaneously suffer from toxin exposure yet 
benefit from the compound’s effect on disease, infection, parasites, or predators. For example, in 
the presence of parasitoids, Drosophila suzukii flies preferentially lay their eggs on the insecticide 
atropine, which protects them from being parasitized but prolongs development (Poyet et  al., 
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2017). Mechanisms that likely underlie passive accumulation may also be analogous to key organ-
ismal functions (Duffey, 1980). For example, humans accumulate vitamin E in the liver (Violet et al., 
2020) and use a transfer protein abundant in liver cells to shuttle the vitamin into the plasma where 
it becomes bioavailable (Arita et al., 1995). The transition from passive accumulation to seques-
tration in poison frogs may similarly rely on the use of proteins that bind to and transport alkaloids 
(Alvarez- Buylla et al., 2023).

If toxin accumulation is both low- cost and beneficial, slow toxin elimination rates could evolve quite 
readily, resulting in passive accumulation. Two recent studies support the idea that some toxin resis-
tance permits toxin intake and results in passive accumulation. In one, nicotine- resistant Drosophila 
melanogaster fruit flies that were fed nicotine accumulated measurable amounts of the toxin in their 
bodies, more than nicotine- sensitive flies (Douglas et al., 2022). In another study, ouabain- resistant 
D. melanogaster flies that were fed ouabain accumulated measurable amounts of ouabain in their 
bodies, more than ouabain- sensitive flies (Karageorgi et al., 2019). In a another example, the sawfly 
Athalia rosae shows constant turnover of its glucosinolate toxins, suggesting that these insects cannot 
effectively store glucosinolates, yet their metabolic clearing is inefficient enough that they still main-
tain a high level of toxins in the hemolymph (Müller and Wittstock, 2005). It is conceivable, then, 
that in some cases, passive accumulation could result in chemical defense through a mechanism that 
enables high net toxin intake, followed by evasion of elimination mechanisms, passive entry into the 
bloodstream, and diffusion into other tissues.

Are these cases of sequestration? Under our definition they are not, given that these species do 
not actively transport and store these compounds, as far as we know. Rather, these organisms merely 
fail to efficiently metabolize and eliminate these compounds, leading to their temporary diffusion in 
tissues and providing a transient benefit against parasites or predators. Evidence for this passive- 
accumulation phenotype as an intermediate stage on the path towards toxin sequestration is scarce, 
but passive accumulation is a pervasive pattern in studies of ecological toxicology and may be more 
common in lineages that evolved toxin sequestration than we currently know.

Limitations
Our study presents a novel alkaloid dataset for dendrobatid frogs and some relatives, yet it is 
limited in the following ways. For some species we only sampled one or two individuals, which 
may paint an incomplete picture of toxin diversity, toxin quantity, and diet in the group. Poison 
frogs vary substantially over time, space, and seasons in their alkaloid profiles and diets (Agudelo- 
Cantero et al., 2015; Saporito et al., 2007a), yet we did not conduct serial sampling over a broad 
geographic range for each species. Standards are unavailable for most frog alkaloids and thus we 
could not measure absolute quantity. Relative quantitation of GC- MS data was performed based 
on integration of the extracted ion chromatogram of the base peak for each alkaloid for maximum 
sensitivity and selectivity. The nature of these data means that qualitative comparisons may be 
meaningful but quantitative comparisons across alkaloid structures could be misleading, especially 
given our small sample sizes for some species. Finally, batrachotoxin and tetrodotoxin are too 
heavy to study using GC- MS; we cannot exclude the possibility that they occur in the sampled 
species.

Conclusion
The large- scale evolutionary transition from consuming to sequestering toxins has occurred in a 
plethora of invertebrates (Duffey, 1980) and vertebrates (Savitzky et al., 2012). Here, we provide 
new evidence showing that undefended poison frogs and frogs in a closely related family (Bufonidae) 
contain measurable amounts of alkaloids, and we confirm that they consume some amount of toxic 
arthropod prey. We propose that passive accumulation of consumed alkaloids is an ancestral state in 
Dendrobatidae, and possibly in related taxa, and that selection acts on toxin elimination and resis-
tance to result in toxin accumulation and chemical defense. Future studies of the toxicokinetics of 
alkaloids in different tissues of both defended and undefended poison frogs will shed light on these 
putative intermediate evolutionary steps. In turn, insights from poison frog physiology will provide 
a novel perspective for the development of human therapeutics, which modulate some of the same 
pharmacokinetic processes.
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Methods
Field collection
Silverstoneia flotator and El. cystignathoides were collected and euthanized with benzocaine in 2022 
in Gamboa, Panama (9.1373,–79.723183) and in 2024 in Austin, Texas, USA (30.285,–97.736 and 
30.292487,–97.737874), respectively. Dorsal and ventral skins were removed and placed separately 
in ~1 mL MeOH in 1- dram glass vials for UHPLC- HESI- MS/MS analyses (see below). All other species 
were collected in 2014 and euthanized with an overdose of lidocaine. Whole skins were removed and 
placed in ~1 mL MeOH in glass vials with PTFE- lined caps. Stomachs of all species were removed and 
placed in 95% ethanol. Instruments and dissection surfaces were cleaned with 95% ethanol between 
dissections. Species were selected with the goal of broad sampling of evolutionary lineages in Dend-
robatidae; our protocols followed the ARRIVE guidelines where applicable (Kilkenny et al., 2010). 
The number of individuals sampled per species was opportunistic. For each Epipedobates species, 
a subset of total samples available were randomly selected to be included; the full dataset will be 
published in another paper focused on variation within the genus.

Alkaloid identification and quantification
For samples from Ecuador and Colombia, a 100 μL aliquot of the MeOH was sampled from each vial 
and transferred to a 200 μL limited volume insert and analyzed directly by GC- MS. The system used 
was a Thermo AS- 3000 autosampler interfaced to a Trace GC Ultra interfaced to an iTQ 1100 ion 
trap mass spectrometer autotuned with FC- 43 (PFTBA) operating in positive ion mode. AS conditions 
were as follows: 2 pre- wash cycles of 5 μL MeOH, then 3 plunger strokes and withdrawal of 1.00 μL 
sample with 1 μL air gap, injection with no pre- or post- injection dwell followed by 3 post wash cycles 
of 5 μL MeOH. GC conditions were as follows: splitless injection, splitless time 1.00 min with surge 
(200 kPa for 0.70 min, to sharpen early peaks), split flow 50 mL/min; injector temperature 250°C, oven 
temperature program 100 °C for 1 min, then ramped at 10 °C/min to 280 °C and held 10 min; transfer 
line temperature 300 °C. MS conditions were as follows: for electron ionization (EI), collection mode 
profile, 1 microscan, 25 μsec max ion time, range 35–650 μ, source temperature 250 °C, solvent delay 
3.00 min, source voltage 70 eV; for chemical ionization (CI), reagent gas NH3 (1.8 mL/min). Samples 
for CI were run in ddMS2 mode (3 precursor ions) with 1 microscan, 50ms max ion time, 0.450 μ 
precursor width and dynamic exclusion duration 0.2 min.

EI spectra were manually compared with published data (Daly et al., 2005; Daly et al., 1999; Daly 
et al., 1978) to identify class and likely ID. A set of known standards was run to give accurate retention 
times across the range of alkaloids and normalized to literature data using linear regression. Sample 
retention times were then normalized, and molecular weights were obtained from CI MS1 spectra. 
These were then directly compared to archival Daly GC- MS data where possible. CI MS2 spectra were 
also used where possible to confirm functional groups such as alcohols by loss of water, etc. Kovats 
retention indexes (semi- standard nonpolar) are also provided based on retention times and published 
indexes for background silicone impurities. Accuracy of index assignments was confirmed based on 
fatty acid methyl esters from skin lipids present in extracts. Epibatidine coelutes with the lipid methyl 
palmitoleate and the latter caused a number of false positives in the GC- MS data. We thus reviewed 
LC- HRMS data at the known elution time relative to a known standard. Epibatidine was only found in 
one sample in trace quantities and is marked as such.

Samples from Panama and Texas were extracted on separate occasions, then filtered and run in 
tandem with UHPLC- HESI- MS/MS, following an untargeted metabolomics protocol, with conditions 
optimized specifically for retention and subsequent identification of alkaloids (Sedio et al., 2021). 
Briefly, for extraction, methanol was evaporated and skins were homogenized with stainless steel 
beads in a TissueLyser II (QIAGEN Sciences, Germantown, MD, USA) and resuspended in 1800 μL 
of extraction solvent (9:1 MeOH:H2O). Samples were then extracted for 3 hr at 4 °C in a Thermo-
Mixer (Eppendorf US, Enfield, CT, USA), followed by evaporation of the methanol component with 
a SpeedVac concentrator (Thermo Fisher Scientific, Waltham, MA, USA). Next, samples were freeze- 
dried with a lyophilizer overnight and resuspended in 500 μL extraction solvent. Resuspended extracts 
were then filtered and diluted 1:7 in 100% MeOH. The metabolomic extracts were run on a Thermo 
Fisher Scientific (Waltham, MA, United States) Vanquish Horizon Duo UHPLC system with an Accucore 
C18 column with 150 mm length, 2.1 mm internal diameter, and 2.6 μm particle size, and a Thermo 
Fisher Scientific Q Exactive hybrid quadrupole- orbitrap mass spectrometer. The instrumental methods 
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(e.g. the separation of metabolites by UHPLC, the volumes of buffers and their use in solvent gradi-
ents, and the use of heated electrospray ionization [HESI] run in positive ion mode with full- scan MS1 
and data- dependent acquisition of MS2 [dd- MS2]) were identical to those described by Sedio et al., 
2021. A positive reference of 1 µg/µL≥98% (±)- epibatidine dihydrochloride hydrate (Sigma- Aldrich, 
St. Louis, MO, USA) was included in the run, but injected last in the instrument so as to avoid possible 
carryover in the column.

Following UHPLC- HESI- MS/MS, chromatographic data were processed using MZmine 3 (v3.9.0; 
Schmid et al., 2023), applying a stringent MS1 noise threshold parameter >100,000 used by other 
workers (e.g. Sedio et al., 2021). So as to avoid additions of false positive metabolite observations, 
we did not use a gap filling algorithm, a step often used in analysis of chemically homogeneous 
datasets to backfill overlooked metabolite occurrences. MZmine 3 assigns chromatographic features 
to putative compounds based on mass- to- charge (m/z) ratio and retention time. MZmine 3 feature 
tables and MS2 data were then uploaded to the Global Natural Products Social Molecular Networking 
(GNPS) platform (Wang et al., 2016) for Feature- Based Molecular Networking (Nothias et al., 2020). 
We used SIRIUS v5.8.6 (Dührkop et al., 2019) and CSI:FingerID (Dührkop et al., 2015) to infer molec-
ular formulae and predict structures including the elements H, C, N, O, P, and S. CANOPUS was used 
to classify metabolites (Dührkop et al., 2021), following the ClassyFire (Djoumbou Feunang et al., 
2016) and NPClassifier molecular taxonomies (Kim et al., 2021). Only compounds assigned to the 
alkaloid pathway with an NPClassifier pathway probability score >99% were retained in the feature 
table, which was generated in R v4.2.2 (R Development Core Team, 2023) At >99% confidence, 
epibatidine was detected in three S. flotator skin samples. Its presence was confirmed by manual 
inspection; the retention time, peak shape, isotope pattern and MS2 are consistent with the epibati-
dine standard. We note that epibatidine was only abundant enough in one of the three samples to 
render MS2 fragments.

With respect to the compounds exclusive to the positive reference sample (i.e. not present in the 
frog skins), at >99% confidence, the algorithms implemented in SIRIUS also predicted annotations 
consistent with an epibatidine alkaloid for a feature only detected in the positive reference sample, 
at the levels of most specific class (‘epibatidine analogues’: ClassyFire) and class and superclass (‘pyri-
dine alkaloids’' and ‘nicotinic acid alkaloids’: NPClassifier). The m/z ratio and structural prediction for 
this feature are consistent with the epibatidine homolog ‘homoepibatidine’ (Supplementary file 6). 
However, this annotation seems at odds with the true identity of the feature (the retention time is at 
0.5 min, the approximate void volume with the highly polar compounds, and the isotope pattern is 
not correct for Cl, matching better with silicon). Instead, the feature may represent a silicone deriv-
ative that, based on results from multiple runs of the instrument (unpublished), we suspect could 
be an impurity consistently co- occurring with and mistaken for homoepibatidine. In another run, we 
recovered a feature exclusive to the positive reference sample with annotations identical at all levels 
to those for our ‘homoepibatidine’ feature, but with epibatidine’s expected m/z ratio (~209) and 
structure (SMILES). In the run we publish here, what is likely this same feature (with an m/z ratio 
of ~209 and annotated as (+/-)- epibatidine by GNPS) was also recovered at the 99% confidence level. 
Assuming this feature is our positive reference — (+/-)- epibatidine — the molecule was annotated 
as expected at class and superclass levels (‘pyridine alkaloids’' and ‘nicotinic acid alkaloids’, respec-
tively) but annotated incorrectly at the level of most specific class (as a ‘pyrimidinethione’). Our results 
suggest that SIRIUS sometimes correctly annotates at all pathway levels our (+/-)- epibatidine positive 
reference.

Diet identification
Stomach contents were inspected under a stereomicroscope and all prey items identified to order (or 
family, in the case of Formicidae). Given the low sample sizes in many individuals, we did not conduct 
statistical comparisons of diet composition across species.

Analyses
We summarized and plotted data from Ecuadorian and Colombian samples in R v4.3.1 (R Devel-
opment Core Team, 2023) using the packages ggplot2 (Wickham, 2016), cowplot v1.1.1 (Wilke, 
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2020), and dplyr v1.1.2 (Wickham et  al., 2023). The UHPLC- HESI- MSMS pipeline used on the 
samples from Panama and Texas allows for higher sensitivity to detect a broader array of compounds 
compared to our GC- MS methods but has lower retention- time resolution and produces less reliable 
structural predictions. Furthermore, due to the lack of liquid- chromatography- derived references for 
poison- frog alkaloids, precise alkaloid annotations from the UHPLC- HESI- MSMS dataset could not be 
obtained. Therefore, the UHPLC- HESI- MSMS and GC- MS datasets are not directly comparable, and 
UHPLC- HESI- MSMS data are not included in Figure 2. Phylogenies were subsetted from Wan et al., 
2023 using ape v5.7.1 (Paradis and Schliep, 2019) and phytools v1.9.16 (Revell, 2012). Co- eluting 
compounds in the GC- MS and having the same base peak could not be discerned with the parame-
ters we used in the Xcalibur processing method, so we averaged their quantities across the co- eluting 
compounds. Corrections for mass were not included; we instead opted to provide data from full skins.

Use of artificial intelligence (AI) and AI-assisted technologies
No AI or AI- assisted technologies were used in the preparation of this manuscript.
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