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Abstract Gamma oscillations in brain activity (30–150 Hz) have been studied for over 80 years. 
Although in the past three decades significant progress has been made to try to understand their 
functional role, a definitive answer regarding their causal implication in perception, cognition, and 
behavior still lies ahead of us. Here, we first review the basic neural mechanisms that give rise to 
gamma oscillations and then focus on two main pillars of exploration. The first pillar examines the 
major theories regarding their functional role in information processing in the brain, also highlighting 
critical viewpoints. The second pillar reviews a novel research direction that proposes a therapeutic 
role for gamma oscillations, namely the gamma entrainment using sensory stimulation (GENUS). We 
extensively discuss both the positive findings and the issues regarding reproducibility of GENUS. 
Going beyond the functional and therapeutic role of gamma, we propose a third pillar of explo-
ration, where gamma, generated endogenously by cortical circuits, is essential for maintenance 
of healthy circuit function. We propose that four classes of interneurons, namely those expressing 
parvalbumin (PV), vasointestinal peptide (VIP), somatostatin (SST), and nitric oxide synthase (NOS) 
take advantage of endogenous gamma to perform active vasomotor control that maintains homeo-
stasis in the neuronal tissue. According to this hypothesis, which we call GAMER (GAmma MEdiated 
ciRcuit maintenance), gamma oscillations act as a ‘servicing’ rhythm that enables efficient translation 
of neural activity into vascular responses that are essential for optimal neurometabolic processes. 
GAMER is an extension of GENUS, where endogenous rather than entrained gamma plays a funda-
mental role. Finally, we propose several critical experiments to test the GAMER hypothesis.

Introduction
Gamma oscillations are rhythmic modulations of brain activity, with typical frequencies in the range 
of 30 to 120–150 Hz. The exact definition of the frequency band varies across studies, with some 
restricting it to 30–90 Hz (Buzsáki and Wang, 2012), while others extending it to 30–120 Hz (Tallon-
Baudry, 2009), or even 30–150 Hz (Fernandez-Ruiz et al., 2023). Despite being studied for over eight 
decades now (Jasper and Andrews, 1938), gamma oscillations remain a mysterious brain rhythm 
whose functional role is yet to be fully understood (Sedley and Cunningham, 2013). Compared to 
the other brain rhythms, gamma is relatively fast, the gamma cycle’s timescale (7–33ms) matching 
relevant time constants of neuronal membranes (Fries et al., 2007) and the time windows that are 
important for synaptic plasticity (Bi and Poo, 1998). Therefore, it has been suggested numerous times 
that gamma oscillations are important for perceptual (Tiesinga and Sejnowski, 2009; Yang et al., 
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2022), cognitive (Başar, 2013), and behavioral processes (Anand et  al., 2023; Gupta and Chen, 
2016; Schoffelen et al., 2011).

Studying gamma oscillations in brain signals is a difficult endeavor, for several reasons. First, there 
is confusing terminology in the field, where ‘gamma’ is used to term different phenomena. Gamma 
band activity should not be confused with gamma oscillations. While the former refers to any signal 
whose spectral signature falls within the gamma frequency range, this does not necessarily identify an 
oscillation (Buzsáki and Wang, 2012). For example, a ‘saccadic spike potential’ in the electroenceph-
alogram (EEG), associated with visual miniature microsaccades, has a typical broadband signature that 
falls within the gamma range (Yuval-Greenberg et al., 2008), but this is not an oscillation, the signal 
lacking periodicity. By contrast, we (Mureşan et al., 2008) and others (Buzsáki and Wang, 2012), 
define gamma oscillations as a periodic signal modulation, usually confined to a narrow region of the 
gamma band (Ardelean et al., 2023).

Another terminological issue pertains to the way gamma oscillations relate to the external stimu-
lation (or the lack of it). This is essential when multiple trials are recorded and frequency- as well as 
time-domain analyses are performed. In general, evoked oscillations occur always at a precise phase 
relative to the stimulus timing, in each recorded trial. When the stimulus is also periodic, this is called 
entrainment (Figure 1A), that is the oscillation follows closely the rhythmic input. The oscillation is 
clearly visible in the time-frequency representation (TFR) as a region of elevated power, and in the 
power-spectral density (PSD; also called spectrum) as a distinct peak at the stimulation frequency. 
Importantly, generalized, m-to-n locking is also possible between the internal dynamics and stimulus, 
such that the ratio of the two frequencies can be a rational number (m/n; Rosenblum et al., 2001; 
Tass et  al., 1998). For example, oscillations could be entrained at 20  Hz with 40  Hz stimulation. 

Figure 1. Terminology relating gamma oscillations to stimulation. Top box: Entrained oscillations do not require an internal generation mechanism, 
but simply activate in response to a periodic stimulation. (A) Entrained oscillations follow closely the stimulation frequency. Bottom box: Endogenous 
oscillations rely on the existence of an internal oscillation-generating mechanism. (B) Induced oscillations. (C) Spontaneous oscillations. From left to 
right: diagram of experimental design and stimulus delivery pattern (sketch); time-frequency representation (TFR); power spectral density (PSD; * - marks 
a visible peak); event-related potentials (ERP) for the trial segment marked on the spectrogram. Data was acquired from V1 of awake C57BL/6 mice 
during light flicker stimulation at 40 Hz (in panel A), and anesthetized C57BL/6 mice during presentation of oriented drifting gratings (panel B) and 
during absence of stimulation (panel C). Measures of amplitude and power are computed on z-scored normalized data. fs – stimulation frequency; fr – 
frequency of the response. Error bands represent s.d.
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Moreover, when signals are averaged over trials, aligned to the onset of stimulation, one obtains an 
event-related potential (ERP) with large amplitude and clear sign of periodic modulation, aligned to 
the entraining stimulus (or to multiples of its period for m-to-n locking). By contrast, induced gamma 
oscillations (Figure 1B) are generated by internal circuit mechanisms when the stimulus is either aperi-
odic or has a significantly lower frequency. For example, the periodic passage of white bars of a 
drifting grating through the receptive fields of neurons from primary visual cortex generates bursts of 
gamma oscillations at much higher frequency than the temporal frequency of the grating (Figure 1B). 
In this case, the oscillation is still visible in the frequency domain (TFR and PSD) but its frequency 
does not match the slow stimulation frequency of the grating. In addition, in each trial the phase 
of the gamma oscillation is unrelated to the timing of the stimulus, such that the ERP amplitude is 
much diminished. For a large number of trials, the ERP will typically not display any modulation at the 
gamma frequency. Finally, we define spontaneous gamma (Figure 1C), as produced in the absence of 
any external stimulus during ongoing, ‘spontaneous’ brain activity. In such cases, ‘single trial’ analyses 
(analyzing a single time trace) can reveal robust gamma bursting, at different frequencies and time-
points (Figure 1C), but this may not be readily visible in the PSD. Therefore, the lack of a clear bump in 
the spectrum (PSD) does not indicate the absence of robust gamma bursting in the data. In addition, if 
multiple spontaneous time-traces were averaged, the average (similar to an ERP) would also not show 
any clear component and would exhibit low amplitude.

In the context of this review, we will call every type of gamma oscillation that is not entrained 
as ‘endogenous’. Such oscillations necessarily need an internal, endogenous circuit mechanism that 
generates them. By contrast, entrained gamma does not require the existence of internal generating 
mechanisms—it is sufficient for the system to follow the external rhythm provided as input.

Importantly, while narrowband gamma oscillations, with a clear bump in the power spectrum may 
be contingent upon specific conditions, such as stimulus intensity, stimulus properties (e.g. visual 
contrast), or behavioral state of the animal (Saleem et al., 2017), the lack of a bump in the spectrum 
does not indicate the absence of gamma. Only TFRs, such as the spectrogram or scalogram, can reveal 
the true expression of gamma oscillations, exposing the underlying bursting process. In Figure 2, we 
show examples where the spectrum (PSD) does not clearly reflect the underlying bursting gamma 
process, when bursts are scattered in time and frequency (Figure 2A) or when systematic bursts at 

Figure 2. The spectrum (PSD) does not always reveal the presence of gamma oscillations in the signal. (A) Vigorous gamma bursting across the time-
frequency landscape. (B) Succession of bursts with linearly decreasing frequency. (C) Induced oscillation around 55 Hz. Toy data generated by inserting 
oscillatiory packets (Morlet atoms) into a pink noise signal. Error bands represent s.d. TFR, time-frequency representation; PSD, power spectral density.
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different frequencies overlap along the frequency domain, abolishing a clear peak (Figure 2B). In 
order for the PSD to show a robust peak, the oscillation needs to be narrow-band, with a significant 
power increase relative to the background, and sustained at a stable frequency for long enough in the 
analysis window (Figure 2C).

To correctly assess the expression of gamma in a certain analysis window, it is critical to avoid 
relying on the PSD and to use TFRs. However, the latter are also posing significant challenges. There 
has been increasing awareness in the past decade that, unlike other rhythms, gamma does not arise 
as a continuous, sustained process, over long periods of time. Instead, gamma is typically produced 
by circuit generators (Fernandez-Ruiz et al., 2023), occurring as brief oscillation bursts (Burns et al., 
2011; Burns et al., 2010; Tal et al., 2020), also called ‘packets’ (Moca et al., 2021). While in the aver-
aged (across trials) TFR gamma could mimic a continuous band of increased power, over hundreds of 
milliseconds, single trial analysis frequently reveals that it emerges from sparse, disparate bursting, 
with each burst narrowly confined in time and frequency (Tal et al., 2020). This raises a methodolog-
ical issue: Due to their finite nature, gamma bursts are difficult to localize simultaneously in time and 
frequency. Traditional analysis techniques relying on the Fourier transform or single wavelets (Le Van 
Quyen and Bragin, 2007) are suboptimal, masking the expression of gamma bursts in complex neural 
signals.

The above-mentioned difficulties in detecting and correctly characterizing gamma bursts as 
events produced by gamma generators Fernandez-Ruiz et al., 2023 have at least slowed down, if 
not hindered progress in elucidating gamma’s functional role. Fortunately, other spectral estimation 
techniques exist. For example, matching pursuit (MP; Durka and Blinowska, 1995) is an innovative 
approach for time-frequency representation, in which the signal is decomposed in atoms (localized 
oscillations) chosen from a very large dictionary, which can be tailored to shapes expected to be found 
in the signal. The method was used successfully to reveal longer oscillatory bursts than with Fourier 
or wavelets (Chandran Ks et al., 2018). Unfortunately MP does not cope well with abrupt changes 
in the oscillation power (Chandran Ks et al., 2018), such as those observed for gamma (Burns et al., 
2011; Burns et al., 2010; Tal et al., 2020). More recent time-frequency super-resolution techniques, 
such as the superlets (Moca et al., 2021), do not suffer from this issue, although they may have other 
shortcomings compared to MP. Superlets are able to precisely detect and localize gamma bursts 
(Ardelean et al., 2023). Novel, robust time-frequency estimation techniques are expected to be a 
game-changer, opening a new window on a yet insufficiently explored world.

Recently, a procedure that is being actively researched and developed as a non-invasive therapy 
for Alzheimer’s disease, may suggest a surprising and overlooked functional role for gamma oscil-
lations. The procedure, called Gamma ENtrainment Using Sensory stimulation (GENUS) (Iaccarino 
et al., 2016), attempts to entrain brain oscillations at 40 Hz by delivering periodic stimuli (flicker) 
to different sensory modalities: visual, auditory, or tactile. This has been further expanded to direct 
brain stimulation using transcranial alternating current stimulation—tACS (Dhaynaut et al., 2022; Kim 
et al., 2021), transcranial magnetic stimulation—TMS (Liu et al., 2022), and near infrared light—NIR 
(Zomorrodi et al., 2019).

While research is still ongoing on the effectiveness of GENUS for treating Alzheimer’s, we would 
like to point out that there are other, equally important discoveries, which spin out from this research 
and whose importance is apparently not yet fully recognized. Causal entrainment or induction of 
gamma oscillations in brain circuits has been recently shown to correlate with increased blood flow, 
activation of the glymphatic system, and efficient functional coupling with microglia (Murdock et al., 
2024). Moreover, hemodynamic signals in the brain are tightly correlated with gamma oscillations in 
cortex, and this has been known already since 2005 (Niessing et al., 2005).

Inspired by GENUS, a tantalizing hypothesis emerges that gamma oscillations in brain circuits may 
have a causal role in the maintenance of healthy brain function by promoting neuroglial coupling and 
leveraging vascular mechanisms. Here, we propose that endogenous gamma, generated by brain 
circuits, acts also as a ‘service rhythm’ that regulates healthy blood and glymphatic flow and maintains 
a ‘hot’ interface with microglia. We challenge the field to causally study if the breakdown of gamma 
in certain brain disorders is not only the result, but also part of the cause that leads to neural degen-
eration and circuit dysfunction.

This review offers a structured exploration of gamma oscillations, which we consider not an 
epiphenomenon, but potentially fundamental to healthy brain function. The first section focuses on 
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the underlying mechanisms responsible for generating and modulating gamma oscillations within 
neural circuits. Subsequently, it briefly examines the involvement of gamma oscillations in various 
processes, including cognition, perception, and behavior. Within this section, we discuss the most 
prominent theories supporting gamma’s functional role, alongside with experimental evidence that 
both supports and challenges these hypotheses. Following this, we explore the potential of gamma 
oscillations as a therapeutic tool in treating neurological disorders, such as Alzheimer’s disease (AD). 
In particular, we present the latest promising non-invasive treatment, GENUS, in both animal models 
and humans. Finally, we propose a novel hypothesis, that could expand the current understanding on 
the function of gamma oscillations.

Mechanisms of endogenous gamma oscillations
We will first review the known mechanisms of emergence of gamma oscillations to further guide 
mechanistic inferences about their role in brain function. Since their discovery (Berger, 1929), oscil-
lations have been studied and classified primarily based on their central frequencies and gamma is 
no exception (Jasper and Andrews, 1938). Recent reviews have pointed out that frequency alone, 
without considering the underlying generators, offers limited opportunities to study gamma for two 
main reasons (Buzsáki and Wang, 2012; Fernandez-Ruiz et al., 2023). First, bursts of gamma oscil-
lations (Moca et al., 2021) are generated in relatively small local circuits (Buzsaki, 2006; Gray and 
Singer, 1989; Sirota et al., 2008), usually in the superficial layers (Mendoza-Halliday et al., 2024; 
Smith et al., 2013; Xing et al., 2012b). Therefore, because gamma is much more localized in time 
and space and because multiple generators coexist, a single readout electrode can easily pick up 
gamma from multiple sources that cannot always be distinguished solely by the temporal pattern or 
frequency. Second, gamma oscillations injected in the LFP by synapses from distant neurons blur even 
more the contribution of local circuits to observed gamma (Fernandez-Ruiz et al., 2023). Overall, 
there is compelling evidence that local generators and distant transmission of gamma oscillations 
should be taken into account whenever possible in order to dissect and study gamma (Buzsáki and 
Wang, 2012; Fernandez-Ruiz et al., 2023). For instance in mice, during learning, the dentate gyrus 
exchanges spatial- and object-related information with the medial and lateral entorhinal cortex using 
high- (100–150 Hz) and low-frequency gamma (30–50 Hz), respectively (Fernández-Ruiz et al., 2021).

Currently, it is well accepted that fast-spiking, parvalbumin (PV) positive interneurons are instru-
mental to the generation of the gamma rhythm (Buzsáki and Wang, 2012; Fernandez-Ruiz et al., 
2023; Kriener et al., 2022; Tiesinga and Sejnowski, 2009). Historically, proof about the involvement 
of interneurons in gamma generation first came from pharmacological interventions (Whittington 
et al., 1995), which was later confirmed by optogenetic studies. The latter studies, by Cardin and 
colleagues, showed that rhythmic stimulation of targeted fast-spiking interneurons in the barrel cortex 
selectively enhances gamma at the stimulation frequency (Cardin et al., 2009). At the same time, it 
was also shown that diffuse activation and inactivation of PV+ interneurons enhances and suppresses 
gamma, respectively (Sohal et al., 2009).

In the early 2000s, theoretical studies on the origins of gamma have put forth two mechanisms 
by which gamma oscillations can arise in local circuits (Börgers and Kopell, 2003; Whittington 
et al., 2000) and, in both, inhibitory neurons play a crucial role. First, in a network of purely inhibi-
tory neurons, it has been shown that recurrent connections are enough to synchronize the network 
and produce oscillations. There is, of course, a prerequisite of enough excitatory drive to produce 
neuronal spiking, but other than that, oscillations occur naturally. This mechanism is known as Inter-
neuron Network Gamma (ING; Whittington et al., 2000). The second theoretical mechanism is the 
Pyramidal-Interneuron Network Gamma (PING; Börgers and Kopell, 2003; Whittington et al., 2000). 
As opposed to ING, in PING both excitatory and inhibitory neurons are required. Here, oscillations 
are a consequence of the push-pull between excitation and inhibition. The buildup of drive within the 
excitatory population results in an excitatory volley that activates the inhibitory population, which in 
turn quenches the circuit with an inhibitory volley. In a network, this repeated push-pull interaction 
gives rise to oscillations (Hansel and Mato, 2003). It is not yet clear whether ING and PING coexist or 
compete in vivo (Tiesinga and Sejnowski, 2009). However, many studies have observed experimen-
tally the succession of excitation-inhibition volleys characteristic of PING (Bragin et al., 1995; Hansel 
and Mato, 2003; Le Van Quyen and Bragin, 2007; Tiesinga and Sejnowski, 2009).

https://doi.org/10.7554/eLife.100238


 Review article﻿﻿﻿﻿﻿﻿ Neuroscience

Ichim et al. eLife 2024;13:e100238. DOI: https://doi.org/10.7554/eLife.100238 � 6 of 32

In both ING and PING, the frequency of gamma oscillations depends on the strength of the input 
and on synaptic delays. Scaling the drive up and down modulates the frequency within the circuit. 
Interestingly, it has been shown that membrane resonance, especially when expressed in interneu-
rons, promotes stable oscillation frequency (Moca et al., 2014), decoupled from input strength fluc-
tuations, as reported experimentally (Gray and Singer, 1989; Moca et al., 2014). Therefore, a third 
mechanism contributing to gamma has been defined, called Resonance INduced Gamma (RING). 
Stabilization of frequency by resonance could be a dynamic phenomenon because resonance can be 
regulated by membrane voltage and neuromodulators (Hutcheon et al., 1996; Steriade et al., 1991), 
and thus it could be subject to cortical-state changes and be controlled by top-down feedback loops 
(Moca et al., 2014).

Gamma oscillations are not restricted to isolated local circuits (Buzsáki and Wang, 2012). Larger 
networks that exchange and mix gamma oscillations have been found in hippocampus and cortex. 
For example, a well-known circuit in hippocampus formed by CA3, the entorhinal cortex, and CA1 
is summarized in Fernandez-Ruiz et al., 2023. In short, CA1 receives low-frequency gamma oscilla-
tions (30–50 Hz) produced by CA3 and higher frequency (60–100 Hz) oscillations from the entorhinal 
cortex. At the same time, CA1 produces its own gamma at even higher frequency (100–150 Hz). In 
this particular case, the three gamma rhythms in CA1 of different origins are segregated in frequency 
and in time, as their peak power aligns to different phases of the theta oscillation. In cortex, multiple 
gamma generators have been described, each with their own particularities (Fernandez-Ruiz et al., 
2023) and with laminar specificity (Senzai et al., 2019). In mouse visual cortex under anesthesia, while 
stimulus induced gamma is visible in layers 2–4, spontaneous gamma is present across all layers (Welle 
and Contreras, 2016).

Primary visual cortices across different species differ in their response properties and mechanisms 
underlying gamma (Han et al., 2022). For instance, in macaques dark stimuli induce an increase in 
gamma power (Xing et al., 2014), whereas in mouse visual cortex gamma activity is predominantly 
triggered by bright stimuli. In addition, the origin of gamma activity may also differ across species. 
While in macaques gamma can be generated cortically, in the absence of LGN gamma (Bastos et al., 
2014), in mice gamma involves pre-cortical structures, including LGN and retina (Saleem et al., 2017; 
Storchi et al., 2017). Additionally, a study by Castelo-Branco et al., 1998 found two distinct narrow 
gamma peaks in cat visual cortex having cortical and subcortical sources. Overall, the literature shows 
that distinct mechanisms and sources may mix and match to generate the electrophysiological observ-
ables at the electrode site and that care must be taken when translating across species.

Gamma oscillations in perception, cognition, and behavior
We will next briefly discuss some of the proposed roles of gamma in brain function and the associated 
controversies. For more details, please also see Han et al., 2022.

Functional role of gamma?
Gamma oscillations have been extensively documented in a wide range of cortical and subcortical 
areas in mammals, including visual (Hermes et al., 2015a), somatosensory (Gross et al., 2007), audi-
tory (Steinschneider et  al., 2008), motor (Muthukumaraswamy, 2010), and frontoparietal brain 
regions (Castellano et al., 2014). They have been also observed in several subcortical areas such 
as amygdala (Popescu et al., 2009), hippocampus (Colgin and Moser, 2010), thalamus (Minlebaev 
et al., 2011), superior colliculus (Le et al., 2019), cerebellum (Middleton et al., 2008), and others.

While the mechanisms of gamma and its role across species are still not fully elucidated (Han et al., 
2022), it is however important to note that, in addition to well-known model species, such as monkeys 
and rodents, gamma has also been observed in the olfactory bulb and pyriform cortex of hedgehogs 
(Adrian, 1942), in the optic lobes of flies (Grabowska et al., 2020), in the olfactory lobe of locusts 
(Laurent and Davidowitz, 1994), rabbits (Rojas-Líbano and Kay, 2008), and in the optic tectum of 
birds (Lewandowski and Schmidt, 2011).

There is mounting evidence that gamma is not simply a byproduct of neural activity (i.e. just a 
natural phenomenon arising from the balance of excitation and inhibition) but that its expression 
may facilitate useful computations. It has been suggested that gamma increases signal discrimination 
(Masuda and Doiron, 2007), enhances the efficacy and efficiency of signal transmission (Knoblich 

https://doi.org/10.7554/eLife.100238
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et  al., 2010), contributes causally to attention (Kim et  al., 2016), mediates interactions between 
hippocampus and cortex (Colgin et al., 2009; Pedrosa et al., 2022) facilitating selection of expe-
rience for memory (Yang et al., 2024) via hippocampal sharp wave ripples (Pochinok et al., 2024), 
and so on. In addition, gamma is known to be disrupted in brain disorders (Mably and Colgin, 2018; 
Paterno et al., 2021; Uhlhaas and Singer, 2006).

An EEG study by Murty et al., 2020 on healthy elderly subjects (50–88 years) has shown that there 
is an inverse correlation between the power of gamma and aging . This effect was more pronounced 
for fast gamma. Additionally, in a follow up study, they found that stimulus-induced gamma activity 
was significantly lower in subjects with mild cognitive impairment (MCI) and AD compared to their 
healthy counterparts (Murty et al., 2021). Similar findings have also been observed in motor areas 
of autistic spectrum disorder subjects (Gaetz et al., 2020). The number of studies ascribing putative 
functional roles to gamma oscillations is actually very large, but direct, causal evidence for the essen-
tial role of gamma in healthy brain activity is still relatively sparse.

The ubiquity of gamma oscillations across species and cortical areas has prompted the development 
of at least three important hypotheses. One of the most prominent ones is the Binding by Synchrony 
hypothesis (Singer, 2007; Singer, 1999), which proposes that disparate features of a sensory repre-
sentation are ‘bound’ into coherent percepts by subpopulations of neurons that synchronize their 
spiking activity (Singer, 2007). Gamma oscillations may serve as an active process that synchronizes 
neurons into specific constellations, aligned to the gamma cycles.

Another hypothesis, known as Communication through Coherence (CTC), underscores the impor-
tance of coherence as a mechanism for information transfer across different brain areas. The CTC 
hypothesis posits that effective cortical communication relies on rhythmic synchronization within 
and between pre- and postsynaptic neuronal groups (Fries, 2005). When activated, synchronized 
neurons alternate between high and low excitability phases, that either enhance or reduce the effect 
of the synaptic input. If spike outputs are not synchronized in a precise temporal window, the synaptic 
input arrives ‘out of sync’ leading to a less efficient cortical communication. Experimental evidence 
supporting the CTC hypothesis includes studies on macaques, where virtually induced gamma 
synchronization between two primary visual areas (V1 and V4) facilitated sensory transmission and 
reduced reaction times to motor tasks (Roberts et al., 2013).

The original version of CTC hypothesis, however, has faced some vulnerabilities due to its assump-
tions of zero-phase synchronization and sinusoidal phase-excitability relations during rhythmic synchro-
nization (Fries, 2005). In fact, recent findings revealed that distant neuronal groups can exhibit high 
gamma band coherence with systematic delays (Bastos et al., 2015; Grothe et al., 2012). A revised 
formulation of CTC incorporates non-sinusoidal and non-linear excitability modulation, aligning 
with mathematical models (Börgers and Kopell, 2008), and integrates entrainment with delay as a 
necessary mechanism that sets up phase relations during CTC in both unidirectional and bidirectional 
communication (Fries, 2015).

A third theoretical concept for explaining the functional role of gamma is Phase Coding—PC 
(Fries et  al., 2007). This relies on the concepts of windows of opportunity defined by CTC but 
explores the non-binary nature of spiking probability as a metric for coding stimulus features. 
Specifically, PC relies on the fact that inhibition is strongest at the peak and decreases towards 
the trough of the gamma cycle, as measured extracellularly. Stronger excitatory drive can over-
come a higher level of inhibition and therefore can trigger action potentials earlier in the gamma 
cycle compared to weak drive. Therefore, excitatory strength is encoded in the phase relationship 
between spikes and the gamma cycle. Phase coding has been discussed since the early 1990s 
(Buzsáki and Chrobak, 1995) and has further gained popularity due to the discovery of theta-phase 
precession in the hippocampus and entorhinal cortex for place cells (Hafting et al., 2008; O’Keefe 
and Recce, 1993; Yamaguchi et al., 2007). In the gamma range, phase coding has received a lot 
of theoretical backing via modeling studies (Lowet et al., 2015), but direct experimental evidence 
is difficult to obtain due to the difficult task of precisely assessing the phase of such high frequency 
oscillations.

Useful feature or side effect?
Skeptics on the functional role of gamma mainly focus on the hypothesis of binding by synchrony 
(Singer, 1999), CTC (Fries, 2005), or PC (Fries et al., 2007) and anchor their arguments in three major 
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directions (Ray and Maunsell, 2015): low and inconsistent power, dependence on low-level stimulus 
features, and phase disruption due to conduction delays and broad-band contamination.

Low and inconsistent power
The transient nature of gamma oscillations (Ardelean et al., 2023; Burns et al., 2011; Moca et al., 
2021; Tal et al., 2020; Xing et al., 2012a), coupled with their relatively low power as compared to 
other bands (Henrie and Shapley, 2005; Jia et al., 2011), has brought under question their usefulness 
in information routing and transmission (Ray and Maunsell, 2015), as postulated by CTC (Fries, 2005) 
and PC (Fries et al., 2007). The low-power criticism rests on two shoulders. First, the authors (Ray 
and Maunsell, 2015) argue that in many cases gamma oscillations are so weak that a clear power is 
visible only after baseline correction (Henrie and Shapley, 2005), but not in the raw spectra. As such, 
neurons would need to filter or use a threshold in order to detect gamma in their internal dynamics 
or in the external input. However, this need not be the case. Theoretical studies have shown that the 
network mechanisms behind gamma (Börgers and Kopell, 2003; Whittington et al., 2000) can easily 
synchronize networks, while membrane resonance of interneurons can adjust the timing of the firing 
such that neurons are able to consume gamma without filtering or integration (Moca et al., 2014).

The transient burst-like nature of oscillations has been emphasized recently (Ardelean et al., 2023; 
Moca et  al., 2021; Tal et  al., 2020). Because of this, it has been suggested that gamma cannot 
establish a stable clock (Ray and Maunsell, 2015) limiting its usefulness for communication between 
sites. In addition, if gamma were useful for transmission, then one would expect dominant gamma 
in input layer L4, while in reality, gamma is in fact stronger in layers L2-3 (Mendoza-Halliday et al., 
2024; Smith et al., 2013; Xing et al., 2012b). This critique refers mainly to the narrow-band, stimulus 
induced gamma. Gamma, however, is produced by multiple sources, some within the local circuit 
and some propagating from distant sites via synaptic transmission (Fernandez-Ruiz et  al., 2023). 
By analogy to sparse coding, which is considered beneficial for encoding of information (Gupta and 
Stopfer, 2014; Olshausen and Field, 1996), sparse gamma could also be functionally relevant. We 
can speculate that gamma need not be active all the time but bursts of gamma can reflect local 
computations, synaptic input, or could be used for transient coupling, while the selective absence of 
gamma could also convey useful information.

Dependence on stimulus: narrow vs. broadband
One intriguing argument is brought by the experimental work of Hermes et al., on human electrocor-
ticography (ECoG) responses in V1/V2/V3 to a range of flashed visual stimuli (Hermes et al., 2015a). 
The authors make a distinction between narrow- and broad-band gamma oscillations that are likely 
produced by different substrates, as shown by other studies (Senzai et al., 2019; Sirota et al., 2008; 
Welle and Contreras, 2016). They show that narrow band gamma (30–80  Hz) is induced reliably 
only by gratings. Noise patterns, faces, and houses, induced narrowband gamma only in a fraction of 
the recorded electrodes (Hermes et al., 2015a). By contrast broadband gamma seems to be better 
represented across multiple sites and for all tested stimuli. They conclude that narrow-band gamma 
oscillations are not necessary for visual perception (Hermes et al., 2015b) and suggest that broad-
band gamma, reflecting asynchronous activity, can support information transmission and perception 
(Hermes et al., 2015a). Even if narrowband gamma is not always necessary for visual recognition it 
does not mean that gamma has no role in perception. Gamma has been shown to enhance tactile 
stimulus detection (Siegle et  al., 2014) and to improve stimulus discrimination in silico (Schaefer 
et al., 2006). In monkey visual cortex it encodes stimulus spatial features, being induced when the 
receptive field can be predicted from the surrounding context, even if firing rates do not change 
(Peter et al., 2019).

Binding by synchrony (Singer, 1999) has been contested on grounds that visually induced gamma 
frequency is dependent on stimulus properties (Peter et al., 2019; Ray and Maunsell, 2015), especially 
on contrast (Henrie and Shapley, 2005; Ray and Maunsell, 2011; Roberts et al., 2013). According 
to this criticism, gamma is unfit to bind together parts with different contrasts into a coherent percep-
tion of a whole (Ray and Maunsell, 2015) because it is unclear how circuits with different frequencies 
would enable synchronization, or the maintenance of some stable phase relation for CTC and PC. 
Others have argued that this conundrum can be settled with a dynamic perspective, whereby oscilla-
tions of different frequencies can still be bound together by phase relations that systematically reflect 
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the stimulus properties (Lowet et al., 2015). Information about the whole can be recovered from the 
phase, even if frequencies are different (Lowet et al., 2015).

Phase disruption due to broad-band contamination and conduction delays
Synaptic transmission between areas introduces delays on time scales comparable with the gamma 
cycle. In monkeys the lags of visual responses can span up to 70ms (Schmolesky et al., 1998). Within 
local V1 circuits the upper layer neurons fire with a delay of about 10–15ms compared to the input layer 
L4 (Best et al., 1986; Maunsell and Gibson, 1992). These delays depend on the distance between 
various areas and, because of their diversity and scale, are thought to impede precise synchronization 
within a single gamma cycle (Ray and Maunsell, 2015). Thus, given the unlikely presence of a central 
oscillator to synchronize sites, binding by synchrony, which requires zero-lag synchronization, may be 
applicable only in a small local neighborhood and not across areas. Importantly, this argument can 
be addressed by results showing synchronization of oscillators via dynamic relay elements. A central 
relay, like the thalamus, can help distant areas attain zero-lag synchronization (Gollo et al., 2010; 
Vicente et al., 2008), and this seems to be a universal mechanism, observed even in lasers (Fischer 
et al., 2006).

To conclude this section, the major problems of several studies that have investigated gamma 
oscillations are that they ignore the transient nature of gamma and they apply improper detection 
and quantification methodology. Indeed, in most cases TFRs (spectrograms) are averaged across trials 
for a certain stimulus and this can yield misleading results. Narrow-band gamma bursts spread in 
frequency in individual trials can mimic broadband gamma in the averaged spectrum. Also, an increase 
or decrease in gamma power in the averaged spectrum can be faked by, respectively, the systematic 
or unsystematic time-frequency localization of gamma bursts across trials, even if these bursts do not 
change in power. In addition, classical analysis techniques, based on the Fourier transform or single 
wavelets, have a tendency to smear out representations of higher frequency bursts and frequency 
leakage can also lead to the severe masking of the high-frequency bursts by lower frequency compo-
nents (Moca et al., 2021). To correctly quantify the presence and properties of gamma oscillations, 
single trial analyses are required (Ardelean et al., 2023; Tal et al., 2020) and tools that can better 
localize brief oscillation bursts (Ardelean et al., 2023; Bârzan et al., 2022; Chandran Ks et al., 2018; 
Durka and Blinowska, 1995; Moca et al., 2021).

Entrained gamma oscillations as a therapeutic tool
We have introduced the major terminological concepts related to gamma oscillations and have 
reviewed extensively their generation mechanisms and putative functional role in perception and 
cognition. However, a new direction has emerged in the past few years, where entrained gamma 
seems to be a useful therapeutic tool, prompted by its efficacy as a non-invasive treatment option 
for AD. We will review this new direction here, referring to concepts and mechanisms that have been 
described in the previous sections of the review.

Relevance of gamma entrainment for the therapy of Alzheimer’s 
disease
AD is a slowly progressing neurodegenerative brain disorder that affects around 50 million people 
globally (Jagaran and Singh, 2021). Recent projections estimate that this figure is set to double every 
20 years, potentially reaching 153 million patients by 2050. Its molecular pathophysiology is not yet 
fully understood, but one of the core hypotheses that has persisted for the last three decades is that 
accumulation of extracellular deposits of amyloid beta (Aβ) and intracellular neurofibrillary tangles of 
tau (i.e. amyloid hypothesis) interferes with neuronal circuitry (Busche and Konnerth, 2016), alters 
neuronal firing rates (Kellner et al., 2014), and disrupts the rhythmic activity within the gamma band 
(Chung et al., 2020), ultimately leading to neuronal death and severe cognitive dysfunction.

Despite significant advancements in AD diagnostics (Bucci et al., 2021; Hansson et al., 2018; 
Bucci et al., 2013) effective strategies to treat or reverse the disorder are missing. Currently, the best 
treatment protocols primarily focus on symptomatic management and can only delay the progression 
of the disorder. For example, one of the latest promising molecular treatments to tackle AD symptom-
atology is immunotherapy using monoclonal antibodies that target Aβ plaques, such as aducanumab 
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(Rahman et al., 2023). Despite its efficacy in reducing Aβ buildup, several clinical trials have reported 
significant adverse effects, including brain hemorrhage and edema (Rahman et al., 2023). These side 
effects raise important safety issues regarding its clinical use, representing a potential step back in 
the AD care.

In response to the rapid increase and socio-economic burden of AD, scientists are branching out 
from traditional methods in exploring AD pathogenesis, approaching the disorder from different 
angles and perspectives to uncover potential treatments. Multiple studies have identified a funda-
mental link between abnormal gamma activity and AD (Byron et al., 2021; Goutagny and Krantic, 
2013; van Deursen et al., 2008). A promising line of investigation and treatment therefore targets 
brain oscillations, particularly within the gamma band, as a new therapeutic hope in AD pathology.

Accumulating evidence indicates that gamma-generating mechanisms are impaired in AD 
pathology, resulting in altered levels of gamma oscillatory activity (Traikapi and Konstantinou, 2021), 
in both humans and animal models of AD. Moreover, in vivo studies conducted in the hippocampal 
area CA1 have established that a reduction of gamma activity results in cognitive dysfunction and 
memory impairment (Mably et al., 2017). It is therefore not surprising that gamma activity is pivotal 
in AD pathophysiology, with recent studies indicating that aberrant gamma oscillations may even be 
considered as an early biomarker of AD. In fact, Malby and Colgin have found that both aberrant 
gamma activity and cognitive dysfunction manifest prior to Aβ buildup (Mably et al., 2017; Mably 
and Colgin, 2018).

Several studies explored the use of multi-sensory stimulation at 40  hz and suggested that 
promoting gamma oscillations in the brain through neural entrainment constitutes a viable option as 
a non-invasive treatment to prevent and ameliorate AD symptomatology (Adaikkan and Tsai, 2020; 
Iaccarino et al., 2016; Martorell et al., 2019). An early study conducted by Iaccarino et al., 2016 
entrained gamma activity through light flickering in an animal model of AD, and found that an expo-
sure to a specific 40 hz flicker frequency in the regimen of 1 hr daily for 7 days reduced Aβ levels by 
approximately 50% and enhanced cognitive performance. This study, which introduced the GENUS 
therapy, has laid the groundwork for ongoing research, fueling interesting debates about sometimes 
conflicting results, but inspiring further recent developments.

Spanning nearly a decade, a multitude of studies have validated the benefits of GENUS in both 
animal models of AD and human patients. The concept of this novel therapy hinges on eliciting neural 
entrainment in the brain via sensory stimuli, such as auditory and/or visual. The frequencies of these 
stimuli can vary, but it is well documented that the specific frequency of 40 Hz, as opposed to 20 Hz 
or 80 Hz (Martorell et al., 2019), enhances gamma power across several brain areas which, in turn, 
promote microglial phagocytosis of Aβ (Martorell et  al., 2019). An unavoidable question in this 
debate is why neural entrainment at precisely 40 Hz could offer significant advantages in combating 
Alzheimer’s disease pathology. Insights from older research may shed light on this.

First, the 40 Hz brain rhythm may be essential in both higher (i.e. feature binding) and lower brain 
function (i.e. phase coding of neuronal activity; Fries, 2005). Second, experimental evidence has 
shown that under tonic excitation, networks of mutually inhibitory interneurons in the hippocampus 
exhibit intrinsic oscillations and collectively ‘resonate’ at 40 Hz (Jefferys et al., 1996). This phenom-
enon, also referred to as the interneuronal network clock, plays a vital role in sensory information 
processing, tuning the frequency of the gamma rhythm across different brain areas (Jefferys et al., 
1996). Third, gamma activity centered around 40 Hz is functionally relevant for memory-related core 
brain areas, such as hippocampus and neocortex (Headley and Weinberger, 2011; Jirakittayakorn 
and Wongsawat, 2017). Fourth, two seminal studies Cardin et al., 2009; Sohal et al., 2009 have 
demonstrated that fast-spiking, PV+ interneurons in cortex tune the cortical circuitry to a 40 Hz reso-
nance operating regime. Given all these considerations, one can postulate that 40 Hz serves as an 
intrinsic natural rhythm essential for specific cognitive processes that become primarily dysfunctional 
in AD. The disruption of this rhythm may be a proxy for the dysfunction of cellular and molecular 
mechanisms associated with AD neuropathology.

Further evidence to support the importance of the 40 Hz entrainment is brought by studies inves-
tigating auditory steady-state responses (ASSRs) and their link to GABAergic transmission. Indeed, a 
study by Parciauskaite et al., 2019 on healthy young males has found that 40 Hz auditory stimulation 
is positively correlated with cognitive abilities such as planning and problem solving. Additionally, 
a study conducted by Huang et al., 2023 has found that 40 Hz visual stimulation enhances specific 
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behaviors in adult C57BL/6J mice, including social exploration, olfactory abilities, and short-term 
memory. Enhancement of olfactory function after 40 hz light stimulation has also been confirmed 
in AD mice (Hu et al., 2024). Furthermore, 40 Hz light flickers ameliorates stress-related behaviors 
and inhibits neuroinflammation in chronically stressed mice (Yao et al., 2024). Finally, an interesting 
piece of evidence is brought by studies investigating synaptic plasticity, showing that specific neural 
entrainment at 40 Hz in wild type mice induces hippocampal neuroplasticity remodeling and promotes 
learning and memory via LTD (Tian et al., 2021).

GENUS in animals
The first evidence of 40 Hz entrainment’s efficacy (as opposed to 20 Hz or 80 Hz) in reducing amyloid 
buildup in two distinct AD mouse models was reported by Iaccarino and colleagues in 2016. A few 
years later, a study conducted by Adaikkan et al., noted similar effects in two distinct animal models 
of neurodegeneration, specifically P301S and CK-p25. Moreover, this research found that gamma 
entrainment reached beyond visual regions to engage higher brain areas, including the hippo-
campus, somatosensory cortices, and prefrontal cortex (PFC; Adaikkan et al., 2019). This suggests 
an enhancement in functional connectivity throughout the brain, uniquely associated with 40 Hz stim-
ulation (Adaikkan et al., 2019). Following the same premises, a follow-up study by Martorell et al., 
combined visual and auditory stimuli administered in the same regimen in two animal models of AD: 
5XFAD and P301S. The results were promising: 40 Hz stimulation successfully reduced the Aβ buildup 
and tau-phosphorylation across multiple areas of the neocortex (Martorell et al., 2019). This reduc-
tion was not observed with administration of other stimulation frequencies (i.e. 8 Hz, 80 Hz) and the 
effect was more pronounced when both auditory and visual stimuli were used.

A recent study by Suk et al., explored the potential of 40 Hz stimulation through a distinct sensory 
modality, namely whole-body vibrotactile stimulation, as a novel and non-invasive therapeutic 
approach in treating neurodegenerative disorders associated with motor dysfunction. The study’s 
results indicated that, across two distinct neurodegeneration animal models, tau P3S01 and Ck-p25, 
regular exposure to 40 Hz vibrotactile stimulation for 1 hr daily over multiple weeks enhanced neural 
activity in crucial areas: the somatosensory cortex and the primary motor cortex. Additionally, in both 
animal models, a reduction in brain pathology was noted within these regions alongside an improved 
performance in motor tasks (Suk et al., 2023).

An additional attempt to replicate the initial findings by Iaccarino et al. was undertaken by Bobola 
et al. in 2020. In this study, 5XFAD mice, aged between 2 and 4 months, were exposed to a transcra-
nially focused ultrasound (tFUS) pulsed at 40 Hz, either acute or chronically. The results confirmed that 
chronic administration over 5 days of 40 Hz tFUS reduced the Aβ buildup by 50% compared to the 
control (sham) group. Furthermore, 1 hr acute administration of 40 Hz tFUS increased microglial acti-
vation around Aβ buildup more so than in the control (sham) group or untreated hemisphere (Bobola 
et al., 2020).

Additional investigations employing optogenetic techniques have also explored the therapeutic 
potential of 40 Hz stimulation. One study conducted by Etter et al., delivered different frequency 
pulses in order to activate medial septal PV+ interneurons in the hippocampus of the J20-APP mouse 
model, known for its spatial memory impairment and decreased lower gamma amplitude. The authors 
found that stimulation at 40 Hz, and not other frequencies, was able to rescue hippocampal slow 
gamma oscillations. Additionally, within the same study, 40 Hz stimulation enhanced spatial memory 
during retrieval despite significant amyloid deposits (Etter et al., 2019).

Another study by Wilson et al., 2020, has found contradictory results. The authors used the 5xFAD 
animal model and reported that optogenetic activation of PV+ interneurons in the basal forebrain 
led to an increase in Aβ deposits, rather than reducing them as observed in previous studies (Wilson 
et al., 2020).

GENUS in humans
Pilot human studies of non-invasive stimulation techniques such as conventional GENUS (40 Hz light 
and/or sound signals) conducted on human subjects highlighted the tolerability, adherence, and 
safety of flicker therapy in human participants, with high rates of tolerability and adherence observed 
over 4–8  weeks of treatment. Adverse events associated with flicker treatment were mostly mild, 
indicating a favorable safety profile (Chan et al., 2022; He et al., 2021). Furthermore, these studies 
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have revealed alterations in cytokines and immune factors in the cerebrospinal fluid (He et al., 2021), 
increased functional connectivity in the default mode network (Chan et al., 2021; He et al., 2021), 
reduced ventricular dilatation and improvements in cognitive functioning and circadian rhythmicity 
(Chan et al., 2021).

Additional non-invasive modalities for brain stimulation include tACS and TMS. Emerging evidence 
indicates that 40Hz-tACS delivered in the PFC of healthy subjects improves their cognitive perfor-
mance by reducing the response latencies in solving complex logic problems (Santarnecchi et al., 
2016). Another study, involving two 30 min tACS sessions/day combined with cognitive exercises in 
both the active and sham (cognitive exercises, no tACS) groups, showed memory improvement, with 
the active group exhibiting significantly better retention of memory after one month compared to 
the sham group (Kehler et al., 2020). Similarly, another study reported memory enhancement and 
restoration of intracortical connectivity supporting cholinergic neurotransmission in comparison to 
sham therapy (Benussi et al., 2021). These findings collectively highlight the effectiveness of 40 Hz 
rhythmic stimulation in enhancing memory and neurological connectivity, underscoring their potential 
as therapeutic strategies for cognitive enhancement.

Despite numerous studies demonstrating a significant decrease in amyloid load following gamma 
entrainment at 40 Hz in mice models (Iaccarino et al., 2016; Lee et al., 2018; Martorell et al., 2019) 
the applicability of these findings to human subjects has not been fully established as current evidence 
does not indicate a notable reduction in amyloid load in humans (Dhaynaut et al., 2022; Ismail et al., 
2018). The study conducted by Ismail et al. suggests that the reason for this discrepancy could be that 
the duration of the treatment in human trials might not have been long enough to produce noticeable 
changes.

Transcranial magnetic stimulation (TMS) is explored as a non-invasive depression treatment, 
offering improved tolerability compared to electroconvulsive therapy (ECT). Studies reveal reduced 
TMS-evoked potentials in AD patients and diminished EEG alpha frequency reactivity in amyloid-
positive individuals without dementia, suggesting potential applications in early AD detection and 
intervention (Chan et al., 2021). Moreover, recent findings demonstrate cognitive function improve-
ment, enhancement of gamma band power in the left temporoparietal cortex, as well as increased 
local, long distance, and dynamic connectivity within the brain (Liu et al., 2022).

Invasive stimulation techniques, such as deep brain stimulation (DBS), have become established 
in the treatment of Parkinson’s disease and essential tremors, but are only now becoming possible 
candidates for a broader range of diseases (Chan et  al., 2021). For instance, a novel therapeutic 
avenue for AD, based on DBS, involves bilaterally stimulating the fornix with short, high-intensity 
(>3 V) pulses at a frequency of 130 Hz (Lozano et al., 2016), while another study reports improvement 
of treatment-resistant major depression using DBS with a frequency of 100 Hz (Scangos et al., 2021). 
This last study also leads nicely into the final category of techniques, namely closed-loop stimulation, 
as authors of that study also employed an algorithm that identifies subject-specific biomarkers of 
depression and delivers DBS as necessary.

Technically, closed-loop stimulation is relatively straightforward: use a control signal, for example 
gamma oscillatory activity, to control the parameters of stimulation, for example the frequency and 
intensity of light flicker stimulation. Closed-loop systems are very popular with direct stimulation 
(tACS, rTMS, DBS) and are under investigation for the treatment of a myriad of conditions (Sellers 
et al., 2024). However, on the (external) sensory stimulation front, it appears that research is scarce 
on closed-loop stimulation, such that it remains an open avenue for research.

GENUS and cognitive performance
While in previous sections we focused on the physiological evidence for gamma entrainment as a 
potential treatment for Alzheimer’s, such as the reduction in the presence of Aβ, here we will focus on 
studies showing increase in cognitive performance evaluated via a behavioral proxy. Martorell et al., 
2019 found that multimodal GENUS increased memory performance on the novel object recognition 
task as well as on the novel object location task in the 5XFAD mouse model of Alzheimer’s. Park 
et al., 2020 showed recovered memory performance on step through and Morris water maze tasks 
in an Alzheimer’s mouse model when exposed to concomitant 40 Hz stimulation and exercise. These 
effects were also associated with a host of biological measurements in the hippocampus. Kim et al., 
2024 similarly showed a recovery from cognitive deficits through GENUS treatment in a mouse model 
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of chemotherapy. You et al., 2020 found improved reaction times in an attention task in humans 
when applying 40 Hz flicker, but not for lower frequencies. Khachatryan et al., 2022 showed that by 
administering GENUS during cognitive tasks, they could increase the power entrainment effect, but 
did not measure performance on the cognitive tasks. These results provide indirect evidence for the 
role of gamma oscillations in cognition by showing that we can recover or improve performance on 
cognitive tasks by entraining them.

GENUS and sleep
A recent study by Zhou et al., 2024 has also investigated the somnogenic effect of 40 hz light flicker 
stimulation. Sleep disruptions are common in several neurodegenerative disorders (Raggi and Ferri, 
2010) and some studies suggest that disturbances of sleep may precede the onset of symptoms in 
such disorders, potentially serving as a precursor of disease manifestation (Musiek and Holtzman, 
2016). The exact mechanisms through which sleep might play a role in these disorders still need to be 
elucidated. However, (Zhou et al., 2024) reported that 40 Hz light flicker stimulation enhances extra-
cellular adenosine levels through ENT2 signaling, leading to a somnogenic effect in different animal 
models and improvement of sleep quality in children. The same study also identified that the cellular 
source of adenosine stems from neuronal interactions of both excitatory and inhibitory neurons, rather 
than astrocytes, mirroring the same mechanism that gives rise to gamma oscillations. The integration 
of these new findings with the previous research (Murdock et al., 2024) links the glymphatic system 
with sleep homeostasis (Bozzelli and Tsai, 2024) in response to 40 Hz stimulation. It has been shown 
that sleep is an important factor in AD (Cordone et al., 2019) through its role in clearing the brain of 
toxic metabolic by-products, including amyloid plaques and tau tangles. We also know that gamma 
oscillations appear during REM and delta sleep (Llinás and Ribary, 1993). While most of the clearing 
has been proposed to happen during slow wave sleep (where gamma is normally absent; Cordone 
et al., 2019) there may still be a link between these two processes.

Contrastive views on GENUS
Visually-entrained gamma has been reported by a battery of studies in the primary sensory cortex in 
anesthetized, head-restrained, and freely moving mice (Adaikkan et al., 2019; Iaccarino et al., 2016; 
Martorell et al., 2019). However, what remains debated is the entrainment of the oscillatory activity 
in other areas outside the primary sensory cortex.

Reports of visual entrainment of 40  Hz oscillation in PFC or areas of the hippocampus along-
side sensory areas support the propagation scenario (Adaikkan et al., 2019; Iaccarino et al., 2016; 
Martorell et al., 2019). Also, human EEG studies have reported small amplitude gamma entrainment 
in parietal and frontal regions (Herrmann, 2001; Jones et al., 2019; Pastor et al., 2003). Auditory 
stimulation alone does not lead to a significant increase in LFP power at 40 Hz in CA1 and medial 
prefrontal cortex (mPFC). However, combined auditory and visual periodic stimulation causes LFP 
power to increase at 40 Hz in CA1, with a very small increase in mPFC (Martorell et al., 2019).

A second level of this debate postulates that even if oscillatory activity entrained by sensory stim-
ulation reaches deep areas, such as the hippocampus, or higher areas such as the PFC, this does not 
translate in a significant effect on the pathological markers of Alzheimer’s disease. One variable, which 
contrasts between studies, is the pathology marker targeted, which is strictly coupled with the genetic 
model used in the studies. Initially, Iaccarino et al. looked at 5XFAD and tau P301S mice and showed 
decreased Aβ levels, plaque load and mutant tau levels in primary visual areas, but no effects in the 
hippocampus or barrel cortex (Iaccarino et al., 2016). Later on, Adaikkan et. al. evaluated the effect 
of sensory stimulation on tau P301S mice and confirmed the lack of effect on mutant tau levels, but 
revealed a significant effect on neuronal loss in both V1 and CA1. Additionally, 40 Hz flicker stimula-
tion in severe neurodegeneration model CK-p25 mice was associated to a reduction in pathological 
markers, such as brain mass loss, cortical shrinkage, ventricular expansion, and neuronal loss in V1, 
CA1, and SS1 (Adaikkan et al., 2019).

The different nature of these pathology markers suggests on one hand that gamma has a potential 
to ‘turn back the clock’ on the progression of incipient stages of neurodegenerative diseases, such 
as Alzheimer’s. On the other hand, reducing neuronal loss when the disease progression has reached 
more advanced stages aims to delay or halt the symptomatology cascade, rather than to reverse 
pathology. Given the wide variety of disease models in which positive effects have been observed 
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in relation to sensory periodic stimulation, it seems like the mechanism of action is not specific to 
molecular particularities of disease, but rather a more generic mechanism such as neuronal circuitry 
maintenance, as proposed by Tsai et al.

Another factor is the duration of the visual flicker protocol application. Initially, Iaccarino et. al. 
started with 1 hr per day, 7 days of protocol application, and Martorell et al. used the same duration 
for auditory and multi-sensory stimulation. Adaikkan increased protocol application to up to 6 weeks 
for the neuronal loss study in order to see significant results.

A third factor which seems to influence the visibility of therapeutic effects of periodic stimulation 
is the sensory modality: Initially, studies relied heavily on visual flicker stimulation (Adaikkan et al., 
2019; Iaccarino et al., 2016). Surprisingly, auditory periodic stimulation has proved to be more effi-
cient and reliable in generating effects on pathological markers of Alzheimer’s disease, even if it 
seems to be less effective in LFP gamma entrainment in CA1 (Martorell et  al., 2019). In fact, in 
5XFAD, APP/PS1, and tau P301S mice, an auditory protocol application duration of 7 days is sufficient 
to cause significant Aβ plaque load and mutant tau decrease in the auditory cortex and hippocampal 
areas. Applying visual and auditory periodic stimulation concomitantly spreads this beneficial effect 
throughout higher areas of the neocortex.

Contesting these views, Soula et  al., 2023 reported results showing that 40  Hz light stimula-
tion does not engage native gamma oscillations in the hippocampus or the visual cortex and there-
fore raised doubts about the possibility of using this as a therapeutic strategy in neurodegenerative 
diseases (Soula et al., 2023). Specifically, the study reports a much lower decrease in Aβ levels in V1 
and hippocampus than previously reported, in both acute and chronic 7-day protocol application. This 
has been contested later by Carstensen et al., suggesting that a higher sample size and more accurate 
statistical tests would increase the significance of the reported effects (Carstensen et al., 2023).

However, the arguments brought forward by Soula et al. are notable and might spring potential 
research directions to improving the effectiveness and reproducibility of therapeutic effects of GENUS 
and towards a more complete understanding of the underlying mechanisms of these effects. First, 
they argue that the oscillatory component observed when applying the 40 Hz visual stimulation does 
not consist of a change in native gamma power increase, but of a steady-state, narrow band 40 Hz 
oscillatory response in V1, which does not propagate to deeper or higher areas. They propose lower 
frequencies, like 4 Hz, as better candidates for highly efficient, wide-spread propagation of oscilla-
tory activity. Additionally, they argue that 40 Hz stimulation without behavioral saliency leads to the 
habituation of neurons in the hippocampus and therefore results in the failure of propagation of the 
V1 steady-state response to the hippocampal structures. This argument leads to the intuition that it 
might be useful to integrate a more specific task in the stimulation paradigm and techniques such as 
neurofeedback, in order to increase the therapeutic outcome of the method.

And third, they report that 40 Hz stimulation is aversive for mice and might cause eyestrain and 
fatigue. Stimulation at close frequencies (30–60 Hz) have been reported to enhance acetylcholine 
levels in the hippocampus (Soula et al., 2023), reduce perineuronal nets (Venturino et al., 2021), and 
even increase mutant tau levels (Wu et al., 2016). They conclude that gamma band frequency stim-
ulation should be used with caution, as it has the potential to both decrease and increase pathology 
markers, depending on the particular circumstances. This raises the importance of identifying a real-
time indicator of treatment outcome, and a flexible stimulation control loop, with potential resting 
periods being instrumental for the positive outcome of such treatments.

Gamma’s hidden role: Balancing the brain’s internal 
ecosystem
We have reviewed the major mechanisms of gamma oscillations and discussed two main reasons it is 
important: gamma’s role for brain function and gamma as a therapeutic tool. Gamma’s role has been 
extensively studied in the context of perception, cognition, and behavior. A picture emerges where it 
seems to be instrumental for the encoding and transmission of neural information across brain struc-
tures, as well as for coordination of circuit activity. Substantial critique also exists, but advancements in 
quantification methodology as well as design of causal experiments will hold the key to resolve once 
and for all the question regarding its utility for brain function. On the other hand, a novel field has 
recently emerged where gamma is studied for its therapeutic benefits, especially for the treatment 
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of AD. Controversy is no stranger to this field either: It is debated whether stimulation using gamma 
frequencies propagates to large enough territories and if this propagation has the expected thera-
peutic effect in AD.

The recent studies by Tsai and others have made significant strides, revealing that the entrain-
ment of brain circuits into gamma oscillations at 40 Hz seems to impact microglia, astrocytes, and 
the glymphatic system, as pivotal protagonists orchestrating the removal of brain metabolic waste 
by facilitating the movement of cerebral fluids (Murdock et al., 2024). The cerebrospinal fluid (CSF) 
enters the brain through perivascular spaces surrounding arteries, traverses the astrocyte endfoot 
layer, and flows through the parenchyma, gathering metabolic waste that is eventually drained along 
the veins (Bojarskaite et al., 2024). This is known as the glymphatic clearance pathway. Its efficiency 
in removing interstitial metabolic waste products, such as Aβ and tau, and relies mainly on astrocytic 
aquaporin-4 (AQP4) water channels (Bojarskaite et al., 2024). Clinical studies on AD patients have 
shown impairments in this system, suggesting that interventions targeting this pathway could be a 
viable treatment option for AD. The key findings can be summarized as follows. One hour exposure 
to 40 Hz multisensory audio-visual stimulation increased 40 Hz local field potentials in the PFC of 6 
months-old 5xFAD mice and significantly reduced the amyloid buildup compared to no stimulation, 
8 Hz, or 80 Hz (Murdock et al., 2024). The observed results are thought to occur because GENUS 
enhances arterial pulsatility (Murdock et al., 2024), which in turn regulates CSF dynamics. GENUS 
promotes the perivascular CSF influx and interstitial cerebral fluid (ICF) efflux by increasing polariza-
tion of aquaporin-4 water channels along the astrocytic endfeet. In the same study, it has been shown 
that this pathway is additionally vasoactive intestinal peptide (VIP) expressing interneuron-dependent: 
Arterial pulsatility is modulated principally by VIP+ interneurons through the frequency-dependent 
release of neuropeptides. These neuropeptides are thought to initiate the glymphatic clearance, 
which ultimately attenuates AD pathology (Murdock et al., 2024). This mechanism has been discov-
ered in the context of GENUS stimulation, which is a powerful but unnatural sensory drive.

It could be that gamma oscillations generated endogenously by the brain during naturalistic percep-
tion, cognition, or sleep, may activate similar mechanisms. Therefore, inspired by, and as an extension 
of GENUS, here we propose an additional direction to explore. We hypothesize that endogenous 
gamma oscillations act as a ‘service rhythm’ that homeostatically maintains healthy brain function via 
a cascade of neural, glial, and vascular mechanisms. We suggest that a complex, yet little understood 
interaction between interneuronal circuits, involving multiple interneuron classes, takes advantage of 
gamma rhythmicity to regulate blood flow and clear metabolic waste products, preventing deposits 
and maintaining healthy circuits. This mechanism, which we call GAMER (GAmma MEdiated ciRcuit 
maintenance) is activated by endogenously generated gamma oscillations both in response to natu-
ralistic stimuli and produced internally during memory recall, cognitive processing, or sleep. A break-
down or inefficiency of GAMER may promote neural circuit dysfunction and neurodegeneration, thus 
establishing a causal role for gamma. The nature of gamma oscillations that support GAMER is yet 
unknown and may be quite different from those entrained using GENUS. We will next discuss this new 
hypothesis and propose key experiments to test it.

GENUS relies on very strong periodic stimulation delivered using sensory inputs. However, in natu-
ralistic settings, where input is received from active visual sampling (Gal et al., 2024), or via auditory 
or tactile modalities, a strong periodic component is usually not present. This does not mean that 
naturalistic input does not induce or evoke gamma oscillations, but their nature is expected to be 
different from those entrained by GENUS. Indeed, a recent study (Duecker et al., 2021) has investi-
gated the relationship between gamma entrained by rhythmic photic stimulation and endogenously 
generated gamma using simultaneous visual stimulation with drifting gratings. The two processes give 
rise to distinct oscillations that do not interfere, suggesting that the nature of GENUS-entrained and 
endogenously generated gamma is different.

Endogenous gamma induced by non-periodic sensory inputs has been well documented in visual 
(Bartoli et al., 2019; Brunet et al., 2015; Chen and Farivar, 2020; Gray and Singer, 1989; Hermes 
et  al., 2015b; Shirhatti et  al., 2022), auditory (Gourévitch et  al., 2020; Karthik et  al., 2021; 
Lakatos et al., 2007; Steinmann et al., 2014), somatosensory (Cheng et al., 2016; Gross et al., 
2007; Iwamoto et al., 2021; Tu et al., 2016), or olfactory (Yang et al., 2022) modalities. In addition, 
internally generated gamma oscillations, or a stronger synchronization of these oscillations across the 
cortex, have been observed during multiple high-effort cognitive tasks, such as meditation (Fell et al., 
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2010; Lee et al., 2018; Lutz et al., 2004; Martinez Vivot et al., 2020), motor imagery (de Lange 
et al., 2008; Gwon and Ahn, 2021; Smith et al., 2014), mental rotation (Bhattacharya et al., 2001; 
Nikolaev and Anokhin, 1998; Nishimura et al., 2020), or neurofeedback training in brain-machine 
interfaces (Engelhard et al., 2013; Merkel et al., 2018). A further study by Kawasaki & Watanabe 
found strong gamma band activity elicited by mental manipulations of color, shape, direction, and 
speed features of an object, highlighting the diversity of situations in which these oscillations appear 
(Kawasaki and Watanabe, 2007).

While frequently overlooked, spontaneous activity is also a major source of endogenous gamma 
bursting. In Figure 3, we show single trial analyses of resting-state human EEG and spontaneous LFP 
in the mouse. First, we show an example of human EEG where the subject closes the eyes (Figure 3A). 
This is immediately followed by the development of prominent alpha waves, which are accompanied 
by genuine, narrow-band gamma bursting over occipital electrodes. Thus, even in the absence of 
visual input, powerful gamma bursting can be found in EEG data. Second, Figure 3B and C show 
examples of gamma bursting in spontaneous activity recorded in awake and anesthetized mice, 
respectively. While gamma bursting is more prominent in awake animals, it can also be found under 
anaesthesia. We argue that gamma oscillations may be much more prevalent than currently thought 
and novel studies are required, using proper tools, to get a clearer picture of their expression under 
different brain states.

Sleep also promotes the development of endogenous gamma oscillations. For example, gamma 
bursting, mediated by fast-spiking interneurons, has been found to be tightly aligned to sleep spindles 
in both animals (Averkin et al., 2016) and humans (Ayoub et al., 2012). Takeuci et al. have observed 

Figure 3. Robust gamma bursting in spontaneous activity recorded in humans and mice. (A) Resting state EEG (Oz electrode) recorded with eyes-
closed in a human participant. (B) Same as in A, but on LFP recorded from an awake mouse. (C) Same as in B, but with spontaneous data recorded in an 
anesthetized mouse. Insets show time traces corresponding to gamma bursts outlined in the corresponding TFRs. TFRs were computed using superlets 
(Moca et al., 2021).
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cross-frequency coupling between high-frequency and slow wave oscillations during slow-wave sleep 
and a significant increase of gamma bursting during REM sleep in the hippocampus of unanesthetized 
primates (Takeuchi et al., 2015). Similarly, marked gamma oscillations are reported in humans during 
slow-wave (Le Van Quyen et al., 2010) and REM sleep (McKenna et al., 2017).

The cortical interneuron circuitry as a relay for vasoactive regulation
Endogenous gamma oscillations are ubiquitous in brain dynamics, in both awake and sleep states. 
The implication of the interneuronal machinery in the rhythmogenesis of endogenous gamma is well 
known. However, most of the focus so far has been on the contribution of the fast spiking PV+ cells 
(Cardin et al., 2009; Kim et al., 2016; Sohal et al., 2009) and much less is known about the involve-
ment of other types of interneurons. In addition to PV+, VIP+, somatostatin (SST), and nitric oxide 
synthase (NOS) expressing interneurons may also be instrumental for the generation and propagation 
of gamma oscillations. Importantly, all these populations of interneurons have vasoactive properties 

Figure 4. Vasomotor control by four major classes of interneurons in cortex (PV+, VIP+, SST+, NOS+). These interneurons, with vasomotor properties, 
are known to act as local integrators promoting neurovascular coupling and enhancing arterial pulsatility – essential for cerebral autoregulation. VIP+ 
interneurons enhance arterial pulsatility through release of frequency-dependent neuropeptides, promoting vasodilation. Conversely, SST+ interneurons 
promote vasoconstriction, while NOS+ and PV+ cells exhibit both vasodilatory and vasoconstrictive properties. The interplay between these four classes 
of interneurons, along with their interactions with principal cells, support gamma rhythmogenesis which in turn, activates the glymphatic clearance. 
Gamma rhythmicity is essential for circuit maintenance and efficient waste removal through CSF-ISF exchange, contributing to homeostatic regulation.
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(Figure 4), modulating blood flow and tissue oxygenation (Aksenov et al., 2022). While VIP+ inter-
neuron activation has vasodilation effects, SST+ interneurons promote vasoconstriction (Cauli et al., 
2004), and NOS+ may feature both (Aksenov et al., 2022). Their coordinated firing is likely to have 
critical effects on regulating blood flow and related neurometabolic processes in the brain (Krawchuk 
et al., 2020).

SST+ interneurons express somatostatin, which is a peptide hormone acting as an endogenous 
inhibitory regulator of neuronal functions (liguz-lecznar and Dobrzanski, 2022). Somatostatin causes 
vasoconstriction and increases vascular permeability in the nervous system (Long et al., 1992). SST+ 
interneurons are a major class of inhibitory neurons in the cortex, mainly exerting dendritic inhibition 
(Fino et al., 2013). Not surprisingly, their dysfunction has been associated with several brain disor-
ders, including AD (Song et al., 2021). The implication of SST+ in gamma oscillations is gradually 
beginning to be recognized. Hakim et al., 2018 have observed narrow-band 30 Hz oscillations in 
acute brain slices of mouse visual cortex in response to patterned optogenetic stimulation. Such 
oscillations were supported by an interplay of L2/3 pyramidal principal cells and SST+ interneurons, 
but did not involve PV+ cells, and appeared to be coherent across large distances. Antonoudiou et 
al. have found that SST+ and PV+ interneurons contribute together to gamma rhythmogenesis in the 
hippocampus (Antonoudiou et al., 2020).

Another important class of interneurons is the VIP-expressing class, which inhibits SST+ interneu-
rons (Krabbe et al., 2019), having a disinhibitory effect on principal cortical cells (Millman et al., 
2020). The vasoactive intestinal peptide promotes vasodilation, being a major regulator of cerebral 
blood flow (Cauli et al., 2004). It was recently suggested that VIP+ interneurons modulate cortical 
activity and sensory context-dependent perceptual performance (Ferguson et al., 2023). They also 
enhance responses to weak but specific stimuli (Millman et al., 2020). While it is not yet clear how 
VIP+ interneurons are involved in gamma rhythmogenesis, it has been shown that VIP+ interneurons in 
mouse cortex scale gamma power in a linear way, without changing its selectivity to the stimulus, and 
also suppress synchronization at larger distances, when different regions process non-matched stimuli 
(Veit et al., 2023). VIP+ interneurons could therefore tune gamma coherence across larger cortical 
territories (Veit et al., 2023).

Two studies have examined closely the importance of VIP+, PV+, SST+, and NOS+ interneurons 
for vascular control. Cauli et al., 2004 performed patch-clamp recordings in rat cortical slices with 
concomitant confocal imaging of biocytin-filled neurons, and laminin-stained microvessels. They 
have found that firing of interneurons was accompanied by a dilation or constriction of neighboring 
microvessels, with a predominantly dilatatory effect for VIP+ and NOS+, and constrictive effect for 
SST+, thus transmuting neuronal signals into vascular responses. In another study, employing opto-
genetic stimulation of VIP+, PV+, SST+, and NOS+ inhibitory interneurons, it was found that NOS+ 
stimulation promotes an increase in cerebral blood flow (CBF), SST+ stimulation is followed by a non-
monotonic response profile, with initial increase and then decrease in CBF, VIP+ did not yield detect-
able changes in CBF, while slower increases in CBF were observed during PV+ entrainment (Krawchuk 
et al., 2020). Because they are reciprocally coupled (Ferguson et al., 2023; Lee et al., 2013) and 
have vasomotor properties (Cauli et al., 2004), it becomes clear that the coordinated firing of these 
interneuron populations is crucial in controlling not only cortical circuit dynamics but also blood flow. 
The challenge of GAMER is to determine how endogenous gamma oscillations affect the firing of 
these populations in vivo.

Is 40Hz necessary?
Experiments with GENUS have demonstrated that specific 40 Hz stimulation is required in order 
to observe AD-related effects on cortical circuits, and not other frequencies, like 80 Hz (Murdock 
et  al., 2024). We argue that while this frequency may be essential for GENUS, it may not be 
required when it comes to endogenous gamma (GAMER). In fact, 40 Hz stimulation is probably 
important for GENUS because it can leverage circuit resonance (Cardin et al., 2009; Sohal et al., 
2009) and obtain efficient propagation across larger cortical territories. However, in vivo endog-
enous oscillations, generated across a large number of internal sources (Fernandez-Ruiz et al., 
2023) could be synchronized via thalamic relay elements (Gollo et al., 2010; Vicente et al., 2008) 
and would not necessarily rely on circuit resonance, possibly benefiting from other oscillations 
frequencies.
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The critical question here is whether the VIP+, PV+, SST+, and NOS+ interneuron complex behaves 
in a special way when engaged into oscillations at 40 Hz versus other frequencies. We do not have a 
clear answer at this point. It is known that gamma oscillations span a large frequency range, with the 
observation that, when one examines the PSD, the gamma band seems to be functionally split into 
high (>60/80 Hz) and low frequency (<60/80 Hz) sub-bands (Ray and Maunsell, 2011). It is still unclear 
if the two distinct gamma ranges share the same gamma generation mechanisms, but it is likely 
that both sub-bands are supported by engaging the interneuron populations, albeit under different 
conditions.

Differential engagement of interneuron populations has been shown before. For example, 
Antonoudiou et al. showed that SST+ and PV+ interneurons contribute differentially to regulating 
gamma frequency and that their interplay is far from linear (Antonoudiou et al., 2020). High (>60 Hz) 
and low (<60 Hz) frequency gamma oscillations are generated depending on the relative activation of 
the excitatory-SST and excitatory-PV loops. A recent study showed that both SST+ and PV+ neurons 
are involved in visually induced gamma oscillations, but with a differential delay relative to principal 
cell firing, the PV+ cells firing earlier in the gamma cycle (Onorato et al., 2023).

Another argument for transcending 40 Hz stimulation used in GENUS originates in observations 
on visual perception. Several studies have shown that certain types of visual stimuli, like superim-
posed (Wang et al., 2021) or large gratings (Murty et al., 2018) induce more than one gamma peak, 
indicating the presence of multiple gamma generators. In one study, three distinct generators were 
identified as a function of the spatial frequency of the stimulus (Han et al., 2021). While for GENUS, 
entrainment might be critically linked to the 40 Hz circuit resonance, GAMER could benefit from the 
endogenous oscillations produced by multiple gamma generators.

To conclude, other gamma frequencies than 40 Hz may be functionally useful in the GAMER hypoth-
esis. However, we cannot exclude that different frequency-specific effects are found for different inter-
neuron classes.

Effectiveness of GAMER
GENUS stimulation entrains a sustained gamma response in neural circuits, which, at least in labo-
ratory settings, has two important properties: it is sustained across relatively long periods of time 
(compared to the period of gamma) and it evokes strong responses, at least in primary sensory 
cortices. As a result, the glymphatic clearance system could take advantage of robust and sustained 
rhythmic vasomotor modulation. By contrast, GAMER relies on endogenous gamma, which occurs 
mostly in brief bursts spread across a wide frequency domain. Future studies should elucidate at least 
two major issues that may prove critical in determining if GAMER is actually an effective mechanism, 
similar to GENUS. First, the prevalence of endogenous gamma bursting needs to be established, 
both for spontaneous activity and with sensory stimulation. It is the opinion of the authors that single 
trial analyses, coupled with appropriate estimation methods (Moca et al., 2021), will demonstrate 
gamma bursting to be a ubiquitous phenomenon. Second, causal experiments should be designed 
to determine to what degree gamma bursting, which occurs in short packets, can activate the glym-
phatic clearance described above. Bursting at diverse frequencies instead of a sustained entrainment 
at a single frequency may activate vasomotor mechanisms that are yet unknown. This should also be 
considered given the diversity of the interneuronal machinery (Soltesz, 2006).

While GENUS relies mainly on 40 Hz stimulation, because this frequency can propagate across 
cortical circuits due to their resonant properties (Cardin et al., 2009; Sohal et al., 2009), a similar 
requirement may not be needed for endogenous gamma under GAMER. Stochastic, endogenous 
bursting could instead propagate across cortical territories in a similar manner to avalanches (Beggs 
and Plenz, 2003). In fact, neuronal avalanches may be tightly related to endogenous gamma bursting 
events (Gireesh and Plenz, 2008; Miller et al., 2019).

Proposal for causal experiments
The key prediction of GAMER is that endogenous gamma oscillations in the VIP+, PV+, SST+, and NOS+ 
interneuron complex are essential for homeostatic regulation of blood flow, oxygenation, and glym-
phatic clearance, promoting healthy neurometabolic function. It is known that these interneurons are 
essential for normal brain function. For example, a causal role has been proposed for the degenera-
tion of SST+ interneurons in the development of AD (Song et al., 2021), because patients exhibit low 
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SST+ expression in cortex and hippocampus (Davies et al., 1980). But is gamma activity in the inter-
neuronal complex also necessary? What benefit would it bring? As proposed by Tsai et al. (Murdock 
et al., 2024), one possibility is that rhythmic vasomotor modulation enables glymphatic clearance 
involving, among others, aquaporin-4 (AQP4) water channels (Bojarskaite et  al., 2024). Another 
possibility is that rhythmic vasomotor modulation may actively correlate the blood flow volume with 
the metabolic demands of the local circuit. In this scenario, rhythmicity is essential in order to ensure 
sufficient metabolic and oxygen supply because of its pumping effect on the microvessels. Indeed, it 
was shown a while ago that hemodynamic signals are correlated with cortical gamma (Niessing et al., 
2005).

To test these scenarios, we propose a few critical experiments. First, one could simultaneously 
observe microvessels surrounding interneurons and use optogenetics to activate the latter using light 
pulses with either rhythmic patterning (gamma) or random inter-pulse intervals, while matching firing 
rates in both conditions. This would allow testing the effect of rhythmic versus random stimulation, 
while ruling out the contribution of the firing rate of the interneurons. Second, in a more complex 
experiment that should be performed in vivo, one could implant rodents with a chronic optogenetic 
stimulator that would be used to gently perturb a local population of VIP+, PV+, SST+, or NOS+ inter-
neurons. The perturbation should kick interneuron firing out of phase, preventing its alignment to the 
endogenous gamma of the larger circuit. This second experiment would necessarily be a closed-loop 
one, where one can both observe the endogenous gamma of the larger circuit and use perturbation 
to break down the rhythmicity of the target interneuron population. Applying this protocol for several 
weeks, would then enable one to assess the impact of the perturbation on the local patch of cortex 
where it was applied and to contrast it with control analyses on cortical circuits where perturbation has 
not been applied, in the same animal. Importantly, as in the first experiment, the optogenetic stimula-
tion should not alter firing rates, but only prevent the rhythmic firing of interneurons.

Conclusions
After more than eight decades of research, gamma remains a mysterious and fascinating rhythm. We 
have extensively reviewed its mechanisms and putative functional role for perception, cognition, and 
behavior. We argue that progress towards understanding gamma’s function will accelerate, as we are 
starting to understand its true, transient nature and with the advent of powerful estimation tools that 
are able to correctly quantify its presence in neuronal signals. More recently, gamma entrainment using 
various stimulation techniques is finding its way as a therapeutic tool, with important applications in 
the treatment of AD. A picture starts to emerge where endogenous gamma oscillations, supported 
by the interneuronal machinery, may have an essential role in the maintenance of healthy circuits by 
means of fluctuating neurovascular coupling. We believe that the greatest discoveries regarding the 
multifaceted roles of gamma oscillations in brain function are about to be revealed in the near future, 
which may be closer than we think.

Materials and methods
Data shown in Figures 1 and 3 were recorded using extracellular in vivo electrophysiology in mice and 
high-density EEG in humans.

Experiments in mice with electrophysiology
Two types of experiments were conducted to test GENUS therapy, utilizing awake and anesthetized 
mice. All procedures complied with the guidelines of the European Communities Council Directive 
of 22/09/2010 (2010/63/UE) and were approved by local ethical committee (3/CE/02.11.2018) and 
the National Veterinary Authority (ANSVSA; 147/04.12.2018). Experiments were conducted on adult 
C57BL/6J mice housed in littermate groups of maximum three, in a controlled environment with 
temperature in the range of 21–23°C, 60% humidity, and under a light/dark cycle of 12/12 hr. Standard 
food and water were available ad libitum.

All surgical procedures were performed on anaesthetized animals using isoflurane (5% for induc-
tion, 2–2.5% for maintenance). Briefly, a circular craniotomy of 1 mm was performed to either implant 
electrodes or insert ASSY E-1 silicon (Cambridge NeuroTech) probes (for chronic and acute record-
ings, respectively). Electrophysiological data was recorded from the left visual cortex of the animal 
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(0–0.5 mm anterior to lambda, 2–2.5 lateral to midline) at 32 kSamples /s during flicker stimulation. 
Flicker was delivered monocularly using a custom-made LED panel, for 6 s, @40 Hz, 50% duty cycle. 
Local field potentials were obtained by filtering the signal first with a low-pass filter @300 Hz, followed 
by a downsampling to 1  kHz, and high-pass filtering @0.1  Hz. Line noise and its harmonics were 
removed by notch filters @50 and @100 Hz.

Experiments in humans using EEG
EEG data was obtained from a healthy human volunteer. All experimental protocols were approved 
by the Local Ethics Committee (approval 1/CE/08.01.2018) and data was collected in compliance with 
relevant legislation, that is Directive (EU) 2016/680 and Romanian Law 190/2018. Written consent was 
obtained prior to the experiment. EEG data was recorded @1024 samples/s using a high-density cap 
(128 electrodes – Biosemi ActiveTwo) from a healthy subject during a resting-state protocol with eyes 
closed. The data was subsequently band-pass filtered in a range of 0.1–200 Hz.
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