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eLife Assessment
The study describes a link between beta-amyloid monomers, regulation of microglial activity and 
assembly of neocortex during development. It brings valuable findings that have theoretical and 
practical implications in the field of neuronal migration, neuronal ectopia and type II lissencephaly. 
Unfortunately, the evidence is incomplete and the manuscript would benefit from additional experi-
ments to clarify the relationship between Ric8a and APP and bolster the findings.

Abstract Amyloid β (Aβ) forms aggregates in the Alzheimer’s disease brain and is well known 
for its pathological roles. Recent studies show that it also regulates neuronal physiology in the 
healthy brain. Whether Aβ also regulates glial physiology in the normal brain, however, has 
remained unclear. In this article, we describe the discovery of a novel signaling pathway activated 
by the monomeric form of Aβ in vitro that plays essential roles in the regulation of microglial 
activity and the assembly of neocortex during mouse development in vivo. We find that activation 
of this pathway depends on the function of amyloid precursor and the heterotrimeric G protein 
regulator Ric8a in microglia and inhibits microglial immune activation at transcriptional and post-
transcriptional levels. Genetic disruption of this pathway during neocortical development results in 
microglial dysregulation and excessive matrix proteinase activation, leading to basement membrane 
degradation, neuronal ectopia, and laminar disruption. These results uncover a previously unknown 
function of Aβ as a negative regulator of brain microglia and substantially elucidate the underlying 
molecular mechanisms. Considering the prominence of Aβ and neuroinflammation in the pathology 
of Alzheimer’s disease, they also highlight a potentially overlooked role of Aβ monomer depletion in 
the development of the disease.

Introduction
Aβ, a core component of amyloid plaques in the Alzheimer’s disease brain, is well known to form 
oligomers under disease conditions. Studies have shown that the oligomers formed by Aβ are highly 
toxic, with wide-ranging effects including inhibition of neurotransmitter release, depletion of synaptic 
vesicle pools, disruption of postsynaptic organization and function, and impairment of multiple forms 
of synaptic plasticity (Gulisano et al., 2018; He et al., 2019; Kim et al., 2013; Laurén et al., 2009; 
Lazarevic et al., 2017; Parodi et al., 2010; Puzzo et al., 2008; Shankar et al., 2008; Walsh et al., 
2002; Yang et al., 2015; Zott et al., 2019). These effects likely significantly underpin the pathogenic 
role of Aβ in Alzheimer’s disease and contribute to neuron loss and cognitive decline in patients. 
Besides its pathological roles, recent studies show that Aβ is also produced in the healthy brain 
by neurons in a neural activity-dependent manner and regulates the normal physiology of neurons 
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(Cirrito et  al., 2005; Fogel et  al., 2014; Galanis et  al., 2021; Garcia-Osta and Alberini, 2009; 
Gulisano et  al., 2018; Gulisano et  al., 2019; Morley et  al., 2010; Palmeri et  al., 2017; Puzzo 
et al., 2008; Zhou et al., 2022). For example, consistent with studies showing that Aβ monomers and 
low-molecular-weight oligomers positively regulate synaptic function and plasticity, administration 
of these molecules in vivo has been found to improve learning and memory in animals (Fogel et al., 
2014; Garcia-Osta and Alberini, 2009; Gulisano et al., 2018; Gulisano et al., 2019; Morley et al., 
2010; Palmeri et al., 2017; Puzzo et al., 2008). Furthermore, recent studies have shown that Aβ 
monomers directly promote synapse formation and function and homeostatic plasticity, processes 
crucial to normal cognitive function (Galanis et al., 2021; Kamenetz et al., 2003; Zhou et al., 2022). 
Together, these findings have provided crucial insights into the physiological roles that Aβ plays in 
regulating normal neuronal function in the brain. However, it remains unclear if Aβ also regulates the 
physiology of glia, nonneuronal cells that also play important roles in normal brain function.

Microglia and astrocytes, two of the major glial cell types in the brain, are known to play crit-
ical roles in the normal development, function, and plasticity of the brain circuitry (Barres, 2008; 
Schafer and Stevens, 2015). They coordinately regulate, among others, the spatiotemporally 
specific expression of immune cytokines in the brain that regulate numerous processes of brain 
circuit development, function, and plasticity (Zipp et  al., 2023). For example, in the thalamus, 
a key relay station in the visual pathway, populations of astrocytes have been found to activate 
the expression of interleukin-33 in a neural activity-dependent manner, induce activity-dependent 
elimination of supernumerary synapses, and promote the maturation of the visual circuitry in early 
postnatal life (Vainchtein et al., 2018). In the adult hippocampus, in contrast, astrocytes have been 
found to activate the expression of interleukin-33 under neuronal activity blockade and induce 
homeostatic synaptic plasticity that maintains circuit activity balance (Wang et al., 2021). In the 
striatum and the neocortex, not only have astrocytes but also have microglia been observed to 
activate the expression of TNFα (Tumor Necrosis Factor α) upon changes in neural circuit activity 
and induce homeostatic synaptic plasticity that dampens circuit perturbation (Heir et  al., 2024; 
Lewitus et al., 2016; Stellwagen and Malenka, 2006). In the clinic, the induction of microglial 
release of cytokines such as TNFα also underpins the application of repetitive transcranial magnetic 
stimulation, a noninvasive brain stimulation technique frequently used to induce cortical plasticity 
and treat pharmaco-resistant depression (Eichler et al., 2023). In neurodegenerative diseases such 
as Alzheimer’s disease, glial activation, and brain cytokine elevation are also key pathologic factors 
in disease development (Colonna and Butovsky, 2017; Patani et al., 2023). Furthermore, elevated 
TNFα expression by microglia also underlies interneuron deficits and autism-like phenotype linked 
to maternal immune activation (Yu et  al., 2022). Thus, the precise regulation of glial cytokine 
expression in the brain plays a key role in the normal development and function of the brain and its 
dysregulation is linked to common neurodevelopmental and neurodegenerative diseases. However, 
how glial cytokine expression is mechanistically regulated by cell–cell communication in the brain 
have remained largely unknown.

In this article, we report the discovery of a novel microglial signaling pathway activated in vitro 
by Aβ, the neuron-produced peptide at the center of Alzheimer’s disease, that plays a crucial role in 
precisely regulating the levels of microglial cytokine expression and activity and ensuring the proper 
assembly of neuronal laminae during cerebral cortex development. We first came across evidence 
for this pathway in our study of the function of Ric8a. Ric8a encodes a guanine nucleotide exchange 
factor (GEF) and molecular chaperone for several classes of heterotrimeric G proteins, which become 
severely destabilized upon Ric8a loss of function (Gabay et al., 2011; Papasergi-Scott et al., 2018; 
Tall et al., 2003). We found that deletion of Ric8a during cortical development resulted in cortical 
basement membrane degradation, neuronal ectopia, and laminar disruption. However, unlike in 
classic models of cobblestone lissencephaly, these phenotypes resulted not from Ric8a deficiency in 
brain neural cell types, but from deficiency in microglia. Ric8a-regulated Gα proteins are known to 
bind to the cytoplasmic domain of the amyloid precursor protein (APP) and mediate key branches of 
APP signaling in several cell types (Fogel et al., 2014; Milosch et al., 2014; Nishimoto et al., 1993; 
Ramaker et al., 2013). The Ric8a cortical phenotypes also resemble those in triple or double mutants 
of APP family and pathway genes (Guénette et al., 2006; Herms et al., 2004), suggesting functional 
interactions. Indeed, we found that App deficiency in brain microglia also underpins ectopia formation 
in App family gene mutants. Furthermore, we found that APP and Ric8a form a pathway in microglia 
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that is specifically activated by the monomeric form of Aβ and that this pathway normally inhibits the 
transcriptional and post-transcriptional expression of immune cytokines by microglia.

Results
Cortical ectopia in Ric8a:Emx1-Cre mutants results from non-neural 
deficiency
To study of the function of Ric8a, a GEF as well as molecular chaperone for Gα proteins (Gabay et al., 
2011; Papasergi-Scott et  al., 2018; Tall et  al., 2003), in neocortical development, we deleted a 
conditional Ric8a allele (Ma et al., 2012; Ma et al., 2017) using Emx1-Cre, a Cre line designed to 
target dorsal forebrain neural progenitors in mice (Gorski et al., 2002). We found it result in ectopia 
formation exclusively in the lateral cortex of the perinatal mutant brain (Figure 1a–d). Birth-dating 
showed that the ectopia consisted of both early- and late-born neurons (Figure 1—figure supple-
ment 1). Consistent with this observation, neurons in the ectopia also stained positive for both Ctip2 
and Cux1, genes specific to lower- and upper-layer neurons, respectively. Interestingly, in cortical 
areas without ectopia, radial migration of early- and late-born neurons appeared largely normal as 
shown by birth-dating as well as Cux1 and Ctip2 staining (Figure  1—figure supplement 2). This 
suggests that cell-autonomous defects in neurons are unlikely the cause of the ectopia. At E16.5, clear 
breaches in the pial basement membrane of the developing cortex were already apparent (Figure 1—
figure supplement 3). However, unlike classic models of cobblestone lissencephaly, where radial glial 
fibers typically retract, radial glial fibers in ric8a mutants instead extended beyond the breaches. This 
argues against radial glial cell adhesion defects since they would be predicted to retract. Furthermore, 
in areas without ectopia, we also observed normal localization of Cajal–Retzius cells, expression of 
Reelin, and splitting of the preplate, arguing against primary defects in Cajal–Retzius cells. In cobble-
stone lissencephaly, studies show that ectopia result from primary defects in radial glial maintenance 
of the pial basement membrane (Beggs et al., 2003; Graus-Porta et al., 2001; Moore et al., 2002; 
Satz et al., 2010). In Ric8a mutants, we observed large numbers of basement membrane breaches 
at E14.5, almost all associated with ectopia (Figure 1—figure supplement 4). In contrast, at E13.5, 
although we also observed significant numbers of breaches, none was associated with ectopia. This 
indicates that basement membrane breaches similarly precede ectopia in Ric8a mutants. However, at 
E12.5, despite a complete lack of basement membrane breaches, we observed increased numbers of 
laminin-positive debris across the lateral cortex, both beneath basement membrane segments with 
intact laminin staining and beneath segments with disrupted laminin staining, the latter presumably 
sites of future breach (Figure 1—figure supplement 5). As a major basement membrane component, 
the increased amounts of laminin debris suggest increased degradative activity within the developing 
cortex. Thus, these results indicate that excessive basement membrane degradation, but not defec-
tive maintenance, is likely a primary cause of cortical ectopia in Ric8a mutants.

To determine the cell type(s) genetically responsible for cortical basement membrane degradation 
and ectopia in Ric8a mutants, we employed a panel of Cre lines (Figure 1e–h’). To target Cajal–Retzius 
cells, we employed Wnt3a-Cre (Yoshida et al., 2006) but found ric8a deletion using Wnt3a-Cre did 
not result in ectopia. To target postmitotic excitatory and inhibitory neurons, we employed Nex-Cre 
(Goebbels et  al., 2006) and Dlx5/6-Cre (Stenman et  al., 2003), respectively, but similarly found 
neither result in ectopia. These results point to Ric8a requirement in cell types other than post-mitotic 
neurons. To test the involvement of neural progenitors, we employed Nestin-Cre (Graus-Porta et al., 
2001). Previous studies show that deletion of β1 integrin (Itgb1) and related genes by Emx1-Cre and 
Nestin-Cre results in similar ectopia phenotypes (Belvindrah et al., 2006; Graus-Porta et al., 2001; 
Huang et al., 2006; Niewmierzycka et al., 2005). To our surprise, deletion of Ric8a by Nestin-Cre did 
not result in ectopia (Ma et al., 2017; Figure 1g, g’). Since Nestin-Cre-mediated deletion in neural 
progenitors is inherited by post-mitotic neurons and astrocytes, this indicates that the combined dele-
tion of Ric8a from all these cell types does not lead to ectopia. The onset of Nestin-Cre expression 
is, however, developmentally slightly later than that of Emx1-Cre (Gorski et al., 2002). To assess the 
potential contribution of this temporal difference, we employed Foxg1-Cre, a Cre line expressed in 
forebrain neural progenitors starting from E10.5 (Hébert and McConnell, 2000). We found that Ric8a 
deletion using Foxg1-Cre still failed to produce ectopia (Figure 1h, h’). Thus, these results strongly 
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argue against the interpretation that Ric8a deficiency in neural cell lineages is responsible for base-
ment membrane degradation and ectopia in Ric8a mutants.

During embryogenesis, the neural tube undergoes epithelial–mesenchymal transition giving rise 
to neural crest cells (Leathers and Rogers, 2022). This process involves region-specific basement 
membrane breakdown that resembles the Ric8a mutant phenotype. To determine if ectopic epithe-
lial–mesenchymal transition plays a role, we examined potential changes in neuro-epithelial cell fates 
in the mutant cortex. We found that cortical neural progenitors expressed Pax6, Nestin, and Vimentin 
normally (Figure 1—figure supplement 6). Cell proliferation in the ventricular zone was also normal. 
Furthermore, although Ric8a regulates asymmetric cell division in invertebrates (Afshar et al., 2004; 
Couwenbergs et al., 2004; David et al., 2005; Hampoelz et al., 2005; Wang et al., 2005), we 

Figure 1. Deletion of Ric8a using Emx1-Cre results in cortical ectopia due to non-neural deficits. (a–d) Nissl staining of control (ctrl, a, c) and mutant 
(mt, b, d) anterior motor (a, b) and posterior somatosensory (c, d) cortex at P0. (e, e’) Laminin (LN, in green) and nuclear (4′,6-diamidino-2-phenylindole-
DAPI, in blue) staining of control cortices at P0. A continuous basement membrane is observed at the pia, beneath which cells are well organized in the 
cortical wall. (f, f’) Staining of Ric8a:Emx1-Cre mutant cortices at P0. Basement membrane breach and neuronal ectopia are observed following Ric8a 
deletion by Emx1-Cre, a Cre line expressed in cortical radial glial progenitors beginning at E10.5. (g, g’) Staining of Ric8a:Nestin-Cre mutant cortices 
at P0. No obvious basement membrane breach or neuronal ectopia is observed following Ric8a deletion by Nestin-Cre, a Cre line expressed in cortical 
progenitors beginning around E12.5. (h, h’) Staining of Ric8a:Foxg1-Cre mutant cortices at P0. No obvious basement membrane breach or neuronal 
ectopia is observed following Ric8a deletion by Foxg1-Cre, a Cre line expressed in forebrain neural progenitors from E9.0. Scale bars, 640 μm for (a, 
b), 400 μm for (c, d), and 100 μm for (e–h’).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Birth-dating of early- and late-born neurons in Ric8a:Emx1-Cre mutant cortices.

Figure supplement 2. Lamina-specific neuronal markers are normal outside ectopia in Ric8a:Emx1-Cre mutant cortices.

Figure supplement 3. Neuronal ectopia in Ric8a:Emx1-Cre mutants result from pial basement membrane breach during embryogenesis.

Figure supplement 4. Basement membrane breaches precede neuronal ectopia in Ric8a:Emx1-Cre mutant cortices.

Figure supplement 5. Signs of basement membrane degradation before breach formation at E12.5.

Figure supplement 6. Cortical radial glial identity and proliferation are unaffected in Ric8a:Emx1-Cre mutants.

Figure supplement 7. Wnt pathway activity is normal in Ric8a:Emx1-Cre mutant cortices.

https://doi.org/10.7554/eLife.100446
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observed no significant defects in mitotic spindle orientation at the ventricular surface. Additionally, 
no ectopic expression of neural crest markers or Wnt pathway activation was observed (Figure 1—
figure supplement 7). Altogether, these results further indicate that non-neural cell deficiency is 
responsible for ectopia formation in Ric8a mutants.

Microglial Ric8a deficiency is responsible for ectopia formation
To assess the role of non-neural cell types, we turned our attention to microglia since RNA-seq studies 
show that brain microglia express Emx1 at a significant level (Zhang et al., 2014). To determine if 
Emx1-Cre is expressed and active in microglia, we isolated microglia from Ric8a:Emx1-Cre mutants. 
We found that Emx1-Cre-mediated Ric8a deletion resulted in altered cytokine expression in microglia 
(Figure 2—figure supplement 1a, b). This indicate that Emx1-Cre is expressed and active in microglia 
and deletes Ric8a. In further support of this interpretation, we found that when crossed to a reporter, 
Emx1-Cre resulted in the expression of reporter gene in microglia (Figure 2—figure supplement 
1c–c’’). It also resulted in the reduction of Ric8a mRNA levels in in microglia in Ric8a:Emx1-Cre mutants 
(Figure  2—figure supplement 1d). To determine the specific significance of Ric8a deletion from 
microglia alone, we next employed a microglia-specific Cx3cr1-Cre (Yona et al., 2013). Like Emx1-Cre 
mutants, Ric8a:Cx3cr1-Cre mutant microglia also showed elevated cytokine secretion and transcrip-
tion in comparison to control microglia upon stimulation by lipopolysaccharide (LPS) (Figure 2a, b). 
Similar results were also obtained with stimulation by polyinosinic–polycytidylic acid (poly I:C), an 

Figure 2. Ric8a deficiency in microglia is responsible for cortical ectopia. (a) TNFα, IL-1β, and IL-6 secretion (pg/ml) in control and Ric8a:Cx3cr1-Cre 
mutant microglia following lipopolysaccharide (LPS) stimulation. *p < 0.05; **p < 0.01; ***p < 0.001; n = 6–8 each group. (b) TNFα, IL-1β, and IL-6 mRNA 
expression in control and Ric8a:Cx3cr1-Cre mutant microglia following LPS stimulation. *p < 0.05; ***p < 0.001; n = 5–6 each group. Nuclear (DAPI, in 
gray) staining of Ric8a:Cx3cr1-Cre mutant cortices at P0 in the absence (c) or presence (d) of LPS treatment during embryogenesis. Nuclear (DAPI, in 
gray) staining of Ric8a:Nestin-Cre single cre (e) and Ric8a:Nestin-Cr+Cx3cr1-Cre double Cre (f) mutant cortices at P0. Scale bar in (c), 100 μm for (c–f).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Excel files for control and Ric8a mutant microglia ELISA and qRT-PCR analysis.

Figure supplement 1. Emx1-Cre is active in microglia.

Figure supplement 2. Gαi protein is severely depleted from Ric8a:Emx1-Cre mutant cortices.

Figure supplement 2—source data 1. Western blot analysis of Gαi levels in E13.5 and P0 brains.

Figure supplement 2—source data 2. Raw scan of western blots of Gαi.

https://doi.org/10.7554/eLife.100446
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intracellular immune activator. Thus, these results indicate that ric8a deficiency in microglia results in 
broad increases in microglial sensitivity to immune stimulation.

To determine if microglial Ric8a deficiency alone is sufficient to cause cortical ectopia in vivo, 
we examined Ric8a:Cx3cr1-Cre mutants but found that it did not affect either basement membrane 
integrity or cortical layering (Figure 2c). We reasoned that this may be related to the fact that Ric8a 
mutant microglia only show heightened activity upon stimulation but not under basal unstimulated 
conditions (Figure 2a, b) but elevated microglial activity may be needed for basement membrane 
degradation and ectopia formation. To test this possibility, we employed in utero LPS administration to 
activate microglia during cortical development. We found that over 50% of Ric8a:Cx3cr1-Cre mutant 
neonates showed ectopia when administered LPS at E11.5–12.5 (10 of 19 mutant neonates examined) 
(Figure 2d). In contrast, no cortical ectopia were observed in any of the 32 littermate controls that 
were similarly administered LPS. This indicates that only the combination of microglial Ric8a deficiency 
and immune activation leads to ectopia formation. In Emx1-Cre mutants, ectopia develop without LPS 
administration (Figure 1). We suspect that this may be due to concurrent Ric8a deficiency in neural 
cell types, which may result in deficits that mimic immune stimulation. In the embryonic cortex, for 
example, studies have shown that large numbers of cells die starting as early as E12 (Blaschke et al., 
1996; Blaschke et al., 1998). Radial glia and neuronal progenitors play critical roles in the clearance 
of apoptotic cells and cellular debris in the brain (Amaya et al., 2015; Ginisty et al., 2015; Lu et al., 
2011) and Ric8a-dependent heterotrimeric G proteins promotes this function in both professional and 
non-professional phagocytic cells (Billings et al., 2016; Flak et al., 2020; Pan et al., 2016; Preissler 
et al., 2015; Zhang et al., 2023). Thus, Ric8a deficiency in radial glia may potentially result in accu-
mulation of apoptotic cell debris in the embryonic brain that stimulate microglia. To test this, we next 
additionally deleted Ric8a from radial glia in the Ric8a:Cx3cr1-Cre microglial mutant background by 
introducing Nestin-Cre. We have shown that Ric8a deletion by Nestin-Cre alone does not result in 
ectopia (Figure 1g, g’). However, we found that, like deletion by Emx1-Cre, ric8a deletion by the 
dual Cre combination of Cx3cr1-Cre and Nestin-Cre also resulted in severe ectopia in all double Cre 
mutants (six of six examined) (Figure 2f). Thus, these results indicate that elevated immune activation 
of Ric8a deficient microglia during cortical development is responsible for ectopia formation.

Microglial APP deficiency also results in ectopia formation
In the large numbers of cobblestone lissencephaly and related cortical ectopia mutants, besides the 
lateral cortex, severe ectopia are typically also observed at the cortical midline (Beggs et al., 2003; 
Belvindrah et al., 2006; Graus-Porta et al., 2001; Huang et al., 2006; Moore et al., 2002; Niew-
mierzycka et al., 2005; Satz et al., 2010). There are only a few mutants including the Ric8a:Emx1-Cre 
mutant that are exception, in that the ectopia are not observed at the cortical midline but are instead 
exclusively located to the lateral cortex (Figure 1). The other mutants in this unique group include 
the App/Aplp1/2 triple (Herms et  al., 2004) and Apbb1/2 double knockouts (Guénette et  al., 
2006). This suggests that similar mechanisms involving microglia may underlie ectopia formation in 
Ric8a:Emx1-Cre, App/Aplp1/2, and Apbb1/2 mutants. Independent studies also point to a role of 
non-neuronal cells in ectopia formation in App family gene mutants. For example, unlike the triple 
knockout, which causes neuronal over-migration, specific App knockdown in cortical neurons during 
development results in under- instead of over-migration of targeted neurons (Young-Pearse et al., 
2007). Furthermore, Ric8a-regulated Gα proteins play a conserved role in mediating key branches of 
APP signaling in cells across species (Fogel et al., 2014; Milosch et al., 2014; Nishimoto et al., 1993; 
Ramaker et al., 2013) and we confirmed that Gαi proteins are severely depleted in Ric8a:Emx1-Cre 
mutant cortices (Figure 2—figure supplement 2). Thus, like in Ric8a:Emx1-Crre mutants, microglia 
may play a key role in ecotopia formation in APP pathway mutants. To test this, we first analyzed App 
mutant microglia. To this end, we employed Cx3cr1-Cre to delete a conditional allele of App from 
microglia and found that microglia cultured from App:Cx3cr1-Cre mutants showed reduced TNFα 
and IL-6 secretion as well as muted IL-6 transcription upon stimulation (Figure 3a, Figure 3—figure 
supplement 1a, b). This indicates that App plays a previously unrecognized, cell-autonomous role in 
microglia in regulating microglial activity. Microglia exhibit attenuated immune response following 
chronic stimulation, especially when carrying strong loss-of-function mutations in anti-inflammatory 
pathways (Chamberlain et al., 2015; Sayed et al., 2018). We suspect that the attenuated response 
by App mutant microglia may result from similar effects following in vitro culture. To test effects of 
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App mutation under conditions that more closely resemble in vivo physiological conditions, we next 
isolated fresh, unelicited peritoneal macrophages and acutely analyzed their response to immune 
stimulation. We found that App mutant macrophages showed significantly elevated secretion of all 
cytokines tested (Figure  3b). At the transcriptional level, mRNA induction was also increased for 
all cytokines (Figure 3c). Thus, like that of Ric8a, the normal function of App also appears to be to 
suppress the inflammatory activation of microglia.

To determine if microglial app deficiency is also responsible for ectopia formation in app triple 
knockout mutants, we next asked if activating microglia in microglia-specific App mutants similarly 
results in pial ectopia during cortical development. To this end, we administered LPS in utero at 
E11.5–12.5 to App:Cx3cr1-Cre mutant animals as we did to Ric8a:Cx3cr1-Cre mutants above. We 
found that, while none of the 81 littermate controls administered LPS showed ectopia, a significant 
number of mutant neonates showed ectopia (6 of 31 neonates examined, ~19%) and associated 
breaches in the basement membrane (Figure 3e, Figure 3—figure supplement 1c–f’’). Thus, app 
deficient microglia, when activated, also results in cortical ectopia during development. The reduced 
severity of the ectopia observed, as compared to that in Ric8a:Cx3cr1-Cre mutants, likely in part 
results from the reduced LPS dosage (by  ~threefolds) we had to use in these animas due to the 
enhanced immune sensitivity of their strain genetic background. Other App gene family members are 
also expressed in microglia (Zhang et al., 2014) and ectopia are only observed in App/Aplp1/2 triple 
but not in any double or single mutants (Herms et al., 2004). Aplp1/2 may therefore also compensate 
for the loss of APP in microglia. Thus, these results indicate that App normally plays a cell-autonomous 
role in microglia that negatively regulate microglial activation, and its loss of function underlies cortical 
ectopia formation. The similarities between App and Ric8a mutant phenotypes suggest that they form 
a previously unknown anti-inflammatory pathway in microglia.

Figure 3. App deficiency results in hypersensitive microglia and cortical ectopia. (a) TNFα and IL-1β secretion (pg/ml) in cultured control and 
App:Cx3cr1-Cre mutant microglia following lipopolysaccharide (LPS) stimulation. *p < 0.05; n = 7–9 each group. (b) TNFα, IL-1β, IL-6, and MCP1 
secretion (pg/ml) in fresh unelicited control and App:Cx3cr1-Cre mutant peritoneal macrophages following LPS stimulation. ***p < 0.001; n = 7–10 each 
group. (c) TNFα, IL-1β, IL-6, and IL-23 mRNA expression in fresh unelicited control and App:Cx3cr1-Cre mutant peritoneal macrophages following 
LPS stimulation. **p < 0.01; ***p < 0.001; n = 6 each group. Nuclear (DAPI, in blue) staining of control (d) and LPS-treated App:Cx3cr1-Cre mutant 
(e) cortices at P0. Note cortical ectopia in the mutant cortex (arrowhead). Scale bar in (d), 200 μm for (d, e).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Excel files for control and App mutant microglia/macrophage ELISA and qRT-PCR analysis.

Figure supplement 1. Cytokine secretion and transcriptional induction in App:Cx3cr1-Cre mutant microglia.

https://doi.org/10.7554/eLife.100446
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Monomeric Aβ suppresses microglial inflammatory activation via an 
APP–Ric8a pathway
The possibility that App and Ric8a may form a novel anti-inflammatory pathway in microglia raises 
questions on the identity of the ligands for the pathway. Several molecules have been reported to 
bind to APP and/or activate APP-dependent pathways (Fogel et al., 2014; Milosch et al., 2014; 
Rice et al., 2012), among which Aβ is noteworthy for its nanomolar direct binding affinity (Fogel 
et al., 2014; Shaked et al., 2006). Aβ oligomers and fibrils have been shown by numerous studies 
to be pro-inflammatory, while non-fibrillar Aβ lack such activity (Halle et al., 2008; Huang, 2023; 
Huang, 2024; Lorton et al., 1996; Muehlhauser et al., 2001; Tan et al., 1999). In contrast, when 
employed under conditions that favor the monomer conformation, Aβ inhibits T cell activation 
(Grant et al., 2012). This suggests that, unlike pro-inflammatory Aβ oligomers (Figure 4—figure 
supplement 1j), Aβ monomers may be anti-inflammatory. To test this possibility, we dissolved 
Aβ40 peptides in dimethyl sulfoxide (DMSO), a standard approach in Alzheimer’s disease research 
that has been shown to preserve the monomeric conformation (LeVine, 2004; Stine et al., 2011). 
We found that Aβ monomers as prepared potently suppressed the secretion of large numbers of 
cytokines (Figure 4a, Figure 4—figure supplement 1) and showed similar effects on microglia 
no matter if they were activated by LPS or poly I:C (Figure 4b). We also found that the Aβ mono-
mers similarly strongly inhibited the induction of cytokines at the transcriptional level (Figure 4c, 
Figure  4—figure supplement 1). In addition, we observed these effects with Aβ40 peptides 
from different commercial sources. Thus, these results indicate that monomeric Aβ possesses a 
previously unreported anti-inflammatory activity against microglia that strongly inhibits microglial 
inflammatory activation.

To determine whether monomeric Aβ signals through APP, we employed App:Cx3cr1-Cre mutant 
microglia. We found that, unlike that of control microglia, Aβ monomers failed to suppress the secretion 
of all tested cytokines by App mutant microglia (Figure 4d, Figure 4—figure supplement 1). Interest-
ingly, this blockade appeared to be specific to App since Aβ monomers still significantly suppressed 
cytokine secretion by Aplp2 mutant microglia. At the transcriptional level, Aβ monomers also failed 
to suppress cytokine induction in App mutant microglia (Figure 4e, Figure 4—figure supplement 1). 
Together, these results indicate that APP is functionally required in microglia for Aβ monomer inhibi-
tion of cytokine expression at both transcriptional and post-transcriptional levels. Cultured microglia 
from App:Cx3cr1-Cre mutants showed attenuated immune activation (Figure 3). To assess whether 
this may affect the efficacy of Aβ monomer inhibition, we next tested the response of fresh, unelicited 
macrophages. We found that, like that of control microglia, cytokine secretion by control macro-
phages was also strongly suppressed by Aβ monomers (Figure 4f, Figure 4—figure supplement 1). 
However, even though App mutant macrophages showed elevated response to immune stimulation 
in comparison to control macrophages, they still failed to respond to Aβ monomers and displayed 
levels of cytokine secretion that were indistinguishable from those of DMSO-treated cells (Figure 4f, 
Figure 4—figure supplement 1). Thus, these results further indicate that APP function is required in 
microglia for mediating the anti-inflammatory effects of Aβ monomers.

The similarity of Ric8a ectopia to App ectopia phenotype (Figures 2 and 3) also suggests that 
Ric8a functions in the same pathway as APP in mediating Aβ monomer anti-inflammatory signaling 
in microglia. This is consistent with previous studies showing that heterotrimeric G proteins are 
coupled to APP and mediate APP intracellular signaling in vitro and vivo (Fogel et  al., 2014; 
Milosch et al., 2014; Nishimoto et al., 1993; Ramaker et al., 2013) and that Ric8a is a molecular 
chaperone essential for the post-translational stability of heterotrimeric G proteins (Gabay et al., 
2011; Tall et al., 2003). To directly test if Ric8a is part of this pathway, we next employed Ric8a:Cx-
3cr1-Cre mutant microglia. We found that, indeed, like that of App mutant microglia, Aβ monomers 
also failed to suppress the secretion of TNFα and IL-6 by Ric8a mutant microglia (Figure 4g). This 
indicates that heterotrimeric G proteins function is likely required in the same pathway of APP in 
microglia for the suppression of TNFα and IL-6 secretion. However, unlike APP, we found that Ric8a 
appears to be dispensable for Aβ monomer regulation of other cytokines. For example, unlike 
that of TNFα and IL-6, Aβ monomers still suppressed IL-1β secretion by Ric8a mutant microglia 
(Figure 4—figure supplement 1). It also appears to be dispensable for the regulation of cytokine 
transcription since Aβ monomers similarly suppressed IL-6 transcriptional induction in both control 
and Ric8a mutant microglia. These results suggest that heterotrimeric G proteins function may only 

https://doi.org/10.7554/eLife.100446
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Figure 4. Monomeric Aβ40 suppresses microglia via APP and Ric8a. (a) TNFα, IL-6, IL-1β, and MCP1 secretion (pg/ml) by wildtype microglia following 
lipopolysaccharide (LPS) stimulation in the absence or presence of Aβ40 (200 or 500 nM). *p < 0.05; ***p < 0.001; n = 8–14 each group. (b) TNFα and 
IL-1β secretion (pg/ml) by wildtype microglia following poly I:C stimulation in the absence or presence of Aβ40 (500 nM). *p < 0.05; **p < 0.01; n = 
6–7 each group. (c) IL-6 and IL-1β mRNA induction in wildtype microglia following LPS stimulation in the absence or presence of Aβ40 (500 nM). *p < 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.100446


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kwon et al. eLife 2024;13:RP100446. DOI: https://doi.org/10.7554/eLife.100446 � 10 of 23

mediate some of the anti-inflammatory signaling of monomeric Aβ. Thus, APP and Ric8a-regulated 
heterotrimeric G proteins form part of a novel anti-inflammatory pathway activated by monomeric 
Aβ in microglia.

Elevated matrix metalloproteinases cause basement membrane 
degradation
We have shown that heightened microglial activation due to mutation in the Aβ monomer-activated 
APP/Ric8a pathway results in basement membrane degradation and ectopia during cortical develop-
ment. To further test this interpretation, we sought to test the prediction that inhibition of microglial 
activation in these mutants suppressed the formation ectopia. To this end, we employed dorsomorphin 
and S3I-201, inhibitors targeting Akt, Stat3, and other mediators in pro-inflammatory signaling (Lee 
et al., 2016; Qin et al., 2012). Consistent with their anti-inflammatory activity, we found that dorso-
morphin and S3I-201 both suppressed astrogliosis associated with neuroinflammation in the cortex 
of Ric8a:Emx1-Cre mutants (Figure 5—figure supplement 1). Furthermore, they also suppressed the 
formation of ectopia in Ric8a:Emx1-Cre mutants, reducing both the number and the size of the ectopia 
observed (Figure 5a–f, Figure 5—figure supplement 2). Most strikingly, the combined administra-
tion of dorsomorphin and S3I-201 nearly eliminated all ectopia in Ric8a:Emx1-Cre mutants (Figure 5d, 
e). Thus, these results indicate that excessive inflammatory activation of microglia is responsible for 
ectopia formation in ric8a mutants.

Under neuroinflammatory conditions, brain cytokines frequently induce matrix metalloproteinases 
(MMPs), which lead to breakdown of the extracellular matrix and contribute to disease pathology 
(Pagenstecher et al., 1998; Wang et al., 2000). Since Ric8a mutant microglia are hyperactive in 
inflammatory cytokine production, we wonder if induction of MMPs may underlie the laminin degra-
dation and cortical basement membrane break observed in Ric8a mutants. To test this, we examined 
MMP9 expression in the embryonic cortex by in situ hybridization. We found that at E13.5, MMP9 
mRNA is strongly expressed in a sparse cell population resembling microglia populating the cortex 
at this stage (Squarzoni et  al., 2014; Figure  5—figure supplement 2). Next, we examined the 
activities of MMP2 and MMP9 in the developing control and mutant cortex using gelatin gel zymog-
raphy. We found that the activity of MMP9 in the mutant cortex was significantly increased (Figure 5i, 
Figure 5—figure supplement 2). In contrast, that activity of MMP2 remained unaffected. Similarly, 
at the protein level, we found that the immunoreactivity for MMP9 was increased in Ric8a:Emx1-Cre 
mutants (Figure 5g, h). To test if the increased MMP activity is responsible for the ectopia observed, 
we next employed BB94, a broad-spectrum inhibitor of MMPs. We found that BB94 administration 
significantly suppress both the number and the size of the ectopia in ric8a mutants (Figure 5j–m). To 
narrow down the identity of MMPs responsible, we further employed an inhibitor specific for MMP9 
and 13 (MMP-9/MMP-13 inhibitor I, CAS 204140-01-2) and found that it similarly suppressed both 
the number and the size of the ectopia (Figure 5l, m). Furthermore, consistent with its near complete 
suppression of cortical ectopia (Figure  5a–f), we found that the co-administration of dorsomor-
phin and S3I-201 also reduced MMP9 activity in the mutant cortex to the control level (Figure 5—
figure supplement 3). Thus, these results indicate this Aβ monomer-regulated anti-inflammatory 
pathway normally promotes cortical development through suppressing microglial activation and 
MMP induction.

0.05; n = 6 each group. (d) TNFα and IL-6 secretion (pg/ml) by control and App:Cx3cr1-Cre mutant microglia following LPS stimulation in the absence 
or presence of Aβ40 (200 nM). **p < 0.01; ***p < 0.001; n = 8 each group. (e) IL-6 and IL-1β mRNA induction in control and App:Cx3cr1-Cre mutant 
microglia following LPS stimulation in the absence or presence of Aβ40 (200 nM). *p < 0.05; **p < 0.01; n = 6 each group. (f) TNFα and IL-6 secretion 
(pg/ml) by control and App:Cx3cr1-Cre mutant peritoneal macrophages following LPS stimulation in the absence or presence of Aβ40 (500 nM). *p < 
0.05; n = 6–7 each group. (g) TNFα and IL-6 secretion (pg/ml) by control and Ric8a:Cx3cr1-Cre mutant microglia following LPS stimulation in the absence 
or presence of Aβ40 (200 nM). ***p < 0.001; n = 12–14 each group.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Excel files for control and App and Ric8a mutant microglia/macrophage ELISA and qRT-PCR analysis undergoing Aβ40 stimulation.

Figure supplement 1. Effects of monomeric amyloid β (Aβ) on cytokine secretion and transcription in control and mutant microglial lineage cells.

Figure 4 continued

https://doi.org/10.7554/eLife.100446
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Discussion
The spatiotemporal expression of immune cytokines by glial cells in the brain plays critical roles in 
the normal development, function, and plasticity of the brain circuitry (Barres, 2008; Schafer and 
Stevens, 2015; Zipp et al., 2023). In this article, we have identified a novel microglial anti-inflammatory 

Figure 5. Inhibition of both microglial inflammatory activation and cortical MMP9 activity suppresses basement membrane breach and neuronal 
ectopia. Nuclear (DAPI, in gray) staining of untreated (a), anti-inflammatory drug dorsomorphin (DM) (b), Stat3 inhibitor S3I-201 (S3I) (c), and DM/
S3I (d) dual treated Ric8a:Emx1-Cre mutant cortices at P0. Quantitative analysis of ectopia number (e) and size (f) in the neonatal mutant cortex after 
DMSO, DM, S3I, and DM/S3I dual treatment at E12.5. *p < 0.05; ***p < 0.001; all compared to untreated mutants. The reduction in ectopia size after 
dual treatment is not statistically significant, likely due to the small number of ectopias that remained. MMP9 (in red) staining of control (g) and mutant 
cortices (h) at E13.5. Quantification shows statistically significant increases in mutants (control, 24.8 ± 0.2 AU [arbitrary units]; mutant, 35.7 ± 1.7 AU; p = 
0.002; n = 6). (i) Gel zymography of control and mutant cortical lysates at E13.5. Increased levels of MMP9 but not of MMP2 were observed in mutants 
(control, 1.00 ± 0.06 AU; mutant, 3.72 ± 1.86 AU; p = 0.028; n = 4). See further details in Figure 5—figure supplements 2 and 3. (j–k’) Laminin (in green) 
and nuclear (DAPI, in blue) staining of mutant cortices untreated (h) or treated (I) with BB94. (l, m) Quantitative analysis of ectopia number and size 
following MMP inhibitor BB94 or MMP9/13 inhibitor I treatment. *p < 0.05; ***p < 0.001; all compared to untreated mutants.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Excel files for Ric8a:Emx1-cre mutant ectopia suppression analysis.

Figure supplement 1. Suppression of astrogliosis in Ric8a:Emx1-Cre mutant cortices by anti-inflammatory drugs, dorsomorphin (DM) and S3I-201 (S3I).

Figure supplement 2. MMP9 in situ and activity in E13.5 Ric8a:Emx1-Cre mutant cortices.

Figure supplement 2—source data 1. Whole gel gelatin zymography images of Ric8a:Emx1-Cre control and mutant cortices.

Figure supplement 2—source data 2. Raw scan of zymography data.

Figure supplement 3. Suppression of MMP9 expression in Ric8a:Emx1-Cre mutant cortices by anti-inflammatory drugs, dorsomorphin (DM) and S3I-201 
(S3I).

https://doi.org/10.7554/eLife.100446
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pathway activated by monomeric Aβ that inhibits microglial cytokine expression and plays essential 
roles in the normal development of the cerebral cortex. We have found that this pathway is mediated 
by APP and the heterotrimeric G protein GEF and molecular chaperone Ric8a in microglia and its acti-
vation leads to the inhibition of microglial cytokine induction at transcriptional and post-transcriptional 
levels (Figures 1–4). We further show that a key function of this pathway is to suppress the activity of 
MMP9 during corticogenesis and disruption of this regulation results in cortical basement membrane 
degradation and neuronal ectopia development (Figures 1–3 and 5). Furthermore, we find that this 
pathway is activated specifically by the monomeric form of Aβ in vitro (Figure 4), identifying, for the 
first time, an isoform-specific activity of Aβ against microglia. These results provide novel insights into 
the neuron–glia communication mechanisms that coordinate the regulation of immune cytokines, key 
regulators of Hebbian and non-Hebbian synaptic plasticity, by glial cells in the brain. The discovery of 
the novel activity of monomeric Aβ as a negative regulator of microglia may also facilitate the further 
elucidation of Alzheimer’s disease pathogenesis.

Microglial activity regulation during cortical development
Among the glial cell populations in the brain, astrocytes and oligodendrocyte are both born within 
the nervous system at the end of cortical neurogenesis. As such, they play limited roles in the early 
steps of cortical development. In contrast, microglia are not only of a distinct non-neural lineage that 
originates from outside the nervous system but also begin to populate the brain at the onset of corti-
cogenesis (Ginhoux et al., 2010; Hattori et al., 2023). As such, they play unique roles throughout 
cortical development. Indeed, microglial activity has been found to regulate the size of the cortical 
neural precursor pool (Cunningham et al., 2013). Microglia-secreted cytokines have also been found 
to promote both neurogenesis and oligodendrogenesis (Shigemoto-Mogami et al., 2014). As such, 
the precise regulation of microglial activity is critical to the normal development of the neocortex 
from an early stage. In this study, we have shown that immune over-activation of microglia deficient in 
a monomeric Aβ-regulated pathway results in excessive cortical matrix proteinase activation, leading 
basement membrane degradation and neuronal ectopia. Previous studies have shown that reductions 
in the expression of microglial immune and chemotaxis genes instead lead to the failure of microglia 
to populate the brain (Iyer et al., 2022). These results together highlight the importance of precisely 
regulating the level of microglial activity during brain development. The dramatic destructive effects 
of microglial hyperactivity observed during corticogenesis also foreshadow the critical roles it plays in 
brain dysfunction and disease at later stages of life.

In this study, we have also shown that the anti-inflammatory regulation of microglia in corticogen-
esis depends on a pathway composed of APP and the heterotrimeric G protein regulator Ric8a. This 
has revealed new insight into the intercellular signaling mechanisms regulating microglial activity in the 
brain. Heterotrimeric G proteins are well-known mediators of G-protein-coupled receptor signaling. 
In this study, we have found that they likely also function in the same pathway as APP. To our knowl-
edge, ours is the first study to report an in vivo anti-inflammatory function of this pathway in microglia 
and has significantly advanced knowledge in microglial biology. This is also consistent with previous 
studies showing that heterotrimeric G proteins directly interact with the APP cytoplasmic domain and 
mediate key branches of APP signaling from invertebrates to mammals (Fogel et al., 2014; Milosch 
et al., 2014; Nishimoto et al., 1993; Ramaker et al., 2013). In this study, we have in addition shown 
that this pathway is specifically activated in vitro by the monomeric form of Aβ, a peptide produced 
by neurons in the brain (Cirrito et al., 2005), providing further insight into the biological function 
of this pathway. In the early cortex, neurogenesis is just beginning, and most neurons born are in an 
immature state. It is unclear if this pathway is activated by Aβ at this stage in vivo. However, studies 
have shown that other APP ligands such as pancortin, a member of the olfactomedin family proteins 
known to inhibit innate immunity (Liu et al., 2010), are expressed in the cortex at this stage (Rice 
et al., 2012). It will be interesting to determine if these innate immune regulators play a role in regu-
lating this pathway.

In this and previous studies, we have found that deletion of Ric8a gene from radial glial progenitors 
using Nestin-Cre does not result in obvious cortical ectopia (Figure 2; Ma et al., 2017). However, when 
Ric8a is in addition deleted from microglia, this results in severe cortical ectopia (Figure 2), implicating 
a novel role of microglia in cortical ectopia development. Previous studies have reported that Ric8a 
deletion by Nestin-Cre alone results in cortical ectopia (Kask et al., 2015; Kask et al., 2018). The 
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cause for this discrepancy is at present unclear. The expression of Nestin-Cre, however, is known to 
be influenced by several factors including transgene insertion site and genetic background and the 
same Nestin-Cre has been reported to be active and induce gene inactivation in microglia (Karasinska 
et al., 2013; Takamori et al., 2009). These factors may play a role in this discrepancy. In our studies, 
we show that microglia-specific Ric8a deletion using Cx3cr1-Cre during development results in severe 
cortical ectopia upon and only upon immune stimulation (Figure 2). We further show that microglia-
specific App deletion results in similar ectopia also only upon immune stimulation (Figure 3). These 
results are important findings as they implicate, for the first time, a causative role played by microglial 
dysfunction in the formation of cortical ectopia in neurodevelopmental disorders.

Neuronal activity, glial cytokine expression, and brain circuit plasticity
Activity-dependent competitive and homeostatic plasticity is a foundational rule that regulates the 
development, maturation, and function of neural circuits across brain regions. Studies have shown 
that glial cells, through regulating the spatiotemporal expression of immune cytokines, play a pivotal 
role in this process. In the developing thalamus, by activating interleukin-33 expression in an activity-
dependent manner, astrocytes have been found to promote the segregation of eye-specific axonal 
projection and the maturation of the visual circuitry (He et al., 2022; Vainchtein et al., 2018). In 
the visual cortex, astrocytic expression of TNFα similarly mediates activity-dependent homeostatic 
upscaling of cortical synapses following peripheral monocular deprivation (Barnes et al., 2017; Heir 
et al., 2024; Kaneko et al., 2008). In this study, we have shown that Aβ monomers inhibit expression 
of cytokines by brain microglia via a novel APP/heterotrimeric G-protein-mediated pathway. Aβ is 
primarily produced by neurons in the brain in a neural activity-dependent manner and form oligomers 
when large quantities are produced (Cirrito et al., 2005). Aβ oligomers, in contrary to monomers, 
are pro-inflammatory and increase glial cytokine expression (Halle et al., 2008; Huang, 2023; Lorton 
et al., 1996; Muehlhauser et al., 2001; Tan et al., 1999). These findings thus suggest that different 
levels of neural circuit activity in the brain may differentially regulate glial cytokine expression through 
inducing different levels of Aβ. High levels of neural activity may lead to high levels of Aβ and the 
formation of Aβ oligomers that activate glial cytokine production, while low levels of neural activity 
may produce low levels of Aβ, maintain Aβ as monomers, and inhibit glial cytokine production. Thus, 
Aβ in the brain may not only be a reporter of the levels of neural circuit activity but may also serve as 
an agent that directly mediate activity level-dependent plasticity. Following sensory deprivation, for 
example, Aβ levels may be lowered due to loss of sensory stimulation. This may lead to the relief of 
monomeric Aβ inhibition of cytokines such as TNFα and as a result trigger homeostatic upscaling of 
cortical synapses in the visual cortex (Barnes et al., 2017; Heir et al., 2024; Kaneko et al., 2008). 
In contrary, when neural activity levels are high, large quantities of Aβ may be produced, leading to 
formation of Aβ oligomers that may in turn induce expression of cytokines such as IL-33 that promote 
synaptic pruning. A large body of evidence strongly indicates that Aβ and related pathways indeed 
mediate homeostatic and competitive plasticity in the visual and other systems of the brain (Galanis 
et al., 2021; Huang, 2023; Huang, 2024; Kamenetz et al., 2003; Kim et al., 2013). Our discovery of 
the Aβ monomer-activated pathway has therefore provided novel insights into a universal mechanism 
that senses neural circuit activity pattern and translates it into homeostatic and competitive synaptic 
changes in the brain, a mechanism with fundamental roles in cognitive function.

In this study, we have also found that the matrix proteinase MMP9 is a key downstream effector of 
microglial activity in the developing cortex. We find that microglial hyperactivity results in increased 
levels of MMP9, leading to cortical basement membrane degradation and neuronal ectopia and 
inhibiting MMP9 directly or indirectly suppresses the phenotype. This suggests that the regulation 
of MMP9 may be a key mechanism by which glial cells regulate brain development and plasticity. 
Indeed, independent studies have shown that, in the visual cortex, MMP9 is also a pivotal mediator of 
TNFα-dependent homeostatic upscaling of central synapses following monocular deprivation (Akol 
et al., 2022; Kaneko et al., 2008; Kelly et al., 2015; Spolidoro et al., 2012). In the Xenopus tectum, 
MMP9 has similarly been found to be induced by neural activity and promote visual activity-induced 
dendritic growth (Gore et al., 2021). Importantly, in both wildtype and amblyopic animals, light rein-
troduction after dark exposure has been found to reactivate plasticity in the adult visual cortex via 
MMP9, uncovering a potential treatment for common visual conditions (Murase et al., 2017; Murase 
et al., 2019). These results therefore highlight a conserved glia/cytokine/MMP9-mediated mechanism 
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that regulates brain development and plasticity from embryogenesis to adulthood. In ocular domi-
nance plasticity, MMP9 is activated at perisynaptic regions (Murase et al., 2017; Murase et al., 2019). 
MMP9 mRNA translation has been also observed in dendrites (Dziembowska et al., 2012). In the 
Ric8a mutant cortex, we find that MMP9 activity is increased. Further studies are required to precisely 
determine the cellular sources of MMP9 and how its activity is regulated.

Aβ monomer anti-inflammatory activity and Alzheimer’s disease
Aβ is well known as a component of the amyloid plaques in the Alzheimer’s disease brain. It is a unique 
amphipathic peptide that can, dependent on concentration and other conditions, remain as monomers 
or form oligomers. Studies on Aβ have historically focused on the neurotoxic effects of Aβ oligomers 
and their pro-inflammatory effects on glia (Gulisano et al., 2018; Halle et al., 2008; He et al., 2019; 
Huang, 2023; Kim et al., 2013; Laurén et al., 2009; Lazarevic et al., 2017; Lorton et al., 1996; 
Muehlhauser et al., 2001; Parodi et al., 2010; Puzzo et al., 2008; Shankar et al., 2008; Tan et al., 
1999; Walsh et al., 2002; Yang et al., 2015; Zott et al., 2019). In this study, we have found that, 
in contrary to Aβ oligomers, Aβ monomers instead possess a previously unknown anti-inflammatory 
activity that acts through a unique microglial pathway. We have further found that genetic disruption 
of this pathway in corticogenesis results microglial hyperactivity, leading to neuronal ectopia and large 
disruption of cortical structural organization. To our knowledge, ours is the first study to uncover this 
overlooked anti-inflammatory activity of Aβ monomers. It is in alignment with recent studies showing 
that Aβ monomers are also directly protective to neurons and positively regulate synapse develop-
ment and function (Galanis et al., 2021; Giuffrida et al., 2009; Plant et al., 2003; Ramsden et al., 
2002; Zhou et al., 2022). Assuming a set amount of Aβ peptides, the formation of Aβ oligomers and 
aggregates in the brain would, by chemical law, be predicted to result in the depletion of Aβ mono-
mers (Dear et al., 2020; Michaels et al., 2020). Thus, in the Alzheimer’s disease brain, besides the 
obvious formation of Aβ aggregates, there may also be a less visible depletion of Aβ monomers taking 
place at the same time, which may, like Aβ oligomers, also contribute to the development of neuroin-
flammation and neuronal damage (Huang, 2023). In support of this interpretation, high soluble brain 
Aβ42, which likely also means high levels of Aβ monomers in the brain, have been found in clinical 
studies to preserve cognition in patients of both familial and sporadic Alzheimer’s disease, in spite of 
increasing amyloidosis detected in their brains (Espay et al., 2021; Sturchio et al., 2022; Sturchio 
et al., 2021). In our study, we have also found that the effects of microglial disinhibition are mediated 
by MMP9. Importantly, in neurodegenerative diseases, MMP9 has been similarly found to be a key 
determinant regulating the selective degeneration of neuronal cell types (Kaplan et al., 2014; Tran 
et al., 2019). MMP9 levels are also upregulated in the plasma in both mild cognitive impairment and 
Alzheimer’s disease patients (Bruno et al., 2009; Lorenzl et al., 2008; Tsiknia et al., 2022). In addi-
tion, in several motor neuron disease models, reducing MMP9 has been found to protect neurons 
and delay the loss of motor function (Kaplan et al., 2014; Spiller et al., 2019). Thus, our study has 
not only uncovered a potentially overlooked role of Aβ monomer depletion in the development of 
Alzheimer’s disease but also identified downstream effectors. Elucidating the roles these factors play 
may reveal new insight into the pathogenesis of Alzheimer’s disease.

Methods
Generation of Ric8a conditional allele
Standard molecular biology techniques were employed for generating the conditional Ric8a allele. 
Briefly, genomic fragments, of 4.5 and 2.5 kb and flanking exons 2–4 of the Ric8a locus at the 5′ and 
3′ side, respectively, were isolated by PCR using high fidelity polymerases. Targeting plasmid was 
constructed by flanking the genomic fragment containing exons 2–4 with two loxP sites together 
with a neomycin-positive selection cassette, followed by 5′ and 3′ genomic fragments as homolo-
gous recombination arms and a pgk-DTA gene as a negative selection cassette. ES cell clones were 
screened by Southern blot analysis using external probes at 5′ and 3′ sides. For derivation of condi-
tional allele, the neomycin cassette was removed by crossing to an Actin-Flpe transgenic line after 
blastocyst injection and germ line transmission. The primer set for genotyping ric-8a conditional allele, 
which produces a wildtype band of ~110 bp and a mutant band of ~200 bp, is: 5′-ccta​gttg​tgaa​tcag​
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aagc​actt​g-3′ and 5′-gcca​tacc​tgag​ttac​ctag​gc-3′. Animals homozygous for the conditional ric-8a allele 
are viable and fertile, without obvious phenotypes.

Mouse breeding and pharmacology
Emx1-Cre (IMSR_JAX:005628), Nestin-Cre (IMSR_JAX:003771), Foxg1-Cre (IMSR_JAX:004337), 
Cx3cr1-Cre (IMSR_JAX:025524), floxed App (IMSR_JAX:030770) as well as the BAT-lacZ (IMSR_
JAX:005317) reporter mouse lines were purchased from the Jackson Lab. Nex-Cre and Wnt3a-Cre 
were as published (Goebbels et al., 2006; Yoshida et al., 2006). Cre transgenes were introduced into 
the Ric8a or App conditional mutant background for phenotypic analyses and Ric8a or App homo-
zygotes without Cre as well as heterozygotes with Cre (littermates) were both analyzed as controls. 
For BB94 and MMP9/13 inhibitor injection, pregnant females were treated daily from E12.5 to E14.5 
at 30 μg (BB94) or 37.5 μg (MMP9/13 inhibitor) per g of body weight. For dorsomorphin and S3I-201 
injection, pregnant females were treated on E12.5 at 7.5 and 25 μg per g of body weight, respectively. 
For sham treatment, pregnant females were treated on E12.5 with 100 μl of DMSO. BrdU was injected 
at 100 μg per g of body weight, and embryos were collected 4 hr later for cell proliferation analysis, 
or alternatively, pups were sacrificed at P5 for neuronal migration analysis and at P17 for other anal-
ysis. For LPS treatment, pregnant females were injected intraperitoneally with 400 ng (Ric8a genetic 
background) or 150 ng (App genetic background) LPS per g of body weight on both E11.5 and E12.5. 
Animal use was in accordance with institutional guidelines.

Immunohistochemistry
Vibratome sections from brains fixed in 4% paraformaldehyde were used. The following primary 
antibodies were used at respective dilutions/concentrations: mouse anti-BrdU supernatant (clone 
G3G4, Developmental Studies Hybridoma Bank [DSHB], University of Iowa, IA; 1:40), mouse anti-
RC2 supernatant (DSHB; 1:10), mouse anti-Nestin supernatant (DSHB; 1:20), mouse anti-Vimentin 
supernatant (DSHB; 1:10), mouse anti-Pax6 supernatant (DSHB; 1:20), moue anti-Reelin (Millipore, 
1:500), mouse anti-chondroitin sulfate (CS-56, Sigma, 1:100), rat anti-Ctip2 (Abcam, 1:500), rabbit 
anti-phospho Histone H3 (Ser10) (Millipore; 1:400), rabbit anti-Cux1 (CDP) (Santa Cruz; 1:100), rabbit 
anti-laminin (Sigma; 1:2000), rabbit anti-GFAP (Dako;1:1000), rabbit anti-ALDH1L1 (Abcam, 1:500), 
rabbit anti-MMP9 (Abcam, 1:1000), goat anti-MMP2 (R&D Systems; 5 μg/ml), rabbit anti-Calretinin 
(Chemicon, 1:2000), mouse anti-S100β (Thermo Scientific; 1:100), rabbit anti-S100β (Thermo Scientific; 
1:200), and rabbit anti-phospho-Smad1/5 (Ser463/465) (41D10; Cell Signaling, 1:200). FITC- and Cy3-
conjugated secondary antibodies were purchased from Jackson ImmunoResearch Laboratories (West 
Grove, PA). Peroxidase-conjugated secondary antibodies were purchased from Santa Cruz Biotech. 
Staining procedures were performed as described previously (Huang et al., 2006), except for anti-
Ric-8a, MMP9, and phospho-Smad1/5 staining, in which a tyramide signal amplification plus Cy3 kit 
(PerkinElmer, Waltham, MA) was used per the manufacturer’s instruction. Sections were mounted with 
Fluoromount G medium (Southern Biotech, Birmingham, AB) and analyzed under a Nikon eclipse Ti 
microscope or an Olympus confocal microscope.

Microglia culture and assay
Cerebral hemispheres were dissected from individual neonates, mechanically dissociated, split into 
three to four wells each and cultured in DMEM-F12 (Lonza) containing 10% fetal bovine serum (Invi-
trogen). Microglial cells were harvested by light trypsinization that removes astroglial sheet on days 
13–15. For experiments other than assaying IL-1β secretion, microglia were treated with LPS at 20 ng/
ml for 3 hr or at 5 ng/ml overnight and, if applicable, DMSO or Aβ40 (ApexBio and Genscript) was 
applied at the same time as LPS. For assaying IL-1β secretion, microglia were primed with LPS at 
200 ng/ml for 5–6 hr before treatment with 3 mM ATP for 15 min. In these experiments, DMSO or 
Aβ40 was applied at the same time as ATP if applicable. Supernatants were collected and used for 
cytokine ELISA assays per manufacturer’s instructions (Biolegend). Total RNAs were prepared from 
collected cells using Trizol (Invitrogen) and cDNAs were synthesized using a High-capacity cDNA 
reverse transcription kit (Applied Biosystems). Quantitative PCR was performed using a GoTaq qPCR 
master mix per manufacturer’s instructions (Promega). All gene expression levels were normalized 
against that of GAPDH.

https://doi.org/10.7554/eLife.100446
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Quantitative and statistical analysis
The sample size was estimated to be 3–9 animals each genotype (every fourth of 50  μm coronal 
sections, 7–10 sections each animal) for ectopia analysis, 3–5 animals each genotype (3–4 sections 
each animal) for immunohistochemical analysis, and 4–6 animals each genotype for gel zymography 
and western blot analysis, as has been demonstrated by previous publications to be adequate for 
similar animal studies. Matching sections were used between controls and mutants. NIS-Elements BR 
3.0 software (Nikon) was used for quantifying the numbers and sizes of neuronal ectopia, the numbers 
of laminin-positive debris, as well as the numbers of astrocytes. ImageJ software (NIH) was used 
for quantifying the intensity of immunostainings. In analysis of radial glial cell division, the cleavage 
plane angle was calculated by determining the angle between the equatorial plate and the ventricular 
surface. Statistics was performed using Student’s t test when comparing two conditions, or one-way 
ANOVA followed by Tukey’s post hoc test when comparing three or more conditions. All data are 
represented as means ± SEM.
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