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eLife Assessment
This valuable study investigates the role of Complement 3a Receptor 1 (C3aR) in the pathogenesis 
of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) using mouse models with 
specific target deletions in various cell types. While the general relevance of C3aR in inflammatory 
contexts has been established before, the authors provide solid evidence here that C3aR does 
not contribute significantly to MASLD pathogenesis in their models. The work will be of interest to 
colleagues studying diseases of the liver and the intersection with inflammation.

Abstract Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic 
liver disease (MASLD) is a growing global epidemic. Activation of the complement system and 
infiltration of macrophages has been linked to progression of metabolic liver disease. The role of 
complement receptors in macrophage activation and recruitment in MASLD remains poorly under-
stood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is down-
regulated in humans with MASLD compared to obese controls. To test the role of complement 3a 
receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice 
deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-
KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macro-
phages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and 
C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeo-
stasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study 
demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type 
expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary 
MASLD model.

Introduction
Obesity and related metabolic diseases such as type 2 diabetes (T2D) and metabolic dysfunction-
associated steatotic liver disease (MASLD) remain a worldwide epidemic with increasing prevalence 
(Ge et al., 2020; Younossi et al., 2018). MASLD describes the constellation of hepatic lipid depo-
sition, inflammation, and fibrosis associated with obesity and T2D that ultimately leads to MASH 
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cirrhosis, which has become the leading cause of liver transplantation in the United States (Ferguson 
and Finck, 2021; Friedman et al., 2018; Stefan et al., 2019; Kim et al., 2021). Notably, MASLD 
is increasingly recognized as an important risk-enhancing factor for atherosclerotic cardiovascular 
disease (Duell et al., 2022; Kasper et al., 2021).

Liver macrophages help to maintain hepatic homeostasis and consist of embryo-derived resident 
macrophages called Kupffer cells, which self-renew and do not migrate, or peripheral monocyte-
derived macrophages, which infiltrate into liver tissue upon metabolic or toxic liver injury and under 
certain circumstances can take on Kupffer cell-like identity (Barreby et al., 2022; Cai et al., 2019; 
Guilliams and Scott, 2022; Park et al., 2023; Sakai et al., 2019). In obesity, bone-marrow-derived 
myeloid cells migrate to the steatotic liver, and pro-inflammatory recruited macrophages are postu-
lated to drive the progression of MASLD to MASH (Krenkel et al., 2020). Spatial proteogenomics 
reveals a population of lipid-associated macrophages near bile canaliculi that is induced by local 
lipid exposure and drives fibrosis in steatotic regions of murine and human liver (Guilliams et al., 
2022). In addition, deep transcriptomic profiling in human MASLD has identified candidate gene 
signatures for steatohepatitis and fibrosis with possible therapeutic implications (Govaere et al., 
2020).

Activation of the body’s complement system leads to increased cell lysis, phagocytosis, and inflam-
mation (Merle et al., 2015), and it is increasingly recognized as an important contributor to regulation 
of metabolic disorders such as T2D and MASLD (Kolev and Kemper, 2017; Zhao et al., 2022). In 
human liver biopsies, higher lobular inflammation scores correlate with activation of the complement 
alternative pathway (Segers et  al., 2014), which can signal via the C3a receptor 1 (C3aR1), a Gi-
coupled G protein-coupled receptor (Markiewski and Lambris, 2007). The complement 3 polypep-
tide (C3) is cleaved by C3 convertase to the activated fragment, C3a, which then binds C3aR1 (Yadav 
et al., 2023). Complement factor D (CFD), also known as the adipokine adipsin, is the rate-limiting 
step in the alternative pathway of complement activation (Flier et al., 1987; Xu et al., 2001).

Several studies have reported opposing roles of adipsin and C3aR1 on hepatic steatosis in diet-
induced obesity (Lim et al., 2013; Polyzos et al., 2016; Han and Zhang, 2021). Our lab has found 
that adipsin/CFD is critical for maintaining pancreatic beta cell mass and function (Lo et al., 2014; 
Gómez-Banoy et al., 2019). Murine obese and diabetic models such as db/db mice and high-fat diet 
(HFD) feeding result in very low circulating adipsin (Flier et al., 1987). Replenishing adipsin in db/
db mice raises levels of C3a and insulin, lowers blood glucose levels, and inhibits hepatic gluconeo-
genesis (Lo et al., 2014). However, whole-body deletion of C3aR1 decreases macrophage infiltration 
and activation in adipose tissue, protects from HFD-induced obesity and glucose intolerance, and 
decreases hepatic steatosis and inflammation (Mamane et al., 2009). In a model of fibrosing steato-
hepatitis, bone-marrow-derived macrophages were found to activate hepatic stellate cells, which was 
blunted in whole-body C3aR1 KO mice (Han et al., 2019).

In the present study, we aim to explore the macrophage-specific effect of complement receptor 
signaling in MASLD pathogenesis. To determine the consequences of macrophage and Kupffer cell 
ablation of C3aR1, we use a murine dietary model of MALFD/MASH, the Gubra Amylin Nash (GAN) 
diet, which has macronutrient similarities to the Western diet and produces similar histologic and 
transcriptomic changes to human MASLD/MASH (Boland et al., 2019; Hansen et al., 2020; Vacca 
et al., 2024).

Results
C3AR1 is expressed in human and mouse liver, primarily in Kupffer cells
In the scRNA-Seq database, Human Protein Atlas, C3AR1 is broadly expressed throughout the 
body, with increased abundance in tissues rich in immunologic cell types, such as bone marrow and 
appendix (Figure 1A; Uhlén et al., 2015). In a single-cell transcriptomic database of healthy human 
liver, C3AR1 expression predominates in the macrophage and Kupffer cell population, with minimal-
to-undetectable C3AR1 expression in hepatocytes or hepatic stellate cells by scRNA-Seq (Figure 1B; 
MacParland et al., 2018). In the mouse liver scRNA-Seq database, Tabula Muris, C3ar1 is similarly 
expressed primarily in Kupffer cells (Figure 1—figure supplement 1A; The Tabula Muris Consortium 
et al., 2018).

https://doi.org/10.7554/eLife.100708
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Figure 1. C3AR1 is found in macrophages, is modulated by MASLD/MASH in humans, and is induced by a murine dietary model of MASH. (A) Relative 
C3AR1 human tissue expression level by tissue, derived from deep sequencing of the mRNA combined dataset (HPA and GTEx) in the Human Protein 
Atlas, shown as normalized transcripts per million (nTPM). Liver is highlighted in purple and immunologic tissues are highlighted in red. (B) Single-
cell RNA sequencing distribution of C3AR1 expression in human liver (tSNE, t-distributed Stochastic Neighbor Embedding). (C) Analysis of CFD and 
C3AR1 expression from liver biopsy samples in patients with MASH, MASLD, obesity without MASLD, and age-matched healthy controls (n=12–16 
per group, Welch t test with Holm-Šídák correction for multiple comparisons). (D) Weight curve in male and female C3ar1flox/flox control mice placed on 
GAN high-fat diet compared to regular diet (RD) controls (males, n=7; females, n=6). (E) Representative liver section staining by Masson’s Trichrome in 
male control mice on RD or GAN diet for 28 weeks (scale bar = 100 mm). (F) Lipid droplet area quantification in liver sections from male control mice, 
excluding vessel lumens (RD, n=3; GAN, n=7). (G) Collagen area quantification in liver sections of male control mice (RD, n=3; GAN, n=7). (H) Gene 
expression of key macrophage or fibrosis genes in male control mice on GAN or RD (n=6 per group). Unpaired two-tailed Student’s t test (Except 1 C as 
above). Annotations: *, p<0.05; **, p<0.01; ***, <0.001. Error bars represent standard error of the mean.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for Figure 1A, C, D, F, G and H.

Figure supplement 1. C3ar1 is expressed in liver, primarily in Kupffer cells.

https://doi.org/10.7554/eLife.100708
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Hepatic CFD and C3AR1 are downregulated in human MASLD/MASH
We also examined data from Suppli and coworkers, who performed bulk transcriptomic analysis of 
human liver samples from an age-matched cohort of healthy controls and obese controls without 
MASLD, as well as MASLD and MASH patients without cirrhosis (Suppli et al., 2019). Both CFD and 
C3AR1 were unchanged in obese subjects without MASLD compared to healthy controls, but both 
CFD and C3AR1 were significantly downregulated in liver biopsies from both MASLD and MASH 
patients compared to both healthy controls and obese subjects without MASLD (Figure 1C). Interest-
ingly, both CFD and C3AR1 levels were slightly higher in MASH individuals compared to those with 
MASLD only.

Murine MASH model recapitulates key features of human MASH
At 5 weeks of age, we subjected C3ar1flox/flox control mice to standard regular diet (RD) or GAN diet 
(Boland et al., 2019; Hansen et al., 2020). After 28 weeks of GAN diet, male mice gained body 
weight compared to RD (Figure  1D), primarily as fat mass (Figure  1—figure supplement 1B–C), 
but weight gain in female GAN-fed mice was attenuated. Histologic signs of MASLD were present in 
GAN-fed mice (Figure 1E), most notably hepatic steatosis and hepatocyte ballooning (Figure 1F), and 
liver fibrosis measured by collagen deposition nearly doubled with GAN compared to RD (Figure 1G). 
Both hepatic C3ar1 and Cfd gene expression were robustly increased on GAN compared to RD, as 
were markers of macrophage infiltration, hepatic inflammation, and fibrosis, including collagen gene 
expression, indicating progression to fibrotic MASH (Figure 1H). In female control mice on GAN diet, 
there were no significant differences in C3ar1 expression or other gene markers, although there was a 
nonsignificant trend toward increased inflammation and fibrosis compared to regular diet (Figure 1—
figure supplement 1D).

Macrophage-specific C3aR1 deletion does not alter glucose 
homeostasis
Owing to higher levels of C3ar1 in murine MASLD and the differential regulation of C3AR1 gene 
in MASLD humans, this motivated us to interrogate the role of pathophysiological role of C3ar1 in 
macrophages in MASLD. We generated transgenic mice with macrophage-specific deletion of C3aR1 
by crossing C3ar1flox/flox mice with Lyz2Cre transgenic mice (C3aR1-MφKO) to target both liver resident 
macrophages and recruited monocytes. C3ar1flox/flox mice were used as controls. Successful deletion 
of C3ar1 in macrophages from the C3aR1-MφKO mouse was confirmed by quantitative RT-PCR of 
isolated peritoneal macrophages that were F4/80+and CD68+by fluorescence-activated cell sorting 
(Figure 2A). In liver tissue, C3ar1 expression was reduced by ~88% in both male and female C3aR1-
MφKO (Figure 2B). These results indicate that macrophages account for the vast majority of C3ar1 
expression in the liver.

When placed on GAN diet, there was no significant difference in weight gain between control and 
C3aR1-MφKO mice (Figure 2C). There was similarly no difference in percent lean or fat mass between 
these mice (Figure 2D). Glucose tolerance tests performed in fasted mice after 27 weeks GAN diet 
found no significant differences between control and C3aR1-MφKO mice (Figure 2E). There was also 
no difference in insulin sensitivity as measured by insulin tolerance tests in male mice (Figure 2—
figure supplement 1A). Insulin resistance as measured by comparing the ratio of fasting glucose 
level to fasting insulin level (HOMA-IR) was also unchanged between controls and C3aR1-MφKO mice 
(Figure 2—figure supplement 1B). Circulating serum ALT levels were unchanged in male control and 
C3aR1-MφKO mice on GAN diet (Figure 2—figure supplement 1C).

Macrophage-specific C3aR1 deletion does not significantly impact 
hepatic steatosis or fibrosis
Liver samples collected after 28–30 weeks of GAN or regular diet did not show significant differences 
in liver mass between control and C3aR1-MφKO mice (Figure 2F). Male mice on GAN diet devel-
oped similar qualitative appearance on histology (Figure 2G), and slide image analysis showed similar 
proportions of lipid droplet area and collagen area (Figure 2H and I). This indicates that there were no 
significant differences in steatosis or fibrosis between GAN-fed control and C3aR1-MφKO male mice. 
While C3ar1 expression was markedly reduced in the C3aR1-MφKO liver tissue (Figure 2B), there 
were no detectable gene expression changes in markers of fibrosis, inflammation, or lipid handling on 

https://doi.org/10.7554/eLife.100708
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Figure 2. C3aR1 deletion in all macrophages does not affect weight gain, glucose homeostasis, liver steatosis or fibrosis. (A) Expression of C3ar1 in 
peritoneal F4/80+/CD68+ cells from C3ar1flox/flox control (n=6) or C3aR1-MφKO male mice (n=3). (B) Expression of C3ar1 in whole liver from control or 
C3aR1-MφKO mice (n=11–12 per male group, n=13–14 per female group). (C) Body mass curve of control or C3aR1-MφKO mice on GAN high-fat diet 
starting at 5 weeks of age (n=11–12 per male group, n=14 per female group). (D) Body composition analysis by EchoMRI in control or C3aR1-MφKO 
mice after 30 weeks GAN diet (n=6–9 per male group, n=9–13 per female group). (E) Glucose tolerance test in control or C3aR1-MφKO mice with 
14 hr fast after 28 weeks GAN diet (n=6–9 per male group, n=9–14 per female group). (F) Liver mass in control or C3aR1-MφKO male mice at time of 
euthanasia after 30 weeks GAN diet (n=6–9 per male group, n=9–14 per female group). (H) Representative liver section staining by Masson’s Trichrome 
in male control or C3aR1-MφKO mice (scale bar = 100 mm). (I) Lipid droplet area in liver sections from male control or C3aR1-MφKO mice, excluding 
vessel lumens (n=6–7 per group). (J) Collagen area in liver sections from male control or C3aR1-MφKO mice (n=6–7 per group). (J,K) Relative mRNA 
expression of key markers for inflammation, fibrosis, and liver metabolism in liver from male control or C3aR1-MφKO mice after 30 weeks of either GAN 
(J) diet (n=11–12 per group) or regular (K) diet (n=3–5 per group). Unpaired two-tailed Student’s t test: Student’s t test: *, p<0.05. Error bars represent 
standard error of the mean.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.100708
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either GAN or regular diet (Figure 2J and K). Similarly, in female mice there were also no significant 
differences between control and C3aR1-MφKO mouse liver on either GAN or regular diet in a subset 
of key gene markers of fibrosis or inflammation (Figure 2—figure supplement 1D).

Kupffer-cell-specific C3aR1 deletion does not alter weight gain or 
glucose homeostasis
To explore whether there may be competing effects between recruited monocytes and liver resident 
macrophages (Kupffer cells), we next generated Kupffer-cell-specific C3aR1 knockout mice (C3aR1-
KpKO) by crossing C3ar1flox/flox mice to Clec4f-Cre transgenic mice and fed them GAN diet. C3ar1flox/

flox mice were used as controls. Body weight gain was similar between genotypes for both male and 
female mice (Figure  3A), and there was no difference in body composition between control and 
C3aR1-KpKO mice on GAN diet (Figure 3B). There was similarly no significant difference in glucose 
homeostasis between the genotypes during a glucose tolerance test (Figure 3C).

Kupffer-cell-specific C3aR1 deletion does not significantly impact 
hepatic steatosis or fibrosis
Liver mass was not significantly different between control and C3aR1-KpKO mice on GAN diet 
(Figure 3D). Liver sections appeared qualitatively similar by histology stained with Masson’s trichrome 
(Figure 3E). There were similar levels of hepatic steatosis in these mice as measured by percent lipid 
droplet area (Figure  3F). When measured by collagen proportional area, there was no significant 
differences in liver fibrosis between C3aR1-KpKO and control mice (Figure 3G). While C3ar1 expres-
sion was reduced by 73% in liver tissue of C3aR1-KpKO mice, there were no significant differences 
in expression of inflammatory, fibrotic, or lipid handling gene markers (Figure 3H). C3ar1 expression 
similarly decreased by ~90% in liver tissue of female C3aR1-KpKO mice fed regular diet compared to 
control mice (Figure 3—figure supplement 1A). These data also indicate that Kupffer cells account 
for ~80% of hepatic C3ar1 gene expression in our mouse model of MASLD/MASH.

Discussion
Overall, we found that macrophage or Kupffer cell expression of C3ar1 does not impact body weight 
gain or histologic/transcriptomic features of MASLD/MASH in a murine dietary model. Deletion of 
C3aR1 in the macrophage population throughout the body, or specifically in Kupffer cells, did not 
affect weight gain, glucose homeostasis, or extent of hepatic steatosis/fibrosis. With long term GAN 
diet feeding that has been previously shown to model human MASLD/MASH, we did not observe 
significant differences in liver abnormalities with the KO mice.

Our findings in macrophage-specific C3aR1 KO mice contrast with prior observations in whole-
body C3aR1 KO mice (Mamane et al., 2009), which are protected from diet-induced obesity, have 
improved glucose tolerance, and exhibit decreased hepatic steatosis. In both our macrophage- and 
Kupffer-cell-specific C3aR1 KO mice, which had similar degrees of obesity compared to controls, there 
was no detectable effect on liver steatosis or fibrosis despite the near abrogation of C3ar1 expression. 
This raises the possibility that the lower levels of hepatic steatosis and insulin resistance previously 
observed in the whole body C3aR1 KO mice may be secondary to protection from obesity. Protection 
from diet-induced obesity in whole-body C3aR1 KO mice may be mediated by a non-macrophage cell 
type, since our macrophage-specific C3aR1 KO mice were not afforded this protection. The C3ar1-
expressing cell types that promote obesity and MASLD remains to be determined.

Our laboratory recently reported sex-dependent regulation of thermogenic adipose tissue medi-
ated by adipocyte-derived C3aR1 (Ma et  al., 2024). However, no such sexual dimorphism was 
observed in hepatic expression of key MASH genes in response to GAN diet in our macrophage- or 

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for Figure 2A-F, H-K.

Figure supplement 1. C3aR1 deletion in macrophages does not affect insulin-glucose axis, circulating marker of liver injury, or expression of key genes 
in female mice.

Figure 2 continued

https://doi.org/10.7554/eLife.100708
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staining by Masson’s Trichrome in control or C3aR1-KpKO male mice (scale bar = 100 mm). (F) Lipid droplet area quantified on liver sections of control 
or C3aR1-KpKO male mice, excluding vessel lumens (n=8–9). (G) Collagen area quantified on whole liver section of control or C3aR1-KpKO male mice 
(n=8–9). (H) Relative gene expression in male control or C3aR1-KpKO mice after 30 weeks GAN diet (n=5–6). Unpaired two-tailed Student’s t test: **, 
p<0.01. Error bars represent standard error of the mean.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3A–D and F–H.

Figure supplement 1. C3ar1 expression in female mice with Kupffer cell-specific deletion of C3ar1.

https://doi.org/10.7554/eLife.100708
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Kupffer-cell-specific C3aR1-deficient mice. Other work has suggested possible compensatory effects 
from its sister anaphylatoxin receptor C5aR1, with increased cold-induced adipocyte browning and 
attenuated diet-induced obesity seen in C3aR1/C5aR1 double KO mice (Kong et al., 2023).

The strengths of our study include careful metabolic and transcriptomic phenotyping of cell-type-
specific transgenic mice. Some limitations were our use of a single MASLD dietary model and our 
focus on the C3aR1 pathway. While the GAN diet recapitulates many features of human MASH due to 
its similarity to Western diet (Vacca et al., 2024), relatively low levels of fibrosis were seen in our study, 
potentially related to initiating the diet at young age; more rapid fibrosis induction has been seen 
when GAN diet is initiated at older ages (Li et al., 2023). It is possible that in other models of liver 
injury that we did not test (e.g. short-term treatment with a hepatotoxin such as carbon tetrachloride; 
Tsuchida et al., 2018) there may be differences in liver injury in mice lacking C3ar1 in macrophages. 
However, the GAN diet model has been shown to better parallel the gene expression changes in 
human MAFLD/MASH (Hansen et al., 2020). Lastly, while C3AR1/C3ar1 expression is very low in non-
macrophage cells (Figure 1B), C3aR1 signaling on other hepatic cell types not explored in this study, 
such as hepatic stellate cells, could mediate the observed effect in the whole-body C3aR1 KO mouse.

Deletion of C3aR1 in macrophages generally, or in liver resident macrophages specifically, had 
no major effect on systemic glucose homeostasis and hepatic steatosis, inflammation, and fibrosis in 
this murine dietary model of MASLD/MASH. The complement system is a complex entity directing 
an important part of the body’s inflammatory and tissue repair response in MASLD. Further work is 
needed to elucidate the mechanisms of the role of C3aR1 in the pathogenesis of MASH and cirrhosis.

Materials and methods
Animals
C3ar1flox/flox mice were on the C57BL/6 J background as described (Cumpelik et al., 2021). Homozy-
gous Lyz2Cre mice on the C57BL/6 J background (Strain #004781) as well as homozygous Clec4f-Cre 
mice on the C57BL/6  J background (Strain #003296) were purchased from Jackson Laboratories. 
C3ar1flox/flox homozygous mice on C57BL/6 J background were used in the experiments as controls 
from the same backcross generation (Ma et al., 2024). All mice were maintained in plastic cages under 
a 12 hr/12 hr light/dark cycle at constant temperature (22 °C) with free access to water and food. Mice 
were fed regular diet containing 4.5%kcal fat PicoLab Rodent diet 20 (LabDiet) or GAN diet containing 
40%kcal HFD (mostly palm oil) with 20% fructose and 2% cholesterol (D09100310, Research Diets) 
for 28–30 weeks. Fat mass and lean mass were determined via noninvasive 3-in-1 body composition 
analyzer (EchoMRI). Mice were humanely euthanized with CO2 inhalation followed by exsanguination 
by cardiac puncture. For a typical experiment we expected ~10% loss of animals, a coefficient of varia-
tion (CV) of 10% and a treatment/genotype effect of 30–50%. To ensure an adequate statistical power 
of 0.9 with an alpha value of 0.05, we anticipated 6–12 mice per experimental group for physiology 
experiments. Key experiments were repeated in at least two independent mouse cohorts.

Blood chemistry and serum insulin analysis
Mice were fasted overnight (14–16  hr) for glucose tolerance tests and injected intraperitoneally 
with syringe-filtered D-glucose solution (2 g/kg). For insulin tolerance test, mice were fasted for 6 hr 
and injected with 0.5 mIU/kg insulin. Blood glucose levels were assayed by commercial glucometer 
(OneTouch) by tail vein blood samples. Plasma insulin levels were measured from mice fasted for 6 hr. 
Tail vein blood was collected into lithium heparin-coated tubes, centrifuged at 2000 x g at 4 °C, and 
plasma insulin levels were determined by ELISA using a standard curve (Mercodia). Serum alanine 
aminotransferase levels were measured in serum from blood collected via cardiac puncture using a 
commercially available colorimetric assay (TR71121, Thermo Fisher Scientific).

Peritoneal macrophage isolation and flow cytometry
Peritoneal macrophages were isolated from as previously described (Zhang et al., 2008). Briefly, mice 
were euthanized then immediately injected intraperitoneally with 10mL phosphate-buffered saline 
(PBS, pH 7.4) at room temperature. After a 3–5min incubation period, peritoneal fluid was removed 
with sterile needle and syringe and placed on ice. After centrifugation at 300 x g, the pellet was 
resuspended in PBS containing 2% fetal bovine serum and 0.1% sodium azide. Cells were stained 

https://doi.org/10.7554/eLife.100708
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with phycoerythrin-conjugated anti-F4/80 (clone BM8, cat. #123110) and fluorescein isothiocyanate-
conjugated anti-CD11b (clone M1/70, cat. #101206) fluorescent antibodies (Biolegend). Stained cells 
were loaded on MA900 fluorescence-activated cell sorter (Sony), and dual-positive F480+/CD11b+ 
cells were sorted for subsequent RNA extraction.

Histological studies
A mid-distal portion of the left liver lobe was fixed with 10% buffered formalin and transferred to 
70% ethanol. Samples were embedded in paraffin, sectioned at ~5 μm thickness, and stained with 
Masson’s trichrome. Slides were imaged using Zeiss Axioscan7 at ×20 magnification. Histologic anal-
yses were performed using ImageJ software (version 1.53t). Lipid droplet area was quantified by 
subtracting non-droplet area in the green channel from total section area of two to three independent 
sections. Collagen proportionate area was quantified by measuring total area in the red channel after 
reducing intensity threshold to 60–70.

RNA extraction and real-time quantitative PCR analysis
Total RNA from liver tissue lysates was extracted using Trizol reagent (Invitrogen) followed by RNAeasy 
Mini kit (QIAGEN) as per manufacturer’s protocol. RNA was reverse-transcribed using the High 
Capacity cDNA RT kit (Thermo Fisher). Quantitative PCR was performed using SYBR Green Master 
Mix (Quanta) and specific gene primers on QuantStudio6 Flex Real-Time PCR Systems (Thermo Fisher 
Scientific) using the delta-delta Ct method. Expression levels were normalized to Ribosomal protein 
S18 (Rps18). Primer sequences are listed in Supplementary file 1.

Statistical analyses
All statistical analyses were performed with biological replicates using GraphPad Prism10. Unpaired 
two-tailed Student’s t test with Welch correction for most analyses, with Holm-Šídák correction for 
multiple comparisons where applicable, and p<0.05 was considered statistically significant.
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