Capsular Polysaccharide Restrains Type VI Secretion in Acinetobacter baumannii

  1. Nicolas Flaugnatti
  2. Loriane Bader
  3. Mary Croisier-Coeytaux
  4. Melanie Blokesch  Is a corresponding author
  1. Ecole Polytechnique Federale de Lausanne, Switzerland
  2. Swiss Federal Institute of Technology Lausanne, Switzerland

Abstract

The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS's antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium's own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.

Data availability

Imaging dataset: All scripts, models, and classifiers used for image analyses have been deposited on Zenodo (https://doi.org/10.5281/zenodo.11039744).All raw images used in this study have been deposited on Zenodo (https://doi.org/10.5281/zenodo.14386836).All other data are included in the manuscript, with source data provided in Supplementary File 3.

Article and author information

Author details

  1. Nicolas Flaugnatti

    Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6073-3340
  2. Loriane Bader

    Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Mary Croisier-Coeytaux

    Bioelectron Microscopy Core Facility, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Melanie Blokesch

    Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
    For correspondence
    melanie.blokesch@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7024-1489

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (407240_167061)

  • Melanie Blokesch

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030_204335)

  • Melanie Blokesch

Howard Hughes Medical Institute (55008726)

  • Melanie Blokesch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2025, Flaugnatti et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 600
    views
  • 134
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Flaugnatti
  2. Loriane Bader
  3. Mary Croisier-Coeytaux
  4. Melanie Blokesch
(2025)
Capsular Polysaccharide Restrains Type VI Secretion in Acinetobacter baumannii
eLife 14:e101032.
https://doi.org/10.7554/eLife.101032

Share this article

https://doi.org/10.7554/eLife.101032

Further reading

    1. Microbiology and Infectious Disease
    2. Neuroscience
    Aleksandra Prochera, Anoohya N Muppirala ... Meenakshi Rao
    Research Article

    Glial cells of the enteric nervous system (ENS) interact closely with the intestinal epithelium and secrete signals that influence epithelial cell proliferation and barrier formation in vitro. Whether these interactions are important in vivo, however, is unclear because previous studies reached conflicting conclusions (Prochera and Rao, 2023). To better define the roles of enteric glia in steady state regulation of the intestinal epithelium, we characterized the glia in closest proximity to epithelial cells and found that the majority express the gene Proteolipid protein 1 (PLP1) in both mice and humans. To test their functions using an unbiased approach, we genetically depleted PLP1+ cells in mice and transcriptionally profiled the small and large intestines. Surprisingly, glial loss had minimal effects on transcriptional programs and the few identified changes varied along the gastrointestinal tract. In the ileum, where enteric glia had been considered most essential for epithelial integrity, glial depletion did not drastically alter epithelial gene expression but caused a modest enrichment in signatures of Paneth cells, a secretory cell type important for innate immunity. In the absence of PLP1+ glia, Paneth cell number was intact, but a subset appeared abnormal with irregular and heterogenous cytoplasmic granules, suggesting a secretory deficit. Consistent with this possibility, ileal explants from glial-depleted mice secreted less functional lysozyme than controls with corresponding effects on fecal microbial composition. Collectively, these data suggest that enteric glia do not exert broad effects on the intestinal epithelium but have an essential role in regulating Paneth cell function and gut microbial ecology.

    1. Microbiology and Infectious Disease
    Carley N Gray, Manickam Ashokkumar ... Michael Emerman
    Research Article

    The latent HIV reservoir is a major barrier to HIV cure. Combining latency reversal agents (LRAs) with differing mechanisms of action such as AZD5582, a non-canonical NF-kB activator, and I-BET151, a bromodomain inhibitor is appealing toward inducing HIV-1 reactivation. However, even this LRA combination needs improvement as it is inefficient at activating proviruses in cells of people living with HIV (PLWH). We performed a CRISPR screen in conjunction with AZD5582 & I-BET151 and identified a member of the Integrator complex as a target to improve this LRA combination, specifically Integrator complex subunit 12 (INTS12). Integrator functions as a genome-wide attenuator of transcription that acts on elongation through its RNA cleavage and phosphatase modules. Knockout of INTS12 improved latency reactivation at the transcriptional level and is more specific to the HIV-1 provirus than AZD5582 & I-BET151 treatment alone. We found that INTS12 is present on chromatin at the promoter of HIV and therefore its effect on HIV may be direct. Additionally, we observed more RNAPII in the gene body of HIV only with the combination of INTS12 knockout with AZD5582 & I-BET151, indicating that INTS12 induces a transcriptional elongation block to viral reactivation. Moreover, knockout of INTS12 increased HIV-1 reactivation in CD4 T cells from virally suppressed PLWH ex vivo, and we detected viral RNA in the supernatant from CD4 T cells of all three virally suppressed PLWH tested upon INTS12 knockout, suggesting that INTS12 prevents full-length HIV RNA production in primary T cells. Finally, we found that INTS12 more generally limits the efficacy of a variety of LRAs with different mechanisms of action.