Cancer: Predicting drug resistance
In 2001, a cover from Time magazine showed a handful of yellow pills deemed to be ‘bullets’ in the ‘war against cancer’ (Lemonick and Park, 2001). Inside these pills, a compound called imatinib specifically targets a mutation commonly found in chronic myeloid leukemia (CML), a rare type of cancer that affects bone marrow and blood cells (Druker et al., 1996; Druker et al., 2001; Deininger et al., 2005).
This discovery prompted the development of similar drugs known as tyrosine kinase inhibitors which can treat a variety of cancers, including CML. While these drugs have proven successful, resistance to treatment remains a significant problem.
This is due to the persistence of cancer-initiating cells that can survive treatment and repopulate the eliminated cancer cell population, leading to a reoccurrence of the disease. In CML, these cancer-initiating cells are known as leukemic stem cells and carry a genetic mutation called BCR:ABL. The mutation causes two genes (BCR and ABL) to fuse and produce a protein that promotes cell division, resulting in excessive amounts of immature blood cells that contain the BCR:ABL mutation and cause the symptoms of CML.
Tyrosine kinase inhibitors for CML, such as imatinib, only target cells that carry the BCR:ABL mutation while leaving healthy cells unscathed (Rowley, 1973). However, some leukemic stem cells have a ‘bulletproof vest’ that protects them from these drugs. Studying leukemic stem cells in blood cancers paves the way to discover how this resistance occurs and how leukemic stem cells can be better targeted in order to be fully eradicated. However, it can be difficult for researchers to quickly and easily distinguish leukemic stem cells from healthy stem cells in bone marrow, particularly hematopoietic stem cells which develop into the cell types found in blood.
Another reason studying leukemic stem cells is challenging is due to a phenomenon called cancer heterogeneity, whereby cells within the same population carry unique sets of mutations that result in varied behaviors that can alter responsiveness to treatment (Fisher et al., 2013; Figure 1). Heterogeneity is frequently seen in leukemic stem cells and is the driving mechanism for resistance (Yanagisawa et al., 2016). Understanding this heterogeneity requires examining both the genes that cells activate and the proteins present on their surface. Now, in eLife, Ram Krishna Thakur, Göran Karlsson from Lund University and coworkers – including Rebecca Warfvinge (Lund University) as first author – report how they used a method called CITE-seq, which records both these factors in a single cell simultaneously, to evaluate the composition of stem cells in CML patients (Warfvinge et al., 2023).

Diversity of cancer cells can influence treatment outcomes.
Patients diagnosed with the same cancer (blue figures) may have varied compositions of cancer-initiating cells (top). For instance, the cancer-initiating cells may carry different sets of genetic mutations and/or express different proteins on their surface resulting in subpopulations (denoted by different colors). This diversity may cause the patients to respond differently to the same treatment (bottom). Some patients may grow a new subpopulation of cancer cells in response to treatment (left figure), while the treatment may eliminate an already existing subpopulation in other patients (middle figure), or cause a combination of both effects (right figure). This figure was created with BioRender.com.
The team (who are based at various institutes in Finland, Norway and Sweden) applied CITE-seq to bone marrow samples from nine patients before and 12 months after they had been treated with a tyrosine kinase inhibitor. This multi-pronged detection method allowed Warfvinge et al. to delineate healthy and cancerous stem cells more easily, and see how the composition of stem cells present in a patient’s sample correlated with how well they responded to treatment.
The analysis revealed that leukemic and hematopoietic stem cells express two surface proteins – called CD26 and CD35 – to varying degrees. Specifically, leukemic stem cells which were positive for the BCR:ABL mutation expressed high levels of CD26 but low levels of CD35. Meanwhile, healthy hematopoietic stem cells lacking the BCR:ABL mutation showed the opposite pattern, and expressed low levels of CD26 and high levels of CD35.
Further experiments revealed that levels of CD26 and CD35 could be used to separate and measure the number of leukemic and hematopoietic stem cells in patient samples. Using this approach, Warfvinge et al. were able to show a striking connection between the proportions of these two cell populations and treatment outcomes: patients with a higher percentage of leukemic stem cells at diagnosis were more prone to treatment failure, whereas patients with elevated levels of hematopoietic stems cells were more likely to respond positively to the drug.
The work of Warfvinge et al. could make it easier for physicians to analyze the composition of stem cells in the bone marrow of patients diagnosed with CML. This could help them make more informed predictions about how a patient will respond to tyrosine kinase inhibitors, and develop a treatment plan that works best for them.
In the future, these finding could also help researchers develop personalized treatment strategies for other types of cancer. Treatment strategies should be tailored to the specificities of each person’s cancer, and the work of Warfvinge et al. brings us one step closer to achieving this goal.
References
-
Cancer heterogeneity: implications for targeted therapeuticsBritish Journal of Cancer 108:479–485.https://doi.org/10.1038/bjc.2012.581
-
Translating leukemia stem cells into the clinical setting: Harmonizing the heterogeneityExperimental Hematology 44:1130–1137.https://doi.org/10.1016/j.exphem.2016.08.010
Article and author information
Author details
Publication history
Copyright
© 2024, Arellano and Elf
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 548
- views
-
- 54
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Stem Cells and Regenerative Medicine
Despite advances in therapeutic approaches, lung cancer remains the leading cause of cancer-related deaths. To understand the molecular programs underlying lung cancer initiation and maintenance, we focused on stem cell programs that are normally extinguished with differentiation but can be reactivated during oncogenesis. Here, we have used extensive genetic modeling and patient-derived xenografts (PDXs) to identify a dual role for Msi2: as a signal that acts initially to sensitize cells to transformation, and subsequently to drive tumor propagation. Using Msi reporter mice, we found that Msi2-expressing cells were marked by a pro-oncogenic landscape and a preferential ability to respond to Ras and p53 mutations. Consistent with this, genetic deletion of Msi2 in an autochthonous Ras/p53-driven lung cancer model resulted in a marked reduction of tumor burden, delayed progression, and a doubling of median survival. Additionally, this dependency was conserved in human disease as inhibition of Msi2 impaired tumor growth in PDXs. Mechanistically, Msi2 triggered a broad range of pathways critical for tumor growth, including several novel effectors of lung adenocarcinoma. Collectively, these findings reveal a critical role for Msi2 in aggressive lung adenocarcinoma, lend new insight into the biology of this disease, and identify potential new therapeutic targets.
-
- Cancer Biology
Glioblastomas are aggressive brain tumors with dismal prognosis. One of the main bottlenecks for developing more effective therapies for glioblastoma stems from their histologic and molecular heterogeneity, leading to distinct tumor microenvironments and disease phenotypes. Effectively characterizing these features would improve the clinical management of glioblastoma. Glucose flux rates through glycolysis and mitochondrial oxidation have been recently shown to quantitatively depict glioblastoma proliferation in mouse models (GL261 and CT2A tumors) using dynamic glucose-enhanced (DGE) deuterium spectroscopy. However, the spatial features of tumor microenvironment phenotypes remain hitherto unresolved. Here, we develop a DGE Deuterium Metabolic Imaging (DMI) approach for profiling tumor microenvironments through glucose conversion kinetics. Using a multimodal combination of tumor mouse models, novel strategies for spectroscopic imaging and noise attenuation, and histopathological correlations, we show that tumor lactate turnover mirrors phenotype differences between GL261 and CT2A mouse glioblastoma, whereas recycling of the peritumoral glutamate-glutamine pool is a potential marker of invasion capacity in pooled cohorts, linked to secondary brain lesions. These findings were validated by histopathological characterization of each tumor, including cell density and proliferation, peritumoral invasion and distant migration, and immune cell infiltration. Our study bodes well for precision neuro-oncology, highlighting the importance of mapping glucose flux rates to better understand the metabolic heterogeneity of glioblastoma and its links to disease phenotypes.