Fcp1 phosphatase controls Greatwall kinase to promote PP2A-B55 activation and mitotic progression

  1. Rosa Della Monica
  2. Roberta Visconti
  3. Nando Cervone
  4. Angela Flavia Serpico
  5. Domenico Grieco  Is a corresponding author
  1. CEINGE Biotecnologie Avanzate, Italy
  2. Consiglio Nazionale delle Ricerche, Italy

Abstract

During cell division, progression through mitosis is driven by a protein phosphorylation wave. This wave namely depends on an activation-inactivation cycle of cyclin B-dependent kinase (Cdk) 1 while activities of major protein phosphatases, like PP1 and PP2A, appear directly or indirectly repressed by Cdk1. However, how Cdk1 inactivation is coordinated with reactivation of major phosphatases at mitosis exit still lacks substantial knowledge. We show here that activation of PP2A-B55, a major mitosis exit phosphatase, required the phosphatase Fcp1 downstream Cdk1 inactivation in human cells. During mitosis exit, Fcp1 bound Greatwall (Gwl), a Cdk1-stimulated kinase that phosphorylates Ensa/ARPP19 and converts these proteins into potent PP2A-B55 inhibitors during mitosis onset, and dephosphorylated it at Cdk1 phosphorylation sites. Fcp1-catalyzed dephosphorylation drastically reduced Gwl kinase activity towards Ensa/ARPP19 promoting PP2A-B55 activation. Thus, Fcp1 coordinates Cdk1 and Gwl inactivation to derepress PP2A-B55, generating a dephosphorylation switch that drives mitosis progression.

Article and author information

Author details

  1. Rosa Della Monica

    CEINGE Biotecnologie Avanzate, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Roberta Visconti

    Istituto per l'endocrinologia e l'oncologia Gaetano Salvatore"", Consiglio Nazionale delle Ricerche, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Nando Cervone

    CEINGE Biotecnologie Avanzate, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Angela Flavia Serpico

    CEINGE Biotecnologie Avanzate, Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Domenico Grieco

    CEINGE Biotecnologie Avanzate, Naples, Italy
    For correspondence
    domenico.grieco@unina.it
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2015, Della Monica et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,279
    views
  • 400
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rosa Della Monica
  2. Roberta Visconti
  3. Nando Cervone
  4. Angela Flavia Serpico
  5. Domenico Grieco
(2015)
Fcp1 phosphatase controls Greatwall kinase to promote PP2A-B55 activation and mitotic progression
eLife 4:e10399.
https://doi.org/10.7554/eLife.10399

Share this article

https://doi.org/10.7554/eLife.10399

Further reading

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.