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Abstract In the early days of HIV treatment, drug resistance occurred rapidly and predictably in

all patients, but under modern treatments, resistance arises slowly, if at all. The probability of

resistance should be controlled by the rate of generation of resistance mutations. If many adaptive

mutations arise simultaneously, then adaptation proceeds by soft selective sweeps in which

multiple adaptive mutations spread concomitantly, but if adaptive mutations occur rarely in the

population, then a single adaptive mutation should spread alone in a hard selective sweep. Here,

we use 6717 HIV-1 consensus sequences from patients treated with first-line therapies between

1989 and 2013 to confirm that the transition from fast to slow evolution of drug resistance was

indeed accompanied with the expected transition from soft to hard selective sweeps. This suggests

more generally that evolution proceeds via hard sweeps if resistance is unlikely and via soft sweeps

if it is likely.

DOI: 10.7554/eLife.10670.001

Introduction
In the first two decades of the HIV epidemic, HIV became a prime example of fast evolutionary

change, especially because of the evolution of drug resistance quickly after initiation of treatment.

Nowadays, HIV treatments are more clinically effective and the evolution of drug resistance has

become much slower and often does not occur for years if at all. The rate at which evolution occurs

has been the subject of considerable recent interest in the evolutionary biology community.

Although traditionally evolution was thought to be slow (Darwin, 1859), there are a growing number

of examples of fast evolution to selective pressures such as pesticides (Lopes et al., 2008;

Daborn et al., 2001; Karasov et al., 2010; Palumbi, 2001), industrialization (Cook et al., 2012), or

antibiotics (Laehnemann et al., 2014; Nair et al., 2007). HIV represents an interesting case because

its evolutionary speed in treated patients has changed drastically over time.

Population genetic theory suggests that whether populations evolve slowly or quickly is driven by

the availability of adaptive mutations. In a large population with a high mutation rate, mutations may

be available as standing genetic variation (pre-existing variation) or be generated anew every gener-

ation, allowing the population to adapt to its environment rapidly. If adaptive mutations are rare,

because the population is small, the mutation rate is low, or only few specific mutations (or combina-

tions of mutations) can help a population adapt, the population will likely adapt to its environment

much more slowly.

The availability of adaptive mutations does not only change the rate of adaptation, it also

changes how adaptation affects genetic diversity in a population. If adaptive mutations are rare, i.e.,
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less than one adaptive mutation occurs per generation in the population, the first successful muta-

tion is likely to rise to high frequency before any subsequent adaptive mutations reach appreciable

frequencies (see Figure 1A). This results in a hard selective sweep, in which the single adaptive

mutation and the nearby linked mutations becomes fixed in the population (Figure 1B). Hard selec-

tive sweeps sharply reduce genetic diversity in the population (Figure 1C) (Smith and Haigh, 1974;

Kaplan et al., 1989) in a similar manner to a strong genetic bottleneck.

In contrast, when adaptive mutations are common, i.e., more than one occurs per generation in

the population, the same adaptive mutation may occur several times in a very short time span on dif-

ferent genetic backgrounds. These adaptive mutations can increase in frequency virtually simulta-

neously (Figure 1D) (Pennings and Hermisson, 2006) and multiple genetic backgrounds are

therefore expected to reach substantial frequencies with no single genetic background dominating

the population (Figure 1E). This pattern is known as a soft selective sweep and is expected to lead

to almost no reduction of genetic diversity (Figure 1F) (Pennings and Hermisson, 2006), compara-

ble to a mild bottleneck.

In HIV, the evolution of drug resistance was fast in patients on early anti-retroviral therapies

(Larder et al., 1989), but current multi-drug regimens have substantially slowed the rate of evolution

of resistance (Martin et al., 2008). Although clinically effective drugs have decreased the rate of

emergence of drug resistance, it is not clear what effect that they have had on the evolutionary

dynamics of within-patient HIV populations. Specifically, population genetic theory predicts that

populations should evolve primarily by soft sweeps when resistance is likely and by hard sweeps

when resistance is rare. In essence, soft sweeps should mark cases of resistance that arise determin-

istically through many origins while hard sweeps mark cases of rare, ’unlucky’ resistance.

However, these predictions have not been tested in HIV or, in fact, in any natural population. In

this study, we ask whether the transition from fast to slow evolution of drug resistance was indeed

associated with a transition from soft to hard selective sweeps. If true, then in general, treatments in

eLife digest In the early days of HIV therapy, the strains of the virus that infected patients

frequently evolved drug resistance and the therapies would often eventually fail. These treatments

generally involved using a single anti-viral drug. Nowadays, better therapies involving combinations

of several anti-viral drugs are available and drug resistance in HIV is a much rarer occurrence. This

means that now a particular therapy may be an effective treatment for an HIV-infected individual

over much longer periods of time.

A theory of population genetics predicts that when it is easy for a population to acquire a

beneficial genetic mutation – like one that provides drug resistance – multiple versions of that

mutation may spread in the population at the same time. This is called a soft selective sweep.

However, when beneficial mutations occur only rarely, it is expected that only one version of that

mutation will take over in a population, which is known as a hard selective sweep.

Here, Feder et al. test this theory using data from 6717 patients with HIV who were treated

between 1989 and 2013 using a variety of different drug therapies. The experiments aimed to find

out whether the transition from the older drug therapies –where the virus frequently acquired

resistance – to the newer, more effective drugs was associated with a transition from soft to hard

sweeps.

Feder et al. find that HIV more often evolved drug resistance via soft sweeps in patients treated

with the less effective drug combinations (like those given in the early days of HIV treatment), while

hard sweeps were more common with the more effective drug combinations. This suggests that

good drug combinations may allow fewer drug resistance mutations to occur in the HIV population

within a patient. This may be because there are fewer virus particles in these patients, or because

the specific combinations of mutations that provide resistance occur less often. Feder et al.’s

findings are a step towards understanding why modern HIV treatments work so well, which will

ultimately help us find better treatments for other infectious diseases.

DOI: 10.7554/eLife.10670.002
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which resistance arises by soft sweeps might be predicted to have high rates of failure even before

the rates of failure can be measured explicitly.

To test whether a transition from soft to hard sweeps has occurred, we look at the relationship

between fixed drug resistance mutations (DRMs) and genetic diversity across 29 common anti-retro-

viral drug regimens. The expectation is that when hard selective sweeps predominate, we will find a

negative correlation between the number of DRMs and genetic diversity in a population. On the

other hand, when soft selective sweeps predominate, we expect to find no such correlation. We use

6717 HIV sequences from the same number of patients from the Stanford HIV Drug Resistance Data-

base (Rhee et al., 2003, https://hivdb.stanford.edu/). These sequences contain information about

the number of DRMs and, as we will further explain in the next paragraph, they also contain informa-

tion about genetic diversity in the viral population.

Most sequencing of HIV populations in patients is done with the intent to discover DRMs for diag-

nostic and therapeutic reasons (Dunn et al., 2011). As such, in standard clinical practice, a sample

from a patient’s entire HIV population is amplified via PCR and then sequenced using the traditional

Sanger method resulting in a single consensus sequence. Genetic diversity may result in ambiguous

calls (also referred to as mixtures) in the reported sequence, so that a signal of within-patient genetic

diversity is retained even though this sequencing approach generates only a single sequence per

patient. We use the ambiguous calls to quantify within-patient genetic diversity (see Figure 1B, E,

grey box), following several other studies (Kouyos et al., 2011; Zheng et al., 2013; Li et al., 2012;

Figure 1. Prediction of drug resistance acquisition with more and less effective treatments. Among patients treated with more effective treatments

(top), we predict HIV populations to have a lower probability of acquiring resistance per generation. As a result, the population must wait a long time

for a beneficial genotype, so when resistance does occur, it will spread through the population in a hard selective sweep before other resistant

genotypes emerge (A). Since resistance only occurs on a single genetic background (background mutations in grey), all sequences with resistance will

be similar (B) and diversity following this type of selective sweep will be reduced (C). We can use the reduction of diversity to determine that a selective

sweep is hard. In patients treated with less effective treatments (bottom), we predict HIV populations should have a higher probability of acquiring

resistance per generation, so resistance will be acquired more quickly and selective sweeps of drug resistance mutations will be soft (D). We can detect

these soft selective sweeps, because diversity remains high when resistance mutations on different genetic backgrounds rise in frequency

simultaneously (E,F).

DOI: 10.7554/eLife.10670.003
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Poon et al., 2007). Although ambiguous calls are an imperfect measure of diversity, it has been

shown that the signal from ambiguous calls can be reproduced between laboratories (Shafer et al.,

2001). By using ambiguous calls as a proxy for diversity, we are able to take advantage of a large

number of HIV-1 sequences, allowing us to study the evolutionary dynamics of HIV drug resistance

evolution in a historical perspective (Rhee et al., 2003).

Through examining HIV sequences of 6717 patients over the past two and a half decades in the

presence of many different drug regimens, all sequenced using Sanger sequencing technology, we

leverage ambiguous sequence calls to understand how the fixation of drug resistance mutations

affects diversity. We find that, across all sequences, the presence of drug resistance mutations is

associated with lower within-patient genetic diversity, marking the occurrence of selective sweeps.

Second, we find that the extent of diversity reduction associated with drug resistance mutations

varies with the clinical effectiveness of the treatment - effective drug treatments with low rates of

virologic failure (such as NNRTI-based and boosted PI-based regimens) show strong reductions in

diversity associated with each additional resistance mutation, a pattern more consistent with hard

selective sweeps, whereas treatments that fail more often (such as regimens based only on NRTIs)

show no reduction in diversity, a pattern consistent with soft selective sweeps. Although our results

do not explain mechanistically how effective treatments lead to harder sweeps of drug resistance

mutations, they suggest a more general principle: a lower rate of the production of adaptive muta-

tions should be accompanied by harder sweeps.

Results

Sequences and patients
We collected sequences of reverse transcriptase and/or protease genes from 6717 patients from the

Stanford HIV Drug Resistance Database (Rhee et al., 2003). The sequences come from 120 different

studies that were performed between 1989 and 2013. The 6717 patients represent all individuals in

the database who were treated with exactly one drug regimen, usually comprising a combination

therapy of multiple drugs (see Materials and methods: Data collection & filtering). The patients’ viral

populations were sequenced after at least some period of treatment, although treatment may or

may not have ceased at the time of sequencing and treatment may or may not have failed. This virus

from a patient was amplified via PCR, sequenced using the Sanger method and then was reported

to the database as a single nucleotide sequence. We call this dataset the D-PCR dataset, for direct

PCR.

All 6717 patients received some type of therapy (between 1 and 4 drugs), with the majority (77%)

receiving a regimen of three drugs. Nearly all patients received one or two nucleoside reverse tran-

scriptase inhibitors (NRTI), usually paired with a non-nucleoside reverse transcriptase inhibitor

(NNRTI) or a protease inhibitor (PI), which was boosted with a low dose of ritonavir in some patients.

HIV subtypes were varied, with the majority being B (36%), C (34%) or CRF01_AE (13%). None of the

remaining subtypes contributed more than 5% of the total sample.

An additional dataset, which we call the clonal dataset, consisted of 11,653 sequences from 740

patients with multiple sequences per patient isolated through clonal amplification and subsequent

Sanger sequencing. The clonal dataset was used for validation purposes only.

Ambiguous calls are a good proxy for genetic diversity
We are interested in the effect of drug resistance evolution on within-patient genetic diversity, but in

our main dataset, we only have one sequence per patient. To use this large dataset for our pur-

poses, we therefore use ambiguous nucleotide calls as a proxy for within-patient genetic diversity.

Although results from previous studies suggest that this approach is valid (Kouyos et al., 2011;

Shafer et al., 2001), we independently validate this measure through comparing the D-PCR and

clonal datasets. Using the clonal sequences, within-patient diversity (p) can be computed directly,

giving an estimate of genetic diversity per site that does not rely on ambiguous calls. We compared

the proportion of sequences with ambiguous calls at a site in the D-PCR dataset to the within-patient

diversity (p) at that site in the clonal dataset (see Materials and methods: Validation of ambiguous

calls as genetic diversity measure). We find that clonal within-host nucleotide diversity has a high

positive correlation with the percentage of nucleotide calls ambiguous in the D-PCR dataset (r =
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0.91, p<2.2 � 10�16). A similar pattern holds at the amino acid level (r = 0.85, p<2.2 � 10�16). We

therefore conclude that ambiguous calls are a reliable proxy for within-patient genetic diversity.

Drug resistance mutations (DRMs) lower within-patient diversity
We ask whether across all sequences, the presence of a drug resistance mutation (DRM) is associ-

ated with lower within-patient diversity, the classical signature of a selective sweep (Smith and

Haigh, 1974). For each sequence, we therefore count the number of DRMs present that are relevant

for the treatment the patient was taking (Bennett et al., 2009) (i.e., a mutation that confers resis-

tance to a particular class of drugs was counted as a DRM only if the patient was actually being

treated with that drug; see Materials and methods: Sequence processing for more information).

First, for the most common reverse transcriptase and protease DRMs, we compare sequences

that have exactly one DRM with sequences that have zero DRMs (i.e., ancestral state at all possible

DRM sites). We plot the difference in within-patient diversity between the two groups with 95% con-

fidence intervals in Figure 2A. Among reverse transcriptase and protease DRMs, sequences with the

DRM have lower diversity than those with the ancestral state in 14 of 16 cases, with 7 of the 16 being

significantly lower at the 95% confidence level. This reduction in diversity is consistent with expecta-

tions after a selective sweep (Smith and Haigh, 1974).

Second, we looked at the effect of multiple DRMs on within-patient diversity, as we hypothesize

that multiple fixed DRMs may decrease diversity even more than a single DRM. This could result
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Figure 2. Effect of DRMs on sequence diversity. (A) For the most common reverse transcriptase and protease mutations, 95% confidence intervals are

drawn for the difference in diversity associated with a single derived mutation. For each DRM, the mean diversity among patients with a fixed ancestral

state at the focal locus is compared to those patients with that fixed non-ambiguous DRM. All sequences have no additional DRMs. All DRMs occurring

at least 5 times with these specifications are included. (B) The effect of multiple DRMs on diversity is shown as the average diversity level of sequences

decreases conditional on number of fixed drug resistance mutations present. Means � SE are plotted among all patients in the D-PCR dataset.

DOI: 10.7554/eLife.10670.004

The following figure supplements are available for figure 2:

Figure supplement 1. Diversity and the number of drug resistance mutations by treatment categories.

DOI: 10.7554/eLife.10670.005

Figure supplement 2. Effect of multiple DRMs on sequence diversity separated by subtype.

DOI: 10.7554/eLife.10670.006
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from sequential selective sweeps of single DRMs each reducing diversity, or from a single selective

sweep that fixes multiple DRMs. Indeed, we find that for sequences that have between 0 and 4

DRMs, additional DRMs are associated with reduced genetic diversity (Figure 2B, p-value for t-test

between diversity among sequences with 0 versus 1 is 7.2 � 10�4, between 1 and 2 is 1.6 � 10�5,

between 2 and 3 is 1.1� 10�2, between 3 and 4 is 2.5 � 10�3). After 4 DRMs, subsequent DRMs do

not significantly reduce diversity further. The observed pattern of DRMs associated with reduced

diversity is mainly driven by the patients receiving NNRTI or boosted PI-based treatments, as can be

seen when separating the above analysis by drug treatment category (Figure 2—figure supplement

1C,D). Among patients treated with NRTIs alone or with unboosted PIs, this pattern is much less

clear (Figure 2—figure supplement 1A,B). The observed pattern holds across the each of the most

common subtypes separately (Figure 2—figure supplement 2).

Clinical effectiveness of anti-retroviral regimens
We have now shown that in general, each additional DRM is associated with reduced diversity, which

is consistent with expectations of selective sweeps. We want to assess how this effect depends on

the clinical effectiveness of the treatment. For the most common drugs in our dataset, we assess clin-

ical drug treatment effectiveness categorically and quantitatively.

As a categorical approach, we separated regimens based on general clinical HIV-treatment rec-

ommendations where NNRTI-based treatments are preferred to NRTI-based treatments, and treat-

ments based on ritonavir-boosted PIs (PI/r) are preferred to treatments based on unboosted PIs.

These more and less effective groupings are the basis of comparisons in our parametric approach

described below.

To measure effectiveness quantitatively, we conducted a literature search to determine the per-

centage of patients who have remained virologically suppressed after one year of treatment (see

Materials and methods: Clinical effectiveness of antiretroviral treatments, Supplementary files 1–

3) for 21 different treatments with at least 50 sequences per treatment in our D-PCR dataset (see

description of abundant treatment dataset in Materials and methods: Data collection & filtering for

more information.) This quantitative measure was used as the basis for our non-parametric approach

described below.

The two measures (categorical and quantitative) correspond well and clinical treatment effective-

ness ranged widely, from very low effectiveness (5% of patients virologically suppressed after one

year of treatment on AZT monotherapy) to very high effectiveness (100% of patients virologically

suppressed after one year of treatment on 3TC+AZT+LPV/r) (Figure 3A,B).

High treatment effectiveness associated with stronger diversity
reduction
We hypothesize that effective treatments (such as those containing an NNRTI or boosted PI) likely

make adaptation in viral populations limited by the generation of mutations and these populations

should thus experience harder selective sweeps leading to a sharp reduction in diversity accompa-

nying each additional DRM. Less effective treatments on the other hand (such as those containing

only NRTIs or unboosted PIs) likely allow replication of fairly large HIV populations so that adaptation

is not limited by the generation of mutations. They should thus experience soft selective sweeps and

little or no reduction of diversity with each additional DRM. Below we test this hypothesis by assess-

ing the reduction of diversity associated with the presence of a DRM among treatments that vary in

clinical effectiveness.

Before we are able to test this hypothesis, we have to deal with a peculiarity of our data. We

found that even for sequences that carried no resistance mutations, more ambiguous calls were

reported over time. This is likely due to increased awareness of genetic diversity in the HIV commu-

nity, and not because diversity actually increased. We therefore employed a p-thinning routine to

repeatedly subsample the data so that diversity measures would be comparable across years (see

Materials and methods: p-thinning to adjust for the effect of year).

To determine whether the effect of DRMs on within-patient diversity depends on clinical treat-

ment effectiveness, we first fit a generalized linear mixed model (GLMM) using the number of DRMs

and sequence length to predict diversity as measured by the number of ambiguous calls. Because

we found the subsampled number of ambiguous calls to be distributed according to a negative
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Figure 3. Drug resistance mutations are correlated with diversity reduction differently in different types of

treatments. Treatment effectiveness from literature review (percentage of patients with virologic suppression after

~48 weeks) showed positive correspondence with clinical recommendation among RTI regimens (A) and PI+RTI

regimens (B). Diversity reduction accompanying a DRM (DDRM from the GLMM) lower among the more effective

Figure 3 continued on next page
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binomial distribution, we used a negative binomial error distribution (see Materials and Methods:

Quantifying the relationship between clinical effectiveness and diversity reduction). For each treat-

ment, we report the total effect of the number of DRMs on diversity (DDRM) as the sum of the treat-

ment-specific random effect plus the overall fixed effect from the GLMM (DDRM;t þ DDRM;all). These

DDRM coefficients are plotted in Figure 3C,D.

We included only treatments that had at least 15 sequences and a sufficient number of observed

patients with different numbers of DRMs (see description of abundant treatment dataset in Materials

and methods: Data collection & filtering for more information). We also excluded 45 sequences sam-

pled before 1995 which had an extreme influence on the p-thinning routine (see Materials and meth-

ods: p-thinning to adjust for the effect of year for details). The analysis that includes these

sequences leads to qualitatively similar results (see the supplement). We also used only sequences

with at most 4 DRMs. This captures the initial change in diversity due to the fixation of DRMs, and

allows the DDRM measure not to be driven by few patients with many DRMs. The same analysis with

all sequences is repeated in the supplement and yields qualitatively similar results. Lower DDRM val-

ues correspond to a bigger decrease in diversity associated with each DRM - a pattern more consis-

tent with hard selective sweeps.

We find that most of our DDRM estimates are qualitatively consistent with expectations: effective

treatments have lower DDRM values than less effective treatments. Most NNRTI-based treatments are

associated with a reduction of diversity per DRM. In 9 of 11 NNRTI-based treatment regimens, DDRM

is significantly below 0 (Figure 3C). This pattern suggests the presence of hard sweeps, although

there is variation in effect size. Less effective treatments containing only NRTIs were generally associ-

ated with a smaller or no reduction in diversity per DRM. In some cases, such as DDI or AZT

Figure 3 continued

and clinically recommended treatments among RTI treatments (C) and RTI+PI treatments (D). 95% confidence

intervals are plotted by excluding the highest 2.5% and lowest 2.5% of GLMM random effect fits of the 1000

subsampled datasets and treatments are ordered by mean DDRM within treatment categories. Generalized linear

model fits show significantly different slopes for NNRTI treatments versus NRTI treatments (E) and PI/r treatments

versus PI treatments (F). Confidence intervals are plotted by excluding the highest 2.5% and lowest 2.5% of GLM

fits to 1000 subsampled datasets.

DOI: 10.7554/eLife.10670.007

The following figure supplements are available for figure 3:

Figure supplement 1. Drug resistance mutations are correlated with diversity reduction differently in different

types of treatments when all years are included.

DOI: 10.7554/eLife.10670.008

Figure supplement 2. Drug resistance mutations are correlated with diversity reduction differently in different

types of treatments with un-truncated data.

DOI: 10.7554/eLife.10670.009

Table 1. Model fits for the fixed effects from GLMMs fit to subsampled data. See Materials and meth-

ods: Quantifying the relationship between clinical effectiveness and diversity reduction for further

explanations of coefficients. Means of model fits for 1000 independent subsamples are reported for

the three different subsampling and model-fitting regimes. 95% confidence intervals (excluding the

top 2.5% and bottom 2.5% of coefficent fits) are given in parentheses.

aall (Intercept) D (Number of DRMs) g (Length)

1995+, � 4 DRMs -0.78 -0.16 0.0030

(-0.91,-0.65) (-0.17,-0.14) (0.0029,0.0032)

1995+, All DRMs -0.89 -0.097 0.0030

(-1,-0.77) (-0.11,-0.088) (0.0029,0.0032)

1989+, � 4 DRMs -1.20 -0.15 0.0030

(-1.4,-1.1) (-0.17,-0.14) (0.0028,0.0032)

DOI: 10.7554/eLife.10670.010
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monotherapy, there was even an increase of diversity associated with DRMs (a significantly positive

DDRM value, see Figure 3C). This pattern is suggestive of soft sweeps.

We found a slightly positive value of DDRM for the NRTI-based regimen 3TC+ABC+TDF, a treat-

ment which is known to often lead to rapid treatment failure (Gallant et al., 2005; Khanlou et al.,

2005). Among the most negative DDRM values of the NNRTI-based treatments were the treatments

3TC+ABC+EFV and EFV+FTC+TDF, which have long been on the list of recommended treatments

in the USA (Department of Health and Human Services, 2015) (until their recent replacement with

INSTI-based treatments which are not in our dataset).

Among treatments containing PIs, both of the effective boosted-PI treatments had DDRM signifi-

cantly below 0 (Figure 3D). The less effective unboosted PI treatments had DDRM values on average

closer to 0, and two of five unboosted treatments had a DDRM value above 0. As expected, we find

that the LPV/r treatment in our dataset has a much lower DDRM value than the NFV treatments, con-

sistent with the recommendations that LPV/r is preferable to NFV in relation to drug resistance pre-

vention (Walmsley et al., 2002).

When the analysis is done without truncating the number of DRMs (Figure 3—figure supplement

1), results are qualitatively similar, but the values of specific treatments have shifted due to the

effects of sequences with varying numbers of DRMs. When the 45 sequences before 1995 are

included (Figure 3—figure supplement 2), results are also qualitatively similar. The fixed effects

from the three different GLMM fits can be found in Table 1.

To quantify and further test the observation that more clinically effective treatments lead to the

greater diversity reduction per fixed DRM, we use two primary approaches, one parametric and the

other non-parametric.

Parametric approach
We create 1000 datasets with p-thinned nucleotide calls and fit generalized linear models (GLMs)

with negative binomial error distributions to each of the 1000 datasets. For each subsample, we sep-

arately fit the effect of increased numbers of DRMs on diversity for inferior and superior RTI treat-

ments (1, 2, or 3 NRTIs and 2NRTIs+1NNRTI, respectively) and inferior and superior PI-based

treatments (2NRTIs + PI and 2NRTIs + PI boosted with ritonavir).

We first use this model to assess the difference between inferior and superior RTI treatments

(1,2,3 NRTIs and 2NRTIs+1NNRTI). We find that among sequences from patients receiving highly

effective treatments with NNRTIs each fixed DRM is associated with a mean additional 13.6% reduc-

tion in diversity as compared to populations with no DRMs (95% confidence interval, 13.0%–14.3%).

Among sequences from patients receiving less effective treatments with only NRTIs, each fixed DRM

is associated with a mean additional 4.3% reduction in diversity compared to populations with no

DRMs (95% confidence interval, 3.2%–5.3%) (Table 2). The relative effect of DRMs on diversity for

more and less effective treatments can be seen in Figure 3E, where the dark red line is the mean

model fit for effective NNRTI treatments and the light red line is the mean model fit for less effective

NRTI treatments for a fixed sequence length (800 nucleotides).

Table 2. Coefficients from GLMs fit to subsampled data. See Materials and methods: Quantifying the relationship between clinical

effectiveness and diversity reduction for further explanations of coefficient descriptions. Means for 1000 independent subsamples are

reported for the three different subsampling and model-fitting regimes. 95% confidence intervals (excluding the top 2.5% and bottom

2.5% of coefficent fits) are given in parentheses.

aall (Intercept) g (Length) D1;2;3NRTI D2NRTIþNNRTI D2NRTIþPI=r D2NRTIþPI

1995+, � 4 DRMs -0.46 0.0025 -0.068 -0.22 -0.067 -0.48

(-0.58,-0.35) (0.0024,0.0027) (-0.085,-0.050) (-0.23,-0.20) (-0.094,-0.043) (-0.68,-0.30)

1995+, All DRMs -0.62 0.0026 -0.049 -0.13 -0.0035 -0.20

(-0.72,-0.51) (0.0025,0.0028) (-0.061,-0.036) (-0.14,-0.12) (-0.019,0.011) (0.30,-0.12)

1989+, � 4 DRMs -0.91 0.0026 -0.063 -0.22 -0.065 -0.48

(-1.00,-0.78) (0.0024,0.0027) (-0.084,-0.044) (-0.23,-0.20) (-0.098,-0.034) (-0.76,-0.27)

DOI: 10.7554/eLife.10670.011
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To assess the difference in effect of DRMs on diversity between NRTIs and NNRTIs, we per-

formed a matched Wilcoxon sign-rank test comparing the slopes of the model fits to the 1000 sub-

sampled datasets. We found treatments containing NNRTIs had significantly lower slopes than those

treatments containing only NRTIs (p<2.2 � 10�16). In fact, in every one of the 1000 subsampled

datasets, the NNRTI category had a more negative slope than the NRTI category.

Among PI-based treatments, we found that sequences from effective treatments based on

boosted PIs showed a mean additional reduction in diversity of 30.3% with each fixed DRM as com-

pared to populations with no DRMs (95% confidence interval, 19.0%–42.3%). In contrast, sequences

from less effective treatments based on unboosted PIs showed a smaller decrease in diversity of

4.3% (95% confidence interval, 2.7%-6.0%) with each fixed DRM (Table 2). The effect of DRMs on
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Figure 4. Nonparametric test shows negative correlation between treatment effectiveness and DDRM. Negative

relationship between treatment effectiveness (percentage of patients with virologic suppression after ~48 weeks)

and DDRM as fit within the GLMM among all treatments for which we have recorded effectiveness information.

Treatments included are plotted at the mean DDRM from GLMMs fit to 1000 iterations of data subsampling. Points

for each treatment are sized in proportion to the number of sequences from patients given that treatment (see

legend in the lower left), and are colored based on the treatment type (see legend in the upper right). The black

line shows the mean effect of treatment effectiveness on DDRM from linear regressions fits to the 1000 subsampled

datasets and the grey band shows a 95% confidence interval (excluding the top and bottom 2.5% of fits).

DOI: 10.7554/eLife.10670.012

The following figure supplements are available for figure 4:

Figure supplement 1. Nonparametric test shows negative correlation between treatment effectiveness and DDRM

when 45 sequences from before 1995 are included.

DOI: 10.7554/eLife.10670.013

Figure supplement 2. Nonparametric test shows negative correlation between treatment effectiveness and DDRM

when sequences with any number of DRMs are included.

DOI: 10.7554/eLife.10670.014
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diversity among patients treated with boosted PIs is significantly lower than among patients treated

with unboosted PIs (paired Wilcoxon rank-sign test, p<2.2 � 10�16). The relative effect of these

DDRM coefficients can be seen in Figure 3F, where the dark blue line is the mean model fit for effec-

tive PI/r treatments and the light blue line is the mean model fit for less effective unboosted PI treat-

ments, both for a sequence of length 800 nucleotides.

In both treatment classes (RTI-based and PI-based), we find that the fixation of a DRM under

more effective treatments leads to a much stronger reduction of diversity than the fixation of a DRM

under less effective treatments.

Non-parametric approach
As a second, non-parametric approach, we did a test with the ability to compare the effects of all

treatments (RTIs and PIs) directly. In order to do this, we fit a linear regression among the 20 treat-

ments for which we had information about effectiveness to predict the reduction of diversity per

DRM (taken as the random effects fit by treatment in the GLMM above) from treatment effective-

ness. We observe a negative relationship between DDRM and treatment effectiveness (Figure 4). We

find that a 10% increase in treatment effectiveness is associated with 0.17 fewer ambiguous nucleo-

tide calls with each DRM (95% confidence interval across 1000 fits, [-0.15, -0.19]). This means that

patients given treatments with 50% effectiveness have approximately the same amount of diversity

whether they have 0 or 3 DRMs, but patients on treatments with 80% effectiveness have 54% fewer

if they have 3 DRMs as compared to 0. This is a substantial decrease in diversity.

Within this analysis, we find that among regimens with >30% effectiveness, those with the highest

DDRM values were all unboosted PI treatments (light blue points, Figure 4). Although the effective-

ness value for these treatments is high by our metric, it has been observed that very high compliance

rates are necessary for virologic suppression through unboosted PIs relative to NNRTIs and boosted

PIs (Shuter, 2008). This is likely because the half-life of most unboosted PIs is sufficiently short that

missed doses create conditions in which the virus is not suppressed. It is therefore possible that

resistance is primarily found in patients with poor adherence, and in these patients, resistance could

arise deterministically via soft sweeps. In addition, we may underestimate the number of DRMs for

PIs, as some DRMs are likely to be outside of the sequenced regions (Juno et al., 2012; Rabi et al.,

2013). These undetected DRMs would serve to weaken the signal for PI treatments compared to RTI

treatments.

We find a similar negative relationship between DDRM and treatment effectiveness when including

45 sequences before 1995 (Figure 4—figure supplement 1) and including sequences with more

than 4 DRMs (Figure 4—figure supplement 2).

Discussion
Treatment for HIV-1 represents an enormous success of modern medicine. Whereas early antiretrovi-

ral treatments were associated with fast evolution of drug resistance and high rates of treatment fail-

ure, there are currently many combinations of drugs that are successful at keeping HIV-1 at low or

undetectable levels for many years, preventing the evolution of resistance and the progression to

AIDS. Indeed, the evolution of drug resistance has become fairly uncommon (Lee et al., 2014). In

this paper, we have shown that this shift from fast to slow evolution of drug resistance has been

accompanied by a corresponding shift from soft selective sweeps (in which the same DRM occurs on

multiple genetic backgrounds) to hard selective sweeps (in which a DRM occurs only a single time).

This suggests that modern treatments have brought HIV into a regime where the viral population

must wait until the correct mutation or combination of mutations is generated. This also means that

for any given patient the acquisition of drug resistance has become at least partly an unlucky occur-

rence, in sharp contrast to the early days of HIV treatment in which all patients predictably failed

treatment. Harder sweeps within well-treated patients are also consistent with the overall decrease

in the rate of resistance.

We want to study how the evolutionary dynamics of selective sweeps have changed in the evolu-

tion of drug resistance over the past two and a half decades. Because it would be unethical to give

subpar treatment to HIV infected patients, we can only investigate this question using historical

data. The only type of data that is available for a wide range of treatments and time points is Sanger

sequencing data, due to its importance in HIV research and diagnostic testing. Although we often
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have only one sequence per patient, it is important to note that there is still information present in

these sequences about genetic diversity and selective sweeps. First, we used ambiguous nucleotide

calls as a proxy for genetic diversity. Although we are not the first study to do so (Kouyos et al.,

2011; Li et al., 2012; Poon et al., 2007; Zheng et al., 2013), as far as we are aware, we are the first

to use clonal sequences to validate its accuracy as a measure. Second, we can use the number of

fixed drug resistance mutations to determine how much adaptation to treatment has taken place.

We used a fairly conservative list of DRMs that are very unlikely to fix in the absence of the drug

(Mesplède et al., 2013; Gonzalez et al., 2004; Cong et al., 2007). Therefore, DRMs must have

fixed as a result of strong positive selective pressure imposed by the drug, and are indicative of

recent selective sweeps. We can then look at the correlation between the number of drug resistance

mutations and genetic diversity and see if that relationship has changed across treatments and time.

Because this approach relies only on widely-available Sanger sequences, we were able to compare

29 different treatments, from AZT monotherapy to treatments based on boosted PIs, sampled

across more than two decades (1989–2013).

Examining the relationship between DRMs and diversity recapitulates expected results: we first

find that across the entire dataset, sequences with a single DRM have lower genetic diversity than

sequences without any DRMs. This result confirms a finding from a previous much smaller study look-

ing at patients on NNRTI based treatments (Pennings et al., 2014). In addition, we find that having

more DRMs is associated with a greater reduction in diversity. This pattern could be generated by

successive selective sweeps, in which DRMs are fixed one by one and each selective sweep lowers

the diversity further. Alternatively, multiple DRMs may have fixed simultaneously in a single selective

sweep.

The key result of this paper (illustrated in Figure 1) is that drug resistance mutations are associ-

ated with reduced diversity in patients on effective treatments, whereas this pattern is not seen

among patients on older treatments with low clinical effectiveness. For example, among patients

given treatments with 50% effectiveness, sequences with 3 DRMs are predicted to have approxi-

mately the same number of ambiguous calls as those with 0 DRMs. In contrast, among those

patients given treatments with 80% effectiveness, sequences with 3 DRMs are predicted to have

over 50% fewer ambiguous calls than those with 0 DRMs, a substantial decrease in genetic diversity.

Thus, the higher the treatment effectiveness, the more DRMs are associated with low genetic diver-

sity. This is consistent with drug resistance evolution dominated by soft selective sweeps when fail-

ure rates were high, transitioning over time to evolution dominated by hard selective sweeps as

treatments improved and failure rates became much lower. Clinically effective treatments are thus

characterized by a more frequent occurrence of hard selective sweeps.

It is of interest to compare our new results to a previous study by one of us (Pennings et al.,

2014). Sequences in that study came from patients who were mostly treated with EFV + IDV, a com-

bination that never became common and is not represented here, but which has an estimated effec-

tiveness of 75% (Staszewski et al., 1999). The study examined selective sweeps in those patients by

looking at the fixation of a particular DRM, at amino acid 103 in RT, which changes from Lysine (K,

wild type) to Asparagine (N, resistant). K103N is special because it can be caused by two different

mutations, as the wild type codon AAA can mutate to AAT or AAC, both of which encode Aspara-

gine. When focusing on patients whose virus acquired the K103N mutation, the study found that in

some patients, both the AAT and AAC codons were found (which is clear evidence that a soft sweep

has happened, see Figure 1 in the original paper), whereas in other cases only one of the two was

there (which suggests that a hard sweep may have happened, see Figure 2 in the original paper).

Because of the detailed data available for these patients, it was shown that both soft and hard

sweeps were occurring almost equally often. Placing the 75% effectiveness of EFV+IDV in the con-

text of our above results, this is also what we would have predicted. Now we know that this result

(hard and soft selective sweeps occur) is not necessarily something that will be generally true for

HIV, but rather it is a function of the effectiveness of the treatment. Had Pennings et al. had data

from a much worse or much better treatment, they might have concluded that hard sweeps or soft

sweeps were the rule in HIV.

The transition to highly effective treatments and hard selective sweeps was not abrupt. As visible

in Figure 3, treatment effectiveness and DDRM do not cluster into distinct groups based solely on the

number and type of component drugs. The incremental changes in effectiveness and the evolution-

ary dynamics are worth noting because a simplified narrative sometimes suggests that solving the
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drug resistance problem in HIV was achieved simply by using three drugs instead of two

(Stearns and Koella, 2007). According to this narrative, HIV can always easily evolve resistance

when treatment is with one or two drugs, but it is virtually impossible for the virus to become resis-

tant to three drugs. In truth, only some specific combinations seem to lead to more favorable evolu-

tionary dynamics for patients (as seen in Figure 3A,B).

Several potential mechanisms could drive the observation that more effective drug combinations

drive hard sweeps in within-patient populations of HIV-1. Better drugs may allow for a faster collapse

of population size, decreasing the probability that one or more ‘escape’ DRMs occurs

([Alexander et al., 2014], although see [Moreno-Gamez et al., 2015]). Alternatively, suppressed

HIV populations may continue replicating at small numbers, and better drugs may cause this replicat-

ing population to be smaller than among patients given inferior drugs. Similarly, a treated patient

may retain a reservoir of HIV unreachable by the treatment, and better drugs may make this reser-

voir smaller. If newer drugs have fewer side effects and therefore improve adherence among

patients, this too could result in a smaller within-patient population size among patients treated with

better drugs, and contribute to the decreased production of resistant genotypes. The effect could

also be driven by standing genetic variation, if worse drugs would allow pre-existing mutations to

establish, whereas better drugs make this less likely, for example, if a pre-existing mutation could

only establish if it occurred in a small and specific compartment (Moreno-Gamez et al., 2015).

Finally, more effective drug combinations may simply require more mutations on the same back-

ground (i.e., a higher genetic barrier to resistance [Tang and Shafer, 2012]), so the effective muta-

tion rate to a fully resistant genotype is lower. Our data do not give us sufficient resolution to

distinguish between these hypotheses, and the true dynamics may be a combination of all of these

factors. However, all these potential mechanisms work to reduce the rate of production of resistant

genotypes and the principle is more general: if the probability of acquiring resistance is low, rare

resistance should be generated by hard selective sweeps.

It is notable that we can detect differences in relative changes in diversity, given the constraints

of our data. Our data are cross-sectional, from different patients treated with different regimens

from many studies over more than two decades. We have sequences from only one or two genes,

and so it is possible that there are DRMs or other selected mutations driving population dynamics

outside of the sequenced regions (particularly among patients treated with protease inhibitors). The

DRMs that are observed may be associated with variable selection coefficients and may therefore

differ in their rate of expansion in the population and thus the associated signature of the selective

sweep. Additionally, DRMs occurring later in the course of an infection may have smaller beneficial

effects as compared to early DRMs. Different patients may have varying profiles of diversity at the

time of diagnosis, which could also effect whether sweeps will be hard or soft. All of these items

could serve to obscure the relationship between DRM fixation and changes in diversity, but our

results appear robust despite the substantial noise.

Although our results appear robust, certain systematic biases could also affect our results. First,

we observe an increase in the number of ambiguous calls through our study period. This is likely due

to a greater awareness of within-patient diversity and improvements in sequencing technology. Hav-

ing more ambiguous reads called in later years gives us more power to detect large decreases in

diversity as compared to earlier years. As effective treatments come from later in the study period,

this could lead to more observed hard sweeps among effective treatments. However, we believe

that our conclusion is robust to this systematic bias as we used a conservative p-thinning procedure

that explictly equalized the power to detect hard and soft sweeps across years.

Time can also factor into our analysis in other ways that are harder to control. Improved disease

monitoring may mean that modern patients have a shorter time between the appearance of a DRM

and its sequencing and discovery. This could result in hard selective sweep signatures that are more

pronounced in later years because they are detected before they have had time to erode. However,

Pennings et al. estimate that sweep signatures require a substantial amount of time to erode (on the

order of months) (Pennings et al., 2014), so we do not believe that this effect alone can explain the

pattern. Alternatively, if DRMs acquired in response to earlier treatments have lower selection coeffi-

cients than treatments given more recently, early selective sweeps would take longer. Recombina-

tion could move DRMs to multiple genetic backgrounds before the mutation fixes in the population.

This would also also result in muted changes in diversity among early treatments that could not be
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readily distinguished from the signatures of soft sweeps. However, there is no evidence that selec-

tion coefficients of DRMs among early treatments are smaller.

Finally, because our primary measure to understand the effect of the fixation of a drug resistance

mutation is an internal comparison with other patients on the same treatment, we do not believe

that our results could be generated solely by data heterogeneity. Further, that our results are robust

to different measurements and filtering approaches suggests DRMs do indeed sweep differently in

HIV populations subject to more or less effective treatments.

Drug resistance evolution is no longer the threat to HIV patients it once was and treatments exist

that almost never lead to resistance. However, our observation that effective drug combinations

lead to hard selective sweeps could be useful for improving treatments for other pathogens. Even

among relatively small samples, if patients who acquire drug resistance mutations do not have a sig-

nificant decrease in diversity relative to those who did not acquire drug resistance mutations, this

might suggest that the fixing mutations are occurring via soft selective sweeps, and the treatment

brings patients into a dangerous regime for drug resistance. Alternatively, if patients acquire drug

resistance mutations, but those patients also have very little diversity, it may be that this is a safer

treatment and that the emergence and fixation of drug resistance mutations was a relatively uncom-

mon occurrence.

Looking at changes in diversity following a sweep in order to assess the mode of adaptation

could be particularly well-suited to looking at evolution of cancer. While single cell sequences iso-

lated from tumors have yielded promising insights about evolutionary dynamics, the process is inva-

sive and relatively difficult. Sequencing tumor-free cancerous cells circulating in the blood provides

less information, but can be done serially and provides a good measure of tumor heterogeneity.

Applying a method such as ours to monitor changes in cell-free DNA diversity over time may allow

us to determine if certain treatments reproducibly lead to soft sweeps and thus are very likely to fail

in general.

Comparing treatment effectiveness with the occurrence of soft and hard selective sweeps may

also provide supplementary information about additional risk factors among patients. In the case of

HIV, we find that high effectiveness is associated with hard selective sweeps, which suggests that the

the virus has a hard time evolving drug resistance, and the patients in whom resistance evolved are

merely the unlucky ones. However, there may be cases where failure is rare, but associated with soft

selective sweeps. Such a situation thus reflects a discordance between what happens within patients

and what we see at a population level. This, in turn, may be indicative of a behavioral, genetic or

virologic difference among the groups of patients and efforts should be made to find out how failing

patients are different from non-failing patients.

In conclusion, we find that the study of diversity in viral populations with resistance can show dif-

ferences in evolutionary pathways of adapting pathogenic populations and provides a concrete

example of how population genetics theory can make substantive predictions about medically rele-

vant problems. Next generation and single molecule sequencing have the capacity to bring much

more precision in determining the dynamics of within-patient populations. However, we also urge

researchers and clinicians to report more information concerning the diversity of pathogen popula-

tions, even in the form of minor allele frequency cut offs for calling ambiguous calls or raw sequenc-

ing data, as this might allow new insight from data that might be otherwise overlooked.

Materials and methods

Data collection and filtering
Direct PCR (D-PCR) dataset
We collected one consensus sequence of the HIV-1 reverse transcriptase gene per patient from

6717 patients across 120 different studies from the Stanford HIV Drug Resistance Database

(Rhee et al., 2003). These patients represent all individuals in the database with HIV populations

which were treated with exactly one drug regimen and that had an associated reverse transcriptase

sequence. Protease sequences were also recorded, when available (5163 sequences).

Nearly all patients received treatment that included one or more nucleoside reverse transcriptase

inhibitors (NRTI). In many patients, the NRTIs were paired with either a non-nucleoside reverse tran-

scriptase inhibitor (NNRTI) or a protease inhibitor (PI), which was in some patients boosted with a
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low dose of ritonavir, a second PI, in order to boost drug levels and improve effectiveness. Among

patients receiving PIs, only patients with both protease and reverse transcriptase sequences were

included. All sequence information in the HIV database is recorded as aligned consensus nucleotide

(1 sequence/patient) - 6717 sequences

Patients given protease inhibitor
(PI) regimens - 1180 sequences

Patients given reverse transcriptase inhibitor (RTI)
treatments without PIs - 5537 sequences

3TC+AZT+NFV

3TC+AZT+IDV

3TC+D4T+NFV

3TC+AZT+LPV/r

D4T+DDI+NFV

3TC+D4T+IDV

3TC+AZT+SQV

3TC+ABC+LPV/r

AZT+DDI+NFV

180

111

91

54

54

45

27

25

18

Abundant PI regimens - 605 seqs Abundant RTI regimens - 5243 sequences

D4T+DDI

3TC+ABC+EFV

3TC+D4T

D4T+DDI+EFV

3TC+NVP+TDF

AZT+DDC

3TC+ABC+TDF

D4T+DDI+NVP

DDI

FTC+NVP+TDF

121

105

71

67

59

48

44

43

41

41

3TC+D4T+NVP

3TC+D4T+EFV

3TC+AZT+NVP

3TC+AZT+EFV

AZT+DDI

AZT

3TC+EFV+TDF

3TC+AZT

EFV+FTC+TDF

3TC+ABC+AZT

1247

1034

535

493

340

251

189

188

177

149

D-PCR dataset

Abundant treatment dataset

Figure 5. Summary of data subgroups and filtering. Summary of all sequences from patients receiving first line therapy used throughout the analysis.

The dataset is broken down into patients receiving protease inhibitor (PI) therapy with reverse transcriptase inhibitors (RTIs) and patients receiving only

RTIs. The abundant treatment dataset shows treatments given to many patients within our dataset. For full filtering parameters for the abundant

dataset, see Materials and methods: Data collection & filtering. Counts of sequences for each treatment are given.

DOI: 10.7554/eLife.10670.015

The following figure supplements are available for figure 5:

Figure supplement 1. Distribution of number of DRMs by treatment.

DOI: 10.7554/eLife.10670.016

Figure supplement 2. Data is heterogenous with respect to year in terms of the number of drugs per treatment, the diversity of treatments and the

number of ambiguous reads per sequence.

DOI: 10.7554/eLife.10670.017

Figure supplement 3. p-thinning controls for systematic changes in the called number of ambiguous reads over time A.

DOI: 10.7554/eLife.10670.018

Figure supplement 4. The number of ambiguous reads is approximately distributed according to a negative binomial when p-thinned relative to 1989.

DOI: 10.7554/eLife.10670.019

Figure supplement 5. The number of ambiguous reads is approximately distributed according to a negative binomial when p-thinned relative to 1995.

DOI: 10.7554/eLife.10670.020
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sequences. The data are taken across many studies, each with their own procedures and cutoffs for

calling positions ambiguous. No electropherogram data were available and the ambiguous calls

reported were taken as submitted to the database. The sequences from these patients were labeled

the direct PCR (D-PCR) dataset.

Abundant treatment dataset
For each sequence we counted the number of relevant drug resistance mutations (DRMs, see

below). For a portion of the analysis, we rely on examining many HIV-1 sequences from patients

being treated with the same drug regimen. Because we measure the association between the num-

ber of DRMs and genetic diversity by examining a slope (DDRM), our signal could be heavily influ-

enced by single patients if the distribution of patients with a certain number of DRMs within a given

treatment is narrow (e.g., a treatment has almost only patients with 0 DRMs). To ensure that that our

observed signal is not driven by these cases, we exclude treatments if among the sequences from a

treatment we do not have at least three sequences within three of the DRM categories (0, 1, 2, 3 or

4 DRMs). This restriction yielded a dataset with 5848 sequences from 29 treatments and was termed

the abundant treatment dataset. The breakdown of the D-PCR dataset and the abundant treatment

dataset by the type of treatment a patient got (PI-based treatment and RTI-based treatment) is

listed in Figure 5. Distributions of number of DRMs per sequence are shown in the supplement for

all treatments (Figure 5—figure supplement 1).

Clonal dataset
We supplemented our analysis with an additional dataset of patients from which multiple HIV-1

strains were sampled. This dataset comprised 10,235 sequences, but from a relatively small number

of patients (n = 174) with much less variety in their given treatments (the mean number of sequences

per patient was 58 with an interquartile range of 16 to 64). These sequences were derived from tak-

ing a within-patient population of HIV-1 and attempting to isolate, clone and sequence single strains.

We used these reads (termed the ‘‘clonal dataset’’) to validate ambiguous calls as a within-patient

diversity measure.

Sequence processing
Sequences from reverse transcriptase and protease were analyzed to determine the number of

ambiguous calls and the number of drug resistance mutations per sequence.

We called a nucleotide non-ambiguous if it read A, T, C or G, and grouped lowercase (and less

confident) a, t, c and g calls with their capital counterparts. Nucleotides called as W, S, M, K, R, Y

(ambiguity between two nucleotides) and B, D, H, V (ambiguity between three nucleotides) and their

lowercase counterparts were included as ambiguous calls. Ns and Xs (indicating no information

about the identity of the position) were excluded.

We also examined ambiguities on the amino acid level by using nucleotide level information. If,

for example, a nucleotide triplet was recorded as AAM, where M indicates an adenine/cytosine

ambiguity, the amino acid at that position was ambiguous between AAA (Lysine, K) and AAC (Aspar-

agine, N). The amino acid for that position would then be recorded K/N. All ambiguous calls at the

nucleotide level were translated into ambiguous calls at the amino acid level, including if the ambig-

uous call reflected synonymous encodings (i.e., AAA and AAG are both Lysine, and the amino acid

would be encoded K/K). The number of ambiguous amino acids was recorded for each sequence.

We determine whether mutations are associated with drug resistance based on the 2009 update

of DRMs for the surveillance of transmitted HIV-1 drug resistance adopted by the World Health

Organization (Bennett et al., 2009), which lists drug resistance mutations that are indicative of

selective pressure. For each patient, we determine the number of mutations that confer drug resis-

tance at the amino acid level to any of the classes of drugs the patient is receiving (i.e., NRTI, NNRTI,

PI). These drug resistance mutations are counted as fixed if they are either non-ambiguously the

resistant type, or they are an ambiguous call with all possible states as the resistant type (i.e., N/N in

the example above).

5163 patients in the D-PCR dataset had a sequenced protease gene available in the database

(77% of patients). Not all patients had entire reverse transcriptase and protease genes sequenced,
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but only 1% of sequences had fewer than 500 basepairs sequenced of 1680 possible in reverse tran-

scriptase and only 1% of available protease sequences had fewer than 210 of 300 bases in protease.

Validation of ambiguous calls as genetic diversity measure
In order to validate the appropriateness of ambiguous calls as a proxy for genetic diversity, we com-

puted diversity using an ambiguous call measure and compared it to a diversity measure that did

not use the ambiguous call data. For each site, we computed genetic diversity using the ambiguous

calls as the proportion of all D-PCR HIV-1 sequences that had an ambiguous basepair call at that

site. This approximates the percentage of patients with within-patient diversity by site.

In order to test if this measure of diversity based on ambiguous calls correlates well with other

measures of diversity that don’t depend on ambiguous calls, we used the clonal dataset to compute

the average sitewise p. For a site with nucleotides A, T , C and G at within-patient frequencies pA,

pT , pC and pG, p is computed as

p¼ 1�
X

i2fA;T;C;Gg

p2i

p is equal to zero when every sequence has the same basepair call (i.e., all As) and is maximized

when multiple categories are at intermediate frequencies (an even split between A, T, C and G).

Within-patient diversity was measured by first computing p at each site separately within each

patient and then averaging over all patients. The p calculation at a site for a particular patient was

only included if the patient had at least two sequences calling non-N identity at that site. We com-

puted diversity in the same way at the amino acid level to validate that our signals persisted when

looking at codons.

Clinical effectiveness of antiretroviral treatments
We expect that clinical effectiveness of an HIV treatment affects the probability of the virus undergo-

ing a soft or hard selective sweep. All HIV treatment regimens that occurred at least 50 times in the

D-PCR dataset were evaluated for treatment effectiveness based on a literature review. As a mea-

sure for treatment effectiveness, we recorded the proportion of patients whose treatment was still

successful after a year of treatment, as indicated by a viral load of � 50 copies of HIV-1 RNA/mL or

less after 48 or 52 weeks in an on-treatment analysis. Our literature review was mostly based on the

papers reviewed in Lee et al (Lee et al., 2014). Because this review did not include review informa-

tion for several older treatment regimens, we supplemented our analysis with additional studies. A

full description of how clinical treatment effectiveness was calculated by study can be found in the

supplement (Supplementary files 1 and 2: Determining treatment effectiveness). A second

researcher randomly chose 5 studies and independently followed the protocol to determine treat-

ment effectiveness for these studies, providing confirmation of our method. Because we believe the

thus collected information may be useful to other researchers, we provide our estimates in the sup-

plement (Supplementary file 3).

p-thinning to adjust for the effect of year
Because the drug regimens systematically changed over time (Figure 5—figure supplement 2A), it

is essential to ensure that our estimates of diversity are not confounded by the changes in sequenc-

ing practices over the same time. While all samples were Sanger sequenced, we do find that the

number of recorded ambiguous calls increased over time (Figure 5—figure supplement 2C), possi-

bly because the cut-off of calling a read as ambiguous became lower. This effect, taken on aggre-

gate across all sequences was not significant (p=0.09, linear regression with year predicting the

number of ambiguous calls). However, when examining only sequences with 0 DRMs, a strong posi-

tive correlation emerges, with each year associated with 0.56 more ambiguous calls per sequence

(p=4.9 � 10�8). That the difference in effect can be seen in the zero DRM class but not among

sequences with any number of DRMs underscores the strong interaction between low diversity and

multiple DRMs among modern treatments.

Because the probability of calling a nucleotide as ambiguous has increased over time, we have

potentially greater power to detect changes in the number of ambiguous reads with increasing num-

ber of DRMs. To account for this change in power, we used a p-thinning procedure (Grandell, 1997)
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to control for the effect of year on the number of ambiguous calls. This allowed us to attribute differ-

ences in the relationship between the number of DRMs and diversity to treatment and not to

increased probability of calling reads as ambiguous in later years.

We first measured the effect of year on diversity by fitting a linear model to the number of ambig-

uous calls in each year among all sequences with zero observed DRMs. By limiting our analysis to

only sequences without DRMs, we remove the hypothesized change in diversity expected following

a sweep. We observed the following relationship between year and the number of ambiguous calls:

ðNumber of ambiguous readsÞ ¼ f ðYearÞ ¼�505:92þ 0:26 �Year (1)

According to this relationship, we computed probabilities of calling ambiguous reads in different

years relative to the first year sampled (here, 1989). We subsampled our data using these probabili-

ties so that late and early years had comparable numbers of ambiguous calls. For example, in 2000,

nearly twice as many ambiguous calls were reported as compared to 1989. Therefore, for each

ambiguous call observed in a sequence from 2000, we include it in our sample with probability ~1/2.

Intuitively, this translates observations from later years into units of ambiguous calls that are compa-

rable to those observed in 1989. The subsample effect for year i with respect to 1989 (p1989,i) is cal-

culated as P1989;i ¼ f ð1989Þ=f ðiÞ (see Equation 1). The fit of Equation 1 to the year means and the

thinning effect Pi are shown in Figure 5—figure supplement 3A in black.

Because very few ambiguous calls were made in 1989, p-thinning all read counts to be compara-

ble to sequences from 1989 lowers the resolution of our data. We therefore also performed subsam-

pling using only data after and including 1995, which retained more ambiguous calls. This particular

cutoff was chosen for two reasons. First, ambiguous calls were not reliably recorded until several

landmark papers studying within-patient diversity were published in 1993 (Larder et al., 1993;

Piatak et al., 1993). Second, before 1995, we have <20 sequences/year, so we have much lower res-

olution to determine the rates of ambiguous read calling. This excluded only 45 sequences, and

changed the linear model fit only slightly (see Equation 2 and Figure 5—figure supplement 3A).

ðNumber of ambiguous readsÞ ¼ f1995ðYearÞ ¼�465:96þ 0:24 �Year (2)

Using data only after and including 1995, the subsample effect for year i (P1995;i) is calculated as

P1995;i ¼ f1995ð1995Þ=f1995ðiÞ. Although the linear fits are similar, the effect of the subsampling is less

severe (see Figure 5—figure supplement 3B). This is because later years are rescaled to be compa-

rable to 1995 observations as opposed to 1989 observations. Observations from 1995 have a

greater number of ambiguous calls.

In including each ambiguous call with probability relative to the subsample effect, for each

sequence j sampled in year i, the number of ambiguous calls for sequence j is distributed as Poisson(

(Number of ambiguous calls on sequence j) �Pi ). Note, samples taken from the reference year (i.e.,

1989 or 1995) were also re-drawn according to a Poisson distribution with l = 1. This process is

known as p-thinning (Grandell, 1997), and is similar to standard bootstrapping and m out of n

resampling (see [Politis et al., 1999]). These subsampled counts for the number of ambiguous calls

are used throughout the analysis below.

Quantifying the relationship between clinical effectiveness and
diversity reduction
We estimate the relationship between the number of DRMs and genetic diversity by fitting a gener-

alized linear mixed model (GLMM) with a negative binomial error distribution for our 29 abundant

treatments. We found that the subsampled data visually fit a negative binomial distribution much

more closely than a Poisson distribution, which is often used for count data (See Figure 5—figure

supplement 4 and Figure 5—figure supplement 5). In this model, length, the number of DRMs and

an intercept term are fit as fixed effects, and the number of DRMs by treatment is fit as a random

effect. This allows us to assess the relationship between diversity and the number of ambiguous

reads separately for each treatment. The models were fit using the glmmADMB package in R

(Fournier et al., 2012).
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Subsampled number of ambiguous reads ~ DDRM;allðnumDRMÞþaall þgðSequence LengthÞ
þ ðat þDDRM;tðnumDRMÞjRegimenÞ

(3)

This model was fit to 1000 datasets created by p-thinning the number of ambiguous calls. The

overall effect of a DRM on diversity was fit by the DDRM;all term, but the effect of a DRM on diversity

by treatment t is fit by the random effect term, Dt . The full effect of a DRM on diversity for a given

treatment was called DDRM and was computed by combining the treatment-specific random effect

and the overall fixed effect of the model (DDRM ¼ DDRM;t þ DDRM;all). Confidence intervals were gener-

ated by excluding the highest and lowest 2.5% of estimates of DDRM among the subsamples.

We performed the above procedure three times: our main analysis used the p1995;i procedure for

p-thinning sequences from year i and included sequences with 4 or fewer DRMs. We performed this

same analysis using p1995;i-thinning and including all numbers of DRMs and using p1989;i-thinning and

including only sequences with 4 or fewer DRMs.

To quantify the effect of treatment effectiveness on DDRM, we used both a parametric and a non-

parametric approach.

Parametric approach
To compare how the effect of DRMs on genetic diversity varied between two groups of treatments,

we fit generalized linear models (GLMs) with a negative binomial error distribution in R (R Core

Team, 2013) using the package pcsl (Jackman, 2015) including all sequences belonging to the 29

treatments that passed our threshold criteria (see above).

These models were parametrized to fit separate slopes for the four different types of treatments

(1, 2 or 3 NRTIs, 2NRTIs + NNRTI, 2NRTIs + PI, 2NRTIs + PI/r). To do this, we used an indicator vari-

able for membership in each of the four groups and fit the following model:

Subsampled number

of ambiguous reads ~ aþgðSequence LengthÞ
þ numDRM � ½D1;2;3NRTI ð1l1;2;3NRTIÞþD2NRTIþNNRTI ð1l2NRTIþNNRTIÞ
þ D2NRTIþPIð1l2NRTIþPIÞþD2NRTIþPI=rð1l2NRTIþPI=rÞ�

(4)

The four D terms measure the change in diversity associated with the acquisition of an additional

DRM separately among the four treatment types. This model was refit 1000 times to different data-

sets generated through p-thinning. We compared the effect of a DRM on diversity between more

and less effective treatments by performing Wilcoxon rank-sign tests between D coefficient fits to

the 1000 subsamples (D1;2;3NRTI versus D2NRTIþNNRTI and D2NRTIþPI versus D2NRTIþPI=r ).

Non-parametric approach
Apart from discriminating between two treatment categories, we also tested the association

between our continuous measure of treatment effectiveness and the change in diversity associated

with a DRM on a given treatment (DDRM) as a non-parametric approach. We then fit a linear regres-

sion between treatment effectiveness and the corresponding DDRM from the GLMM values to quan-

tify the effect of treatment effectiveness on the diversity reduction associated with drug resistance

mutations. For this analysis, we excluded the treatment 3TC+D4T+LPV/r in our GLMM, because,

although we know its effectiveness information, it did not pass the inclusion criteria of having

enough sequences with different numbers of DRMs (see description of the abundant treatement

dataset). To measure the overall relationship, we fit a linear regression predicting DDRM for each

treatment across 1000 subsampled runs using corresponding treatment effectiveness. We plot the

median of our regressions and our confidence interval is plotted using the central 95% of

regressions.
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