Abstract

Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy related processes is unknown. Here we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor in order to counteract host defenses.

Article and author information

Author details

  1. Yasin F Dagdas

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Khaoula Belhaj

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Abbas Maqbool

    Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Angela Chaparro-Garcia

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Pooja Pandey

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Benjamin Petre

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Nadra Tabassum

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Neftaly Cruz-Mireles

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Richard K Hughes

    Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Jan Sklenar

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Joe Win

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Frank Menke

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Kim Findlay

    Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Mark J Banfield

    Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Sophien Kamoun

    The Sainsbury Laboratory, Norwich, United Kingdom
    For correspondence
    sophien.kamoun@tsl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  16. Tolga O Bozkurt

    The Sainsbury Laboratory, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Dagdas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,854
    views
  • 2,317
    downloads
  • 182
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasin F Dagdas
  2. Khaoula Belhaj
  3. Abbas Maqbool
  4. Angela Chaparro-Garcia
  5. Pooja Pandey
  6. Benjamin Petre
  7. Nadra Tabassum
  8. Neftaly Cruz-Mireles
  9. Richard K Hughes
  10. Jan Sklenar
  11. Joe Win
  12. Frank Menke
  13. Kim Findlay
  14. Mark J Banfield
  15. Sophien Kamoun
  16. Tolga O Bozkurt
(2016)
An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor
eLife 5:e10856.
https://doi.org/10.7554/eLife.10856

Share this article

https://doi.org/10.7554/eLife.10856

Further reading

    1. Microbiology and Infectious Disease
    2. Plant Biology
    Paul de Figueiredo, Marty Dickman
    Insight

    Pathogens target proteins involved in autophagy to inhibit immune responses in plants.

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.