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Abstract Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary

forces that cause such collective responses to evolve are poorly understood. Here, we develop

analytical methods and evolutionary simulations based on experimental data from schooling fish.

We use these methods to investigate how populations evolve within unpredictable, time-varying

resource environments. We show that populations evolve toward a distinctive regime in behavioral

phenotype space, where small responses of individuals to local environmental cues cause

spontaneous changes in the collective state of groups. These changes resemble phase transitions in

physical systems. Through these transitions, individuals evolve the emergent capacity to sense and

respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than

sensing gradients directly), and to allocate themselves among distinct, distant resource patches.

Our results yield new insight into how natural selection, acting on selfish individuals, results in the

highly effective collective responses evident in nature.

DOI: 10.7554/eLife.10955.001

Introduction
In many highly coordinated animal groups, such as fish schools and bird flocks, the ability of individu-

als to locate resources and avoid predators depends on the collective behavior of the group. For

example, when fish schools are attacked by predators, ’flash expansion’ (Pitcher et al., 1993) and

other coordinated collective motions, made possible above a certain group size, reduce individual

risk (Handegard et al., 2012). Similarly, fish can track dynamic resource patches far more effectively

when they are in a group (Berdahl et al., 2013). When an individual responds to a change in the

environment (e.g., predator, resource cue), this response propagates swiftly through the group

(Rosenthal et al., 2015), altering the group’s collective motion. How are such rapid, coordinated

responses possible? These responses may occur, in part, because the nature of social interactions

makes animal groups highly sensitive to small changes in the behavior of individual group members;

theoretical (Couzin et al., 2002; D’Orsogna et al., 2006; Kolpas et al., 2007) and empirical

(Tunstrøm et al., 2013; Buhl et al., 2006) studies of collective motion have revealed that minor

changes in individual behavior, such as speed (Tunstrøm et al., 2013), can cause sudden transitions

in group state, reminiscent of similarly sudden phase transitions between collective states in physical

systems (such as the solid-liquid-gas transitions as a function of increasing temperature). It has been
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proposed that individuals may trigger such changes in collective state by responding to the environ-

ment, thereby initiating a coordinated response at the group level (e.g., Couzin et al. (2002);

Kolpas et al. (2007); Couzin and Krause, 2003). This mechanism requires that the behavioral rules

of individual animals within a population have evolved in a way that allows groups to transition adap-

tively among distinct collective states. The evolutionary processes that could lead to this population-

level property, however, remain poorly understood.

The feedback between the behavioral phenotypes of individuals, the collective behaviors that

these phenotypes produce, and individual-level fitness consequences has made it challenging to

study how complex collective behaviors evolve (Torney et al., 2011). Many species, including fish

and birds, form groups in which members have low genetic relatedness, which implies that kin selec-

tion alone cannot explain the evolution of collective behavior. Moreover, while natural selection acts

on the behavioral phenotypes of selfish individuals, collective behaviors are group-level, or perhaps

even population-level, properties rather than heritable individual phenotypes. To understand how

collective behaviors evolve, then, one must first understand the mapping between individual pheno-

types and collective behavior, and between collective behavior and individual fitness.

Here, we take advantage of detailed studies of the social interaction rules and environmental

response behaviors of schooling fish (Berdahl et al., 2013; Katz et al., 2011) to develop a biologi-

cally-motivated evolutionary model of collective responses to the environment. Using analytical

methods and evolutionary simulations, we study how individual behavioral rules produce collective

behaviors, and how collective behaviors, in turn, govern the fitness and evolution of selfish individu-

als. To relate individual and collective behaviors to fitness, we consider a fundamental task faced by

fish and other motile organisms: finding and exploiting dynamic resources (Stephens et al., 2007).

In our model, individuals respond to the locations of near neighbors and also to local measurements

of resource quality. Each individual achieves a fitness determined by the resource level it experiences

over its lifetime. We use this framework to explore the evolution of complex collective responses to

the environment, and how such responses are related to transitions in collective state.

eLife digest In nature, we see many examples of highly coordinated movements of groups of

individuals; think of a flock of birds turning swiftly in unison or a crowd of people filing through the

exit of a building. A common feature of these behaviors is that they occur without any centralized

control, and that they involve sudden and often dramatic changes in the ’collective state’ of the

group (i.e. speed, or the distances between individuals). In the past, researchers have likened these

transitions in collective behavior to phase transitions in physical systems, for example, the transition

between liquid water and water vapor. However, it is not clear how such collective responses could

have evolved.

Natural selection is an evolutionary process whereby individuals with particularly ’fit’ traits

produce more offspring than others. Over many generations, these beneficial traits tend to become

more common in the population. Hein, Rosenthal, Hagstrom et al. developed a mathematical model

to investigate whether the capacity of a population to perform collective motions could evolve

through natural selection.

The model shows that over many generations, populations consistently evolve a unique collective

trait whereby small responses of individuals to an environmental cue can cause spontaneous

changes in the collective state of the local population. These transitions in collective state greatly

enhance the ability of individuals to locate and exploit resources. Hein, Rosenthal, Hagstrom et al.’s

findings suggest that natural selection acting on the behavior of individuals can cause a population

to evolve a distinctive, collective behavior.

The next challenge will be to identify a biological system in which the evolution of collective

motion can be studied experimentally to test these predictions.

DOI: 10.7554/eLife.10955.002
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Model development

Behavioral rules
We model the movement behaviors of each individual in a population of size N using two experi-

mentally-motivated (Berdahl et al., 2013; Katz et al., 2011) behavioral rules: a social response rule

and an environmental response rule. The social response rule is motivated by experimental studies

of pairwise interactions among golden shiners (Notemigonus crysoleucas) (Katz et al., 2011). Indi-

vidual fish avoid others with whom they are in very close proximity. As the distance between individ-

uals increases, however, interactions gradually change from repulsive to attractive, with maximum

attraction occurring at a distance of two-four body lengths. For longer distances, individuals still

attract one another but the strength of attraction decays in magnitude (Appendix section 1;

Katz et al., 2011). As found in experimental studies of golden shiners (Katz et al., 2011) and mos-

quitofish (Gambusia holbrooki) (Herbert-Read et al., 2011) there need not be an explicit alignment

tendency; rather alignment can be an emergent property of motion combined with the tendencies

for repulsion and attraction described above.

To capture these observed social interactions (or ‘social forces’), we model the acceleration of

individuals using a force-based method (Katz et al., 2011). The ith individual responds to its neigh-

bors using the following rule:

Fs;i¼�r
X

j2Ni

Cre
�jxi�xjj=lr�Cae

�jxi�xjj=la

" #

; (1)

where Fs;i is the social force on the ith individual, xi is the position of the ith individual, r is the

two-dimensional gradient operator, the term in brackets is a social potential, Ca, Cr, la, and lr are

constants that dictate the relative strengths and length scales of social attraction and repulsion, and

the set Ni is a set of the k nearest neighbors of the ith individual, where a neighbor is an individual

within a distance of lmax of the focal individual. Equation 1 does not include explicit alignment with

neighbors. A similar model is discussed in D’Orsogna et al. (2006). In Equation 1, lmax determines

the length scale over which individuals are influenced by social interactions. If lmax is greater than lr
but less than la, individuals repel one another at short distances but do not attract one another. We

refer to such individuals as asocial (Appendix section 1). If lmax is greater than both lr and la, individ-

uals repel one another at short distances and are attracted to one another at intermediate distances

as observed by Katz et al. (2011). Finite k ensures that individuals can only respond to a limited

number of their neighbors in crowded regions of space and provides a simplified model of sensory-

based social interactions (e.g., Rosenthal et al. (2015); Strandburg-Peshkin et al. (2013)). Finite k

also ensures that individuals are limited to finite local density (Appendix section 3).

To model the response of individuals to the environment, we develop an environmental response

rule based on experimentally-observed environmental responses of golden shiners (Berdahl et al.,

2013). In particular, in a dynamic, heterogeneous environment, individual golden shiners respond

strongly to local sensory cues by slowing down in favorable regions of the environment, and speed-

ing up in unfavorable regions. In contrast, fish respond only weakly to spatial gradients in environ-

mental quality and instead adjust their headings primarily based on the positions of their near

neighbors. Accordingly, we model the ith individual’s environmental response as a function of the

level of an environmental cue (in this case, the level of a resource) at its current position:

Fa;i¼½YiðSðxiÞÞ�hjvij2�
vi

jvij
; (2)

where Fa;i is the autonomous force the ith individual generates by accelerating or decelerating in

response to the environment, Yð�Þ is a monotonically decreasing function of the value of an environ-

mental cue, SðxiÞ is the cue value at the ith individual’s position, h is a damping term that limits indi-

viduals to a finite speed, and vi is the ith individual’s velocity. In the absence of social interactions,

individuals travel at preferred speed v�i ¼
ffiffiffiffiffiffiffiffiffiffiffi

Yi=h
p

(for Yi > 0). Changes in speed are crucial in the

schooling behavior of fish (Tunstrøm et al., 2013; Berdahl et al., 2013), and as we show below, are

also responsible for generating effective collective response in our model. Following the experimen-

tal results in Berdahl et al. (2013) we assume that individuals do not change their headings in

response to the cue. In what follows, we refer to ’cue’ and ’resource’ interchangeably as we model

Hein et al. eLife 2015;4:e10955. DOI: 10.7554/eLife.10955 3 of 43

Research article Ecology Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.10955


the case where the cue is the resource itself (see e.g., Torney et al. (2009); Hein and McKinley

(2012) for cases where the cue is not a resource).

Combining social and environmental response rules yields two equations that govern each indi-

vidual’s movement (in two dimensions):

dxi

dt
¼ vi; (3)

and

m
dvi

dt
¼Fs;iþFa;i; (4)

where m is mass. D’Orsogna et al. (2006) explores the behavior of a similar model with Yi ¼ Y con-

stant over the full parameter space. Here we focus on a parameter regime that yields behavioral

rules that match the experimental observations of Katz et al. (2011) and Berdahl et al. (2013).

We simulate a discretized version of the system described by Equations 3 and 4. In particular, we

choose a time step, t, within which the acceleration due to social influences (Equation 1) and

resource value SðxiÞ are assumed to be constant. Positions, speeds, and accelerations of all individu-

als at time tþ t are then given by the solutions to Equations 3 and 4 at time tþ t, with the values of

SðxiÞ and jxi � xjj determined at time t. A navigational noise vector of small magnitude g and uni-

form heading 0 to 2p is added to the velocity of each agent at each time step. Taking the limit as t

goes to zero means that individuals are constantly acquiring information and instantaneously altering

their actions in response. In Appendix section 3�6, we analyze a continuum approximation of this

limiting model and below we discuss results of this analysis alongside simulation results.

The social interaction rule allows us to build an interaction network for the entire population. Two

individuals are socially connected if at least one of them influences the other through Equation 1.

We define a ’group’ as a set of individuals that belong to the same connected component in this

network.

Evolutionary dynamics
The natural environments in which organisms live are often heterogeneous and dynamic

(Stephens et al., 2007). Consequently, we simulate populations of individuals in dynamic land-

scapes, where individuals make decisions in response to local sensory cues (local measurements of a

resource) and these decisions have fitness consequences for the individuals within the population

(Guttal and Couzin, 2010; Torney et al., 2011). In keeping with experimental observations

(Berdahl et al., 2013), we assume individuals follow a simple environmental response function:

Yi ¼ ψ0 � ψ1SðxiÞ, where ψ0 dictates the ith individual’s preferred speed when the level of the envi-

ronmental cue is zero and ψ1 determines how sensitive the ith individual is to the cue value

(Berdahl et al., 2013). Rather than prescribing values of ψ0 and ψ1, we use an evolutionary frame-

work similar to that developed by Guttal and Couzin (2010) to allow these two behavioral traits to

evolve along with the maximum interaction length lmax, which determines whether individuals are

social (lmax > length scale of social attraction) or asocial (lmax < length scale of social attraction,

Appendix section 1).

In each generation, N individuals are located in a two-dimensional environment in which each

point in space is associated with a resource value that changes over time (see

Materials and methods). Individuals move through the environment using the interaction rules

described above, and each individual has its own value of the ψ0, ψ1, and lmax parameters. At the

end of each generation, we compute each individual’s fitness as the mean value of the resource it

experienced during that generation. Each individual then reproduces with a probability proportional

to its relative fitness within the population. N offspring comprise the next generation where each

offspring inherits the traits of its parent modified by a small mutation (Appendix section 2). For refer-

ence, we compare the evolution of populations in which ψ0, ψ1, and lmax are allowed to evolve, to

the evolution of populations of asocial individuals, for which lmax is set to a constant (Appendix sec-

tion 1).
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Results

Evolution of behavioral rules
In populations of asocial individuals, the baseline speed parameter and environmental sensitivity

increase consistently through evolutionary time (Figure 1A–B). Asocial individuals move through the

environment, slowing down in regions where the resource value is high and speeding up when the

resource value is low (Video 1). As one would expect from random walk theory (Schnitzer, 1993;

Gurarie and Ovaskainen, 2013), individuals more rapidly encounter regions of the environment

with high resource value when they travel at high preferred speeds (Equation A65; Gurarie and

Ovaskainen, 2013), and the more they reduce speed in regions of the environment with high

resource quality, the more time they spend in these regions (Schnitzer, 1993). Because of these two

effects, the fittest asocial individuals have high baseline speeds (i.e., high ψ0) and accelerate and

decelerate rapidly in response to changes in the resource value (i.e., high ψ1; Figure 1A–B,

Appendix).

When populations are allowed to evolve sociality, the evolutionary process selects for very differ-

ent behaviors (Figure 1C–E). Selection quickly favors sociality, and individuals evolve large maximum

interaction lengths (Figure 1C). Over evolutionary time, selection removes individuals with high and

low values of ψ0 and ψ1 from the population and an evolutionarily stable state (ESSt;

Maynard Smith, 1982) emerges that is characterized by a single mode at the dominant value of

each trait (Figure 1D–E; Appendix section 2). The ESSt resulting from selection on ψ0, ψ1, and lmax is

robust in that it is resistant to invasion by phenotypes near the ESSt, and by invaders with trait values

far from the ESSt (Appendix section 2). Throughout evolution, populations of social individuals

achieve mean fitness values that are approximately five times higher than those of asocial popula-

tions, and a coefficient of variation in fitness approximately four times lower than that of asocial indi-

viduals (Figure 1F).

Notably, a single individual drawn from a population at the ESSt can invade a resident population

of asocial individuals and the social strategy quickly sweeps through the population (Appendix sec-

tion 2). To understand why this invasion occurs, consider a population of asocial individuals that slow

down in favorable regions of the environment. If the environment does not change too rapidly, such

individuals will accumulate in regions where the resource level is high. This phenomenon has been

studied mathematically in the context of position-dependent diffusion (Schnitzer, 1993), and will

occur, in general, when individuals lower their speeds in response to the value of an environmental

cue. A social mutant that responds to the environment, and to its neighbors, can take advantage of

the correlation between density and resource quality by climbing the gradient in the density of its

neighbors (Equation 1). In this case, the positions of neighbors contain information about the value

of resources and social mutants quickly invade asocial populations leading to a rapid increase in

mean fitness (Appendix section 2).

Evolved populations collectively compute properties of the
environment
The high fitness of the evolved phenotype is due, in part, to a collective resource tracking ability,

similar to that found in golden shiners (Berdahl et al., 2013). Evolved individuals can find and track

resource peaks as they move through the environment (Figure 2A, Video 2; Materials and meth-

ods), whereas asocial individuals and social individuals with trait values far from the ESSt cannot (Vid-

eos 1, 3–4). Tracking occurs via a dynamic process. Individuals near the edge of the peak move

rapidly, whereas individuals nearer to the peak center (where the resource value is high) move slowly

(Equation 2). As in fish schools (Berdahl et al., 2013), individuals turn toward near neighbors (Equa-

tion 1) and travel toward the peak center. This collective tracking behavior is particularly important

when the resource field changes rapidly over time. As a resource peak moves, individuals at its trail-

ing edge experience a resource value that becomes weaker through time (Figure 2A). As the

resource value becomes weaker, these individuals accelerate (Equation 2), but turn toward neigh-

bors on the peak (Equation 1) and thus travel toward the moving peak (Figure 2A). When the envi-

ronment contains multiple resource peaks, evolved populations fuse spontaneously to form groups

whose sizes correspond to that of the peak they are tracking (Figure 2B), even though no individual

is able to assess peak size, or know whether there are multiple peaks in the environment. This
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behavior is consistent with recent sonar observations of foraging marine fish showing that fish form

shoals that match the sizes of dynamic resource patches (Bertrand et al., 2008; Bertrand et al.,

2014). Our model demonstrates that collective tracking behavior similar to that observed in real fish

schools can evolve through selection on the decision rules of individuals.

Figure 1. Evolution of behavioral rules. (A, B) show evolutionary dynamics of populations of asocial individuals (i.e., maximum length scale of social

interactions lmax fixed; see text). (C-E) show evolutionary dynamics of individuals in which the maximum length scale of social interactions lmax is allowed

to evolve. Brightness of color indicates the frequency of a phenotype in the population. In asocial populations, baseline speed parameter ψ0 (A) and

environmental sensitivity ψ1 (B) increase continually through evolutionary time. When lmax is allowed to evolve (C), individuals quickly become

social (lmax approaches maximum allowable value of 30), and baseline speed parameter ψ0 (D) and environmental sensitivity ψ1 (E) stabilize at

intermediate values. Mean fitness of social populations (F, red points) is over five times higher than mean fitness of asocial populations (F, blue points),

and the coefficient of variation in fitness is over four times lower in social populations (F inset). Unless otherwise noted, parameter values in all figures

are as follows: C ¼ Cr

Ca
¼ 1:1, l ¼ lr

la
¼ 0:13, N ¼ 500, k ¼ 25, g ¼ 0:01, t ¼ 1, m ¼ 1, n ¼ 1, � ¼ 0:16, M ¼ 2, l0 ¼ 10, l1 ¼

ffiffiffiffiffi

20
p

, a ¼ ð1; 0Þ, b ¼ 0:1, and

tp ¼ 1500.

DOI: 10.7554/eLife.10955.003
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Evolved populations are poised
near abrupt transitions in
collective state
That individuals in evolutionarily stable popula-

tions have intermediate baseline speeds and

intermediate environmental sensitivities

(Figure 1D–E) raises a question: what deter-

mines the evolutionarily stable values of these

traits? It is tempting to conclude that these trait

values are determined by the nature of the envi-

ronment alone. However, the fact that the evolu-

tionary trajectories of social and asocial

populations are so different (Figure 1), suggests

that the collective behaviors discussed above

strongly influence the outcome of evolution.

Analysis of Equations 1–4 reveals that the pre-

ferred speed parameter divides the dynamical

behavior of populations into distinct collective

states (Figure 3; analysis in Appendix section 5).

For Y < 0, individuals have a preferred speed of

zero and the inter-individual distances are gov-

erned by initial conditions. In this state, individu-

als resist acceleration due to social interactions.

For small Y > 0, individuals form relatively dense

groups that move through the environment as

collectives, either milling, swarming, or translat-

ing (D’Orsogna et al., 2006), the collective

motions exhibited by real schooling fish

(Tunstrøm et al., 2013). Individual speeds are

relatively low and inter-individual distances are short. For large Y, inter-individual distances are

large, and individuals move through the environment quickly. Dynamic changes among theses states

are evident in Video 2. These collective states are also clearly distinguishable in Figure 3

(0 < Y < 1:6 and Y > 2:9) and Appendix Figure 9 (Y < 0), and are separated by abrupt changes in

the distances between near neighbors (the inverse of local density, Figure 3) or potential energy

(Appendix Figure 9). The location of transitions between states depends on the parameters of the

social response rule (e.g., number of neighbors an individual pays attention to k; Figure 4). The tran-

sitional regimes between these states are reminiscent of the first-order phase transitions that occur

in some physical systems, for example at the transition between liquid water and water vapor. As in

the liquid-vapor phase transition, transitions in collective state are characterized by strong hysteresis

(Figure 3). If the population begins with large Y, mean distance to neighbors remains stable for

decreasing Y and then decreases abruptly (Figure 3, Appendix Figure 9 upper curve). If Y is then

increased, mean distance to neighbors increases but follows a different functional relationship with

Y (Figure 3, lower curve). We refer to the collective states as station-keeping (Y < 0; see

Appendix Figure 9), cohesive (small Y), and dispersed (large Y). The analogy between transitions in

collective state in our system and first order phase transitions in physical systems can be made more

precise by analyzing the formation rate of groups when Y is in the hysteresis region. In the hysteresis

region, the rate at which groups of individuals form spontaneously (and therefore nucleate a transi-

tion from the dispersed to cohesive state) depends strongly on Y; when Y is near the upper bound

of the hysteresis region, the time required for a group to form spontaneously is very long (see

Appendix section 5.4). From a thermodynamic perspective, this makes the spontaneous formation of

groups extremely unlikely, which explains why populations that begin in the dispersed state follow

the upper branch of the hysteresis curve shown in Figure 3.

For a wide variety environmental conditions (Appendix section 2) and social parameters (Fig-

ure 4), the evolutionarily stable trait values have a notable feature: the evolved values of the baseline

speed parameter, ψ0, place individuals in the population slightly above the transition between

Video 1. Asocial population. Responses of population

of asocial individuals (points) and dynamic resource

peak (resource value shown in grayscale; dark regions

have high resource value, light regions have low

resource value). Length of tail proportional to speed.

Peak centroid moves according to 2D Brownian motion

with drift vector a and standard deviation b (see

Materials and methods). In Videos 1–4, view is zoomed

in to area surrounding moving resource peak (field of

view is 50lr � 50lr, where lr is the length scale of

repulsion; full environment is projected onto a torus

with edge length 346lr). Behavioral parameters as

follows: Cr ¼ 1:1, Ca ¼ 1, lr ¼ 1, la ¼ 7:5, g ¼ 0:01,

t ¼ 1, m ¼ 1, h ¼ 1, ψ0 ¼ 3, ψ1 ¼ 2:54. Environmental

parameters in Videos 1–4 are: � ¼ 0:16, N ¼ 300,

M ¼ 2, l0 ¼ 10, l1 ¼
ffiffiffiffiffi

20
p

, a ¼ ½0:06 0�, b ¼ 0:5.

DOI: 10.7554/eLife.10955.004
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cohesive and dispersed states when S ¼ 0 (Figure 4, upper panels, Figure 5; points in both figures

show mean ψ0 values of population in the ESSt), and the evolved environmental sensitivity, ψ1, is

large enough that locally, groups of individuals cross from the dispersed state through the cohesive

and station-keeping states in regions of the environment where the resource value is high

Figure 2. Collective tracking of dynamic resource and length-scale matching. (A) Sequence (left to right, top to

bottom) of individuals interacting with moving resource peak (resource value in grayscale, darker = higher

resource value). Peak is drifting to the right (grey arrow). Colors indicate the regime into which each agent

falls (red: Y > 2:95, blue: 0 < Y < 2:95, green: Y < 0). Length of tail is proportional to speed. Peak centroid moves

according to 2D Brownian motion with drift (see Materials and methods). (B) When environments contain multiple

resource peaks, evolved populations divide into groups that match peak sizes, e.g., in a two-peak environment,

the size of group on each peak is proportional to peak size. Total size of two peaks is constant so that the larger

the first peak (Peak 1, x-axis), the smaller the second peak. Peak size computed as the integral of the resource

value over the entire peak (see Materials and methods). Group size is mean size of the group nearest each peak

(mean taken over the last 2,500 time steps of each simulation). Points (and error bars) represent mean (� 2

standard errors) of 1,000 simulations for each combination of peak sizes. Parameters as in Figure 1 with M ¼ 2

and values of ψ0, ψ1, and lmax taken from a population in the ESSt.

DOI: 10.7554/eLife.10955.005

Video 2. Population at the evolutionarily stable state

(ESSt). Responses of population of individuals evolved

for 1500 generations to the ESSt to dynamic resource

peaks. Behavioral parameters as in Video 1 with

k ¼ 25, hψ0i ¼ 3, hψ1i ¼ 2:45, and hlmaxi ¼ 29, where h�i
denotes mean over the population. Note rapid

accumulation of individuals near peaks and dynamic

peak-tracking behavior of groups.

DOI: 10.7554/eLife.10955.006

Video 3. Population with mean ψ0 below the ESSt

value. Responses of perturbed ESSt population to

dynamic resource peaks. All parameters as in Video 2

except that each individual’s value of ψ0 parameter is

lowered so that the population mean hψ0i ¼ 0:4. Note

swarms of individuals form in regions of the

environment that are far from resource peaks.

Individuals explore poorly and therefore have low

fitnesses.

DOI: 10.7554/eLife.10955.011
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(Figure 2A, colors indicate instantaneous value

of Y for each individual). In other words, the

evolved values of ψ0 and ψ1 allow local subpopu-

lations to undergo sudden changes from one

collective state to another in the proximity of

favorable regions of the environment. Impor-

tantly, the approximate location of the transition

between cohesive and dispersed states can be

predicted by directly analyzing Equations 1–4

without considering details of the environment,

or the mapping between behavior and fitness

(Figure 4 compare upper panels [simulation] to

lower panels [analytical prediction]). While the

precise evolutionarily stable values of ψ1 depend

on the parameters of the environment (Appen-

dix section 2), the evolutionarily stable values of

ψ0 place the population near the cohesive-dis-

persed transition in many different kinds of envi-

ronments (Appendix Figure 5). As we show

below, being near this transition allows groups

to respond quickly to changes in the environ-

ment. Our results demonstrate, that such locations in behavioral state-space are, in fact, evolutionary

attractors.

The evolutionary results presented in Figure 1 assume that individuals do not appreciably deplete

the resource. We can explore an alternative scenario in which resource peaks are depleted through

consumption (Appendix section 2.8). In that case, the ith individual consumes resources at a rate

uSðxiÞ per time step. We repeated evolutionary simulations assuming either a high or low rate of

resource consumption u. For high consumption rate (100 individuals can deplete a peak in roughly

Video 4. Population with mean ψ0 above the ESSt

value. Responses of perturbed ESSt population to

dynamic resource peaks. All parameters as in Video 2

except that each individual’s value of ψ0 parameter is

increased so that the population mean hψ0i ¼ 8:8. Note

that individuals do not form large groups near resource

peaks and fail to track peaks as they move.

DOI: 10.7554/eLife.10955.012

Figure 3. Hysteresis plot of the distance to 10 nearest neighbors, averaged over the entire population

hd10NN i (points and error bars) as a function of preferred speed parameter Y in a uniform environment. Figure

produced by starting with a population with Y ¼ 4 in a uniform environment. Population is allowed to equilibrate

for 5000 time steps and hd10NNi is then computed. Y is then lowered. This process is repeated until Y ¼ �1, at

which point the same procedure is used to increase Y. Upper curve corresponds to decreasing Y. Lower curve

corresponds to increasing Y. Regimes where Y~0 and Y 2 ð1:6; 2:95Þ correspond to transitions between collective

states. Points and (error bars) correspond to mean (� 2 standard errors) of 50 replicate simulations. Parameters as

in Figure 1 with lmax ¼ 30.

DOI: 10.7554/eLife.10955.007
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five time steps), lmax still increases so that individuals are attracted to one another through social

interactions, but selection for large lmax is much weaker than the case shown in Figure 1C (see

Appendix Figure 7). Moreover, ψ0 and ψ1 increase continually through evolutionary time. This result

is intuitive because when resources are depleted rapidly, the locations of neighbors convey little

information about the future location of resources and transitioning from the dispersed to cohesive

state may actually be maladaptive. By contrast, when individuals consume the resource at a more

moderate rate (Appendix Figure 7), evolutionary trajectories parallel the trajectory shown in

Figure 1C–E; there is strong selection for high lmax, ψ0 reaches a stable value that is situated directly

above the hysteresis region shown in Figure 3, and ψ1 evolves to a stable value that is large enough

to allow individuals to cross from dispersed to cohesive, and station-keeping states in regions of the

environment where the resource value is high.

Changes in collective state allow for rapid collective computation of the
resource distribution
Why do populations of selfish individuals evolve behavioral rules that place them near the transition

between collective states? Dispersed, cohesive, and station-keeping states are each associated with

a characteristic density (low, intermediate, and high, respectively; Figure 3, Appendix Figure 9). If

individuals enter the cohesive and station-keeping states where the resource level is high, the den-

sity of individuals becomes strongly correlated with the resource distribution (Figure 6A). The simi-

larity between the distribution of individuals and the distribution of the resource can be quantified

by the Kullback-Leibler divergence (KL divergence), an information-theoretic concept that measures

the distance between two distributions (Figure 6A inset). Though individuals cannot sense resource

gradients, they can detect gradients in the density of their neighbors (Equation 1), and can there-

fore move up the resource gradient.

Figure 4. Evolved populations are positioned near transitions in collective state. Upper panels show mean distance to 10 nearest neighbors (hd10NNi,
color scale) from simulated populations. A separate populations is simulated in a uniform environment for each value of the social attraction strength

(Ca), number of neighbors an individual reacts to (k), and the decay length of social attraction (la) parameters. Red is low density corresponding to

dispersed state, and blue is high density corresponding to cohesive state. Points show the mean value of ψ0 of populations in the EESt (populations

evolved for 1,000 generations in an environment with dynamic resource peaks). Evolved populations are positioned near transition between cohesive

and dispersed states. Lower panels are based on analytical calculations and show the predicted regions in which the dispersed state is stable (white)

and unstable (black, Appendix section 5). Parameters as in Figure 1 with M ¼ 15, l0 ¼ 10, l1 ¼ 1:6, a ¼ ð1; 0Þ, b ¼ 0:1, and tp ¼ 1500.

DOI: 10.7554/eLife.10955.008
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The abrupt transitions in the density of individuals between dispersed and cohesive states (Fig-

ure 3) mean that there is a strong density gradient in regions of the environment where individuals

in the dispersed state border individuals in the cohesive state (e.g., Figure 2A, 6A, Video 2). This

suggests that the behavior of an individual in this region can be approximated by considering only

its interactions with individuals that are on the resource peak (i.e., where density is high). Using this

assumption, we derive analytically the rate at which new individuals join (or rejoin) a group on the

resource peak (Appendix section 6.5). Asocial individuals arrive at a resource peak at a rate ka,

where ka is a constant (Figure 6B, blue curves and points; Equation A65). However, social

Figure 5. Mean distance to nearest neighbors hd10NN i (curves) and ESSt value of ψ0 (points) as a function of social parameters. Points denote mean

ESSt value of ψ0. Note abrupt transitions in density as function of Y, as shown in Figure 3. In all cases, ESSt value of ψ1 causes populations to cross

transition when resource value is high (i.e., ψ0 � ψ1l0 < 0, where l0 is maximum resource value of each peak). Densities and ESSt values generated as

described in Figure 4.

DOI: 10.7554/eLife.10955.009

Figure 6. Collective computation and social gradient climbing. (A) Collective computation of the resource

distribution (grayscale represents resource value, normalized to maximum of 1). Curves show local density of

individuals at different distances from the resource peak center (maximum value also normalized to 1). Note the

rapid accumulation of individuals near the peak center. The distribution of individuals becomes increasingly

concentrated in the region where the resource level is highest; inset shows that the Kullback-Leibler divergence

between the resource distribution and the local density of individuals decreases through time as the two

distributions become more similar. (B) Number of individuals near peak center (within one decay length, l1, of

peak center) as a function of time. Red and blue points and confidence bands represent means �1 sd. for 100

replicate simulations. Red points and band is ESSt population and blue points and band is an asocial population

with the same parameter values. Curves are analytical predictions based on Equations 3 and 4 (Appendix section

6).

DOI: 10.7554/eLife.10955.010
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individuals initially arrive at a rate that increases as more individuals reach the peak, such that the

number of individuals on the peak, Ns, increases exponentially with time: Ns»ks;1 þ expðks;2tÞ, where
ks;1 and ks;2 are positive constants (Figure 6B, red curves and points; Equation A68–A70). Analytical

calculations (Figure 6B, solid lines) agree well with results of numerical simulations (Figure 6B,

points and confidence bands). The rapid accumulation shown in Figure 6 is especially important

when the environment changes quickly with time; it allows groups to respond swiftly to changes in

the resource field and enables the emergent resource tracking behavior described above.

The form of Equations (3–4) implies that an individual’s behavioral response combines personal

information about the environment (Equation 2) with social cues (Equation 1). In fact, under a time

rescaling, our model is equivalent to one in which the relative strength of social forces varies across

the environment (Appendix section 4). The tradeoff between using social information and personal

information is inherent in social decision-making (Couzin et al., 2005; Couzin, et al., 2011). This

tradeoff means that individuals with large ψ0 and ψ1 are, by default, less responsive to their neigh-

bors. Perturbing the values of ψ0 and ψ1 of individuals in populations at the ESSt show that, in popu-

lations with high mean ψ0, individuals fail to form large groups and are poor at tracking resource

peaks (Appendix section 2.6, Appendix Figure 6). In populations with high mean values of ψ1, indi-

viduals form groups (Appendix section 2.7), but fail to exploit regions with the highest resource qual-

ity. Individuals with low values of ψ0 or ψ1 form groups but do not effectively track dynamic

resources (Appendix section 2.7).

Discussion
Our model demonstrates that selection on the behavioral phenotypes of selfish individuals can lead

to the rapid evolution of distributed sensing and collective computation. The mechanism that pro-

motes this evolution involves the use of public information: when individuals respond to the environ-

ment by slowing down in regions of high resource quality – a behavior that is adaptive even in the

absence of social interactions (Appendix Figure 2) – their positions become correlated with the

locations of resources. Social individuals can exploit this public information by climbing gradients in

the density of their neighbors. As in simple, game-theoretic models of social foraging (e.g.,

Clark and Mangel, 1984), social individuals gain a fitness advantage by using information about the

environment gleaned by observing neighbors. Because of this, asocial populations are readily

invaded by social mutants and collective behaviors evolve (Appendix section 2).

Evolutionarily stable populations occupy a distinctive location in behavioral state space: one in

which small changes in individual behavior cause large changes in collective state (Figures 4,

5). When individuals respond to local environmental cues by accelerating or decelerating, local pop-

ulations transition between the collective states shown in Figure 3 (e.g. Figure 2A). This creates the

strong spatial gradient in population density (Figure 6A) and allows groups to track dynamic fea-

tures in the environment rapidly. Perturbations of this evolutionarily stable state cause individuals

either to weigh social information too heavily (i.e., small ψ0 and/or ψ1), in which case groups fail to

explore effectively (Video 3, Appendix Figure 7), or to weigh personal information too heavily (i.e.,

large ψ0 and/or ψ1), in which case individuals fail to exploit the social information that enables

dynamic resource tracking (Video 4, Appendix Figure 7). Because of this, mutants with phenotypes

far from the evolutionarily stable state are removed from the population by natural selection. The

transitions we observe in collective state bear a resemblance to phase transitions in physical systems,

and our results lend credence to the hypothesis that natural selection can result in the evolution of

biological systems that are poised near such bifurcation points in parameter space. Importantly, we

show that these high-fitness regions of parameter space can be predicted a priori from the structure

of individual decision rules, even without knowledge of the environment.

Collective computation is a notion that has strongly motivated research on animal groups

(Berdahl et al., 2013; Couzin, 2007; Cvikel, et al., 2015). In our model, populations perform a col-

lective computation through their social and environmental response rules. When individuals are

exposed to a heterogeneous resource environment, their responses to the environment cause a

modification of the local population density; individuals aggregate in regions where the resource

cue is strong. The population performs a physical computation in the formal sense (Schnitzer, 2002):

physical variables – the positions and relative densities of neighbors – represent mathematical ones

– spatially resolved estimates of the quality of resources in the environment. The environments
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considered in our study bear a strong resemblance to those encountered in dynamic coverage prob-

lems in distributed control theory (Bachmayer and Leonard, 2002), dynamic optimization problems

(Passino, 2002), and Monte Carlo parameter estimation (McKay, 2003). Combining an evolutionary

approach to algorithm design with collective interactions may therefore be a useful starting point for

optimization schemes or control algorithms for autonomous vehicles, particularly if the structure of

social interactions leads to bifurcation points in behavioral parameter space as in the model studied

here.

Understanding the feedback loop between individual behavior, collective behavior of popula-

tions, and selection on individual fitness is a major challenge in evolutionary theory (Guttal and Cou-

zin, 2010; Torney et al., 2011; Pruitt and Goodnight, 2014). Our framework closes this loop and

demonstrates how distributed sensing and collective computation can evolve through natural selec-

tion on the decision rules of selfish individuals.

Materials and methods

Resource environment
Our model of the resource environment incorporates three salient features of the resource environ-

ments that schooling fish and other social foragers encounter in nature. These features are: 1) spatial

variation in resource quality, 2) temporal variation in resource quality, and 3) characteristic length

scales of resource patches (Stephens et al., 2007; Bertrand et al., 2008; Bertrand et al., 2014).

Accordingly, we model a two-dimensional environment in which the resource is distributed as a set

of M resource peaks. We assume the boundary of the environment is periodic such that individuals,

inter-individual potentials, and resource peaks are all projected onto a torus. Each of the M peaks

decays like a Gaussian with increasing distance to the peak center. The value of the resource in a sin-

gle peak at a location, xi, is given by

S x;xsð Þ ¼ l0e
�jx�xs j2

l2
1 ; (5)

where l0 is a constant that determines the resource value at the peak center and l1 is a decay length

parameter, and xs is the location of the centroid of the peak of interest. The total resource value the

ith individual experiences SðxiÞ is the sum over all peaks in the environment. Each peak moves

according to Brownian motion with drift vector a and standard deviation b. At each time step, each

peak has a probability 1=tp of disappearing and reappearing at a new location, chosen at random

from all locations in the environment.
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Appendix

1 Social interaction rules

1.1 Model of social interactions
Past individual-based models that include social interactions have often depicted social

interactions by assuming that individuals monitor metric ’zones’. Individuals avoid neighbors in

a small zone of avoidance, and align and move toward neighbors within larger zones of social

interactions (e.g., Guttal and Couzin, 2010; Couzin et al., 2002; Chou et al., 2012). Here, we

use an alternative model that depicts social interactions as forces that act to modify

individuals’ accelerations. This approach is closely related to force matching methods that

have been applied to data to infer the strength of pairwise social interactions among

individuals. We assume that social forces depend on distance in a way that creates short-range

repulsion among individuals, strong intermediate range attraction, and weak attraction for

longer ranges in agreement with results of Katz et al. (2011). We model the social forces on a

focal individual, i, by the following equation:

Fs;i¼�r
X

j2N i

C re
�jxi�xj j=lr�C ae

�jxi�xj j=la

" #

; (A1)

where, as described in the Main Text, xi and vi are the position and velocity of the ith

individual, respectively, r is the two-dimensional gradient operator, the term in brackets is a

social potential, Ca, Cr, la, and lr are constants, and the set Ni is a set of the k nearest

neighbors of the ith individual, where a neighbor is an individual within a distance of lmax of

the focal individual. Appendix Figure 1 shows the effective force exerted on a focal individual

by a neighbor located along the focal individual’s trajectory, either behind (x-axis < 0) or in

front of (x-axis > 0) the focal individual [compare to Appendix Figure 2 of Katz et al. (2011)].

Unlike many past models of interactions among individuals, we do not assume that individuals

explicitly align with one another. However, because the r.h.s of Equation A1 is proportional to

the gradient of a social potential, social interactions can cause the focal individual to turn. This

turning toward neighbors causes the social gradient climbing behavior described in the Main

Text and discussed in detail in Appendix section 6 below.
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Appendix Figure 1. Speeding force as a function of the location of a single neighbor.

On the left of the origin, the neighbor is behind the focal individual. For very short distances,

the neighbor exerts a positive speeding force on the focal individual, causing it to accelerate.

For longer negative distances, the speeding force on the focal individual is negative; the focal

individual decelerates to come closer to its neighbor. To the right of the origin the neighbor is

in front of the focal individual. For short distances, the speeding force on the focal individual is

negative, causing it to slow down. For longer positive distances the speeding force exerted on

the focal individual is positive; the focal individual speeds up, closing the distance between it

and its neighbor. The distance corresponding to repulsion only is shown with the blue line.

Parameters as follows: Ca = 1, Cr = 1.1, la = 3, lr = 1.

DOI: 10.7554/eLife.10955.013

1.2 Definition of an asocial individual
To illustrate the collective behavior and evolution of social individuals it is useful to compare

social individuals to individuals that are not influenced by social attraction. We refer to such

individuals as ’asocial’ and define them in terms of Equation A1 by setting lmax to a value that

corresponded to the distance at which the gradient of the social potential for a pairwise

interaction is equal to zero (blue line in Appendix Figure 1: point at which potential crosses

zero). We define asocial agents in this way because the short-range repulsion included in the

inter-agent potential shown in Appendix Figure 1 represents collision-avoidance–a behavior

that should be common to all individuals, regardless of whether they are socially attracted to

one another. While this definition of an ’asocial’ individual is more biologically sensible, we

have also tried modeling asocial individuals by assuming that the r.h.s. of Equation A1 is equal

to zero for all individuals (this assumes, for instance, that these individuals are not limited to

finite local density); this approach does not qualitatively change the results presented below

and in the Main Text.

Hein et al. eLife 2015;4:e10955. DOI: 10.7554/eLife.10955 17 of 43

Research article Ecology Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.10955.013
http://dx.doi.org/10.7554/eLife.10955


2 Evolutionary dynamics

2.1 Selection algorithm
To understand the connection between the evolution of collective behaviors and selection on

the performance of individuals, we implement a simple evolutionary algorithm similar to that

used in Guttal and Couzin (2010). In the first generation, N agents with heterogeneous values

of ψ0 and ψ1 and lmax are initiated in an environment with M resource peaks. The number of

agents remains constant across generations, and generations are non-overlapping. Each

generation consists of a simulation run for 5,000 or 10,000 time steps over which we

calculated the mean resource value experienced by each individual in the population. At the

end of each generation, N individuals are selected from the population (with replacement) to

reproduce themselves, yielding a total of N new offspring. An individual’s probability of being

selected for reproduction is proportional to its mean resource value, normalized by sum of

mean resource value over all individuals in the population. Individuals that perform well are

more likely to be selected to reproduce and are likely to produce more offspring than

individuals that perform poorly. The selection probability of the ith individual pi is defined as

follows:

pi ¼
SiðtÞh it

PN
j¼1 SiðtÞh it

; (A2)

where SiðtÞ is the instantaneous resource value of individual i, and angular brackets represent

time-averaging over the particular generation under consideration. If an individual is selected

for reproduction, a child is produced in the next generation with ψ0 equal to that of the

parent, with a small mutation. The ψ0 value of an offspring is equal to the ψ0 value of its

parent, plus a normally distributed random number s with mean zero and variance gm:

ψ
0;i¢

¼ ψ0;iþs; (A3)

where ψ
0;i¢

is the ψ0 value of an offspring of individual i. The ψ1 and lmax traits of offspring

were determined in the same way.

2.2 Evolution of asocial populations
In general, populations of asocial individuals evolve to have increasing ψ0 and ψ1 values. While

fitnesses of individuals in these populations are well below fitnesses of individuals in the

evolutionarily stable states discussed below (see Main Text Figure 1F), selection on asocial

populations still leads to an increase in mean fitness (Appendix Figure 2). This occurs

because, as evolution progresses and ψ0 and ψ1 values evolve, asocial individuals spend more

time in regions of the environment with high resource value.
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Appendix Figure 2. Fitness of asocial population through evolutionary time.

Blue points indicate mean fitness of population in each generation. Horizontal red line

indicates mean fitness of population over first ten generations. Corresponding ψ0 and ψ1

values for each generation are shown in Figure 1A,B of the Main Text.

DOI: 10.7554/eLife.10955.014

2.3 Establishment of evolutionarily stable state (ESSt)
We allow populations to evolve according to the algorithm described above. Initial values of ψ0

and ψ1 phenotypes are drawn at random from uniform distributions between 0 and 6. Initial

values of lmax are drawn with uniform probability from the interval ð0; 30Þ. The distribution of

trait values quickly stabilizes for all three phenotypic traits as shown in Figure 1C–E of Main

Text. We refer to this evolved state as an evolutionarily stable state (ESSt, Guttal and Couzin,

2010). The persistent variance in the distribution of ψ0, ψ1, and lmax are partially due to

mutations in the value of these traits, which are continually introduced into the population. We

therefore expect such persistent of inter-individual variation in phenotype as a result of

mutation-selection balance.

2.4 Robustness of ESSt
To evaluate the robustness of the evolutionarily stable state (ESSt) described in the Main Text,

we performed evolution under invasion by phenotypes that are both near to, and far from the

ESSt. We initiated the population with trait distributions from the ESSt (selected from the final

generation of simulations used to establish ESSt). Then in each generation, we selected

individuals to reproduce and applied ordinary mutations as described above. However, before

initiating the next generation, a single individual was chosen to serve as an invader. That

individual’s phenotype was replaced by values (ψ�
0, ψ

�
1, and l�max). ψ

�
0 and ψ�

1 were chosen with

uniform probability from the interval ð0; 40Þ and l�max is chosen with uniform probability from

the interval lmax 2 ð0; 30Þ. Though these intervals are somewhat arbitrary, we note that ψ0 and

lmax must ultimately be bounded above by limits on the speed that individuals can sustain, and

by limits on the distance over which individuals can perceive one another, respectively. ψ1

should also be bounded above because it is limited by the rate at which individuals can

accelerate (decelerate) in response to changes in the measured value of an environmental cue.

Thus, all three traits are bounded above due to physical constraints. Applying higher bounds

on these trait values did not qualitatively change our conclusions.

Appendix Figure 3 shows a typical evolutionary progression when a population at ESSt

acquires mutations (i.e., small changes in phenotype) and receives an invader in each

generation. Although invaders from across the phenotype space are introduced into the

population (Appendix Figure 3 blue dots across phenotype space), none of these invaders

establishes for more than a few generations (Appendix Figure 3 blue dots become extinct

after few generations). The ESSt is resistant to invasion by both nearby phenotypes,

introduced through ordinary mutation, and phenotypes far from the ESSt, introduced through

invaders. We therefore refer to the ESSt as robust.
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Appendix Figure 3. Evolution of traits under invasion by mutants far from the ESSt.

Example evolutionary progression for ψ0, ψ1 and lmax. Note that invaders (blue points

introduced across phenotype space) do not establish and the dominant trait values in the

population do not change over evolutionary time. Color indicates frequency of phenotype in

population (white = 0, blue = low frequency, orange = high frequency).

DOI: 10.7554/eLife.10955.015

2.5 Invasion of asocial population by social strategy
To determine whether phenotypes from the ESSt could invade a population of purely asocial

individuals, we performed another set of evolutionary simulations in which we initiated

populations with N � 1 asocial individuals and a single individual, chosen at random from the

ESSt. Appendix Figure 4 shows evolutionary progressions from this initial state. In panel A,

the full trait distribution of the population is shown. The social invader increases in frequency

and sweeps the population of asocials. Replicate invasions show a very similar progression

(Appendix Figure 4B). The final distribution of trait values matches the ESSt. The change in

phenotypes that occur when the ESSt phenotype invades the asocial population lead to a

dramatic increase in mean fitness (Appendix Figure 4C) and a decrease in the range of

fitnesses of different individuals in the population.
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Appendix Figure 4. Typical progression of evolution from initial state with N � 1 asocial individ-

uals and individual selected from the ESSt population.

(A) Invader from ESSt increases in abundance and sweeps population. (B) Mean trait values in

50 replicate invasions (each line is a separate invasion from the same initial state with N � 1

asocial individuals). ESSt phenotype quickly invades and sweeps the population in all cases. (C)

Mean and coeffient of variation in fitness corresponding to the invasion shown in A.

DOI: 10.7554/eLife.10955.016

2.6 Dependence of evolutionary outcomes on the environment
One of the conclusions drawn in the Main Text is that the trait values of the evolved population

at the EESt correspond to a location in behavioral state space where the population is in the

dispersed state in regions of the environment with low resource quality, and that the

population transitions from the dispersed to cohesive and station-keeping states in regions of

the environment with high resource quality. We evaluated whether this conclusion holds, more

generally, by evolving populations in more complex environments in which environmental

properties were selected at random. We initialized trait values of populations as described in

Establishment of evolutionarily stable state (ESSt) above. However, to generate the

environment, we chose the number of Gaussian resource peaks at random from 1 to 50 with

uniform probability. The maximum resource value of each peak and the variance of the two-

dimensional Gaussian peak shape were also chosen at random. Maximum resource value was

chosen with uniform probability from the interval ð0; 10� and variance was chosen with uniform

probability from the interval ð0; 30�. Finally, the variances of all peaks in a given simulation

were rescaled so that the sum of the integral of all peaks over the environment was equal to

400p. We enforce this latter condition to ensure that resource peaks are small relative to the

size of the environment. All other parameter values were those listed in Figure 1 of the Main

Text, except that N was 300.

We allowed populations to evolve for 1500 generations and recorded values of ψ0, ψ1, and

lmax that evolved. Appendix Figure 5 show mean ψ0 and ψ1 trait values after 1500 generations

for evolutionary simulations with different environmental conditions. The gray band

in Appendix Figure 5 corresponds to the region of hysteresis between cohesive and

dispersed states shown in Figure 3 in the Main Text. With the exception of a small number of

simulated evolutions (Appendix Figure 5, points below gray band) populations in all

environments had mean trait values of ψ0 in or above the hysteresis region. In all cases, the

combination of ψ1 and ψ0 caused individuals to exhibit values of Y ¼ ψ1 � ψ0SðxiÞ that were
less than zero in the most favorable regions of the environment. Thus, for the large majority of

random environmental conditions we generated, individuals transition from Y values that

correspond to the dispersed state, through Y values that correspond to cohesive and station

keeping states in favorable regions of the environment.
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Appendix Figure 5. Trait values after 1500 generations of evolution in randomly generated

environments.

Each point represents the mean trait values of a single population that has been allowed to

evolve for 1500 generations. Point sizes denote the number of peaks that were present in the

environment. Point colors represent the maximum resource value l0 averaged over all peaks

present in the environment. Gray region corresponds to the region of hysteresis shown in

Figure 3 of the Main Text. Number of peaks and peak parameters were chosen at random. All

other parameters as in Figure 1 of Main Text.

DOI: 10.7554/eLife.10955.017

2.7 Perturbation of populations around the ESSt
To further understand how the evolutionarily stable trait values lead to high individual fitness we

perturbed the entire populations at ESSt by shifting either ψ0 or ψ1 of all individuals in the

population. This resulted in a change in the mean value of these traits over the entire

population. We then simulated the dynamic behaviors of the new perturbed population in a

simplified environment containing two resource peaks. Initially, all individuals were located in a

single group near one of the peaks (the starting peak). Appendix Figure 6 shows that, for

fixed ψ1, group sizes and mean fitness vary strongly as a function of the mean value of ψ0 of

the population (both ψ0 and ψ1 are taken from a population at ESSt and values of ψ0 are

shifted to change hψ0i of the population). For small values of ψ0, individuals track the starting

peak but do not find the second peak (Appendix Figure 6A, blue and red points,

respectively). As ψ0 reaches approximately 2.2, individuals begin to form a group on the

second resource peak (Appendix Figure 6A, red points denoting size of group nearest

second peak begin to increase). Mean performance of individuals in the group nearest the

second peak rapidly increases (Appendix Figure 6A, red points rapidly increase for ψ0 > 2:2).

When performance is averaged over the entire population, there is a clear maximum at ψ0~3:6

(Appendix Figure 6C), the value corresponding to mean (and modal) ψ0 for the evolved

population in the ESSt (orange point in Appendix Figure 6C). Selection on fitnesses of

individuals and optimization for maximum fitness of the entire population lead to the same

value of ψ0. For larger values of ψ0, the average performance over all individuals begins to

decline (Appendix Figure 6C) because fewer individuals aggregate near peaks. Perturbations

of ψ1 also lead do decreases in mean fitness at the population level (Appendix Figure 6F). For

mean ψ1 below that of the ESSt, individuals form small groups near peaks (Appendix Figure
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6D). For mean ψ1 above that of ESSt, individuals form large groups, but individuals in the

groups near peaks have low fitness because they do not effectively aggregate near peak

centers (Appendix Figure 6E).

Appendix Figure 6. Performance of populations near the evolutionarily stable state.

(A) The number of individuals on each peak (the starting peak, blue; the second peak, red) as

a function of the mean baseline speed parameter, ψ0 of a population perturbed from the ESSt.

Below a ψ0 of roughly 2.2, individuals do not form a large group on the second peak. (B) Mean

resource value of individuals on the starting peak (blue) and second peak (red). (C) Resource

value averaged over all individuals in the population (individuals in groups nearest each peak

and all other individuals in the environment). Note maximum value occurs in the regime where

individuals aggregate on both the starting and second peaks (ψ0~3.6). Orange point indicates

values corresponding to ESSt. (D-F) Group size (D), mean resource value of individuals on

peaks (E), and mean resource value of all individuals (F) as a function of the mean

environmental sensitivity parameter ψ1 of a population perturbed from ESSt. Orange point in

(F) indicates values corresponding to ESSt. Note rapid decrease in mean fitness for

perturbations in both directions. Semitransparent points are results of 2000 individual

simulation runs. To compute means and standard errors, simulation runs were divided into 50

evenly spaced bins. Bolded points and error bars show mean of each bin � 2 standard errors.

DOI: 10.7554/eLife.10955.018

2.8 Evolution with resource consumption
As described in the Main Text, social interactions confer a fitness advantage to social individuals

at least in part because the positions and local densities of a given individual’s neighbors

contain information about the spatial distribution of resources. However, if individuals quickly

consume resources, this may break down. For example, areas in which the density of

neighbors is currently high may no longer contain resources in the near future if those

neighbors consume the resources. To explore how resource consumption affects evolutionary

dynamics, we repeated evolutionary simulations assuming individuals consume the resource.

To model resource consumption, we assume each individual consumes resources at a rate

given by the product of the resource value at its position SðxiÞ and a consumption rate

constant u. At each time step, the height of peak j, l0; j, is reduced by the sum
PN

i¼1 uSðxi;xsÞ,
where xs is the location of the peak and N is the number of individuals in the population. We

Hein et al. eLife 2015;4:e10955. DOI: 10.7554/eLife.10955 23 of 43

Research article Ecology Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.10955.018
http://dx.doi.org/10.7554/eLife.10955


assume individuals abandon a resource when l0; j falls below s�. To keep the number of

resource peaks constant and the total amount of resource on the landscape from being

completely depleted, we allow resource peaks that reach a height of l0; j ¼ s� to regenerate at

a new location chosen at random with equal probability from all points in the environment.

The new peak has a peak height equal to the starting peak height, l0. Mean resource value for

each agent is calculated in the same manner as in the case where peaks are not depleted.

Appendix Figure 7 shows the results of replicate evolutionary simulations with high (A) and

low (B) rates of resource consumption. In the case of high consumption (Appendix Figure 7A),

individuals evolve to have increasing mean values of ψ0 and ψ1, and ψ0 values are well above

the hysteresis regime between collective states. While values of lmax still enable individuals to

be attracted to one another at intermediate to large distances, the variation in lmax values

among replicate simulations suggests that there is not strong selection for large lmax. When

individuals consume resources at a lower rate (Appendix Figure 7B), results parallel those

shown in Figure 1 of the Main Text; populations evolve mean values of ψ0 that are directly

above the hysteresis region, ψ1 approaches a stable value, and lmax approaches the maximum

allowable value of 30.

Appendix Figure 7. Evolution of behavioral traits when individuals consume resource.

Lines show means of independent evolutionary simulations. (A) High consumption rate

corresponding to fast depletion of resource peaks. (B) Intermediate consumption rate

corresponding to slower depletion of the peaks. Note different axis limits in the top panels of

A and B. Grey region corresponds to hysteresis region between collective states shown in

Main Text Figure 3. Parameters are as follows: s*=2, high consumption rate = 3.2*10–3 (time

step�1), low consumption rate = 8.0*10–5 (time step�1), N = 300. All other parameters as in

Figure 1 of the Main Text. These consumption rates correspond to the case where 100

individuals near the peak center can deplete a peak in roughly five time steps (fast depletion,

A), and the case where the same task takes 200 time steps (slower depletion, B).

DOI: 10.7554/eLife.10955.019

3 The cohesive state is characterized by a fixed, finite
density
Agents obeying the equations described in the Main text exhibit several distinct collective

states. One such state, which we call the cohesive state, is characterized by dense groups of

agents occupying a fixed fraction of the environment. One of the salient properties of these

groups is that they eventually reach a fixed density that becomes independent of group size.

Using a small number of simple assumptions about the behavior of agents within a cohesive

group, we are able to predict the density of agents directly from the model parameters. The

motivation of our calculation comes from the structure of the equations, which include social

potential terms and velocity-dependent self-propulsion terms. The social force on an agent is

Hein et al. eLife 2015;4:e10955. DOI: 10.7554/eLife.10955 24 of 43

Research article Ecology Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.10955.019
http://dx.doi.org/10.7554/eLife.10955


given by Equation A1. We will rewrite the social potential in Equation A1 (i.e., the term in

brackets) as

FðxiÞ ¼
X

j2Ni

½�Cae
�jxi�xjj=la þCre

�jxi�xjj=lr � (A4)

The effect of the potential term in the equations is to exert a force on the entire system

towards configurations where the potential energy is lower. The propulsive forces are non-

conservative, causing phase-space volumes to contract, allowing the system to approach a

potential energy minimum. We model the cohesive state as N agents occupying a circular

region of radius l. Further, we assume that the probability distribution of agents within this

circular region is uniform, so that agent density is given by:

�¼ N

pl2
(A5)

The density � lets us define an interaction radius lI which is expected to contain k individuals:

lI ¼ l

ffiffiffiffiffi

k

N

r

(A6)

This expression is valid when N > k, which is the case we are interested in. When N < k the

interaction radius is simply the group radius, l ¼ lI , and each agent interacts with every other

agent. We calculate the expected potential by integrating over a circle of radius lI :

Fi ¼ �

ð

jxi�xj<lI

�Cae
�jxi�xj=la þCre

�jxi�xj=lr
� �

dA (A7)

This integral evaluates to the following expression:

Fi ¼
�2CaN
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It is illustrative to write this expression after the substitution l ¼
ffiffiffiffi

N
p�

q

:

Fi ¼�2p� Ca l2a� e
�
ffiffiffiffiffi

k

p�l2a
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(A9)

The density that minimizes Fi will be the density of agents in the cohesive state. When written

this way, it is clear that N will not influence the location of the minimum of Fi, as N only

appears in the expression as a constant multiplier. Thus, when N > k we expect cohesive

groups to have a constant density, so that the radius of a group grows like
ffiffiffiffiffi

N
p

. These

predictions match the results of our simulation quite closely, which one can see from

comparisons between Appendix Figure 8 to the lower branch of the hysteresis plot in

Appendix Figure 9.
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Appendix Figure 8. Plot of potential energy per agent as a function of group size.

Cutoff at N = K indicates constant density.

DOI: 10.7554/eLife.10955.020

Appendix Figure 9. Hysteresis plot of potential energy averaged over the entire population

(compare with Figure 3 in Main Text).

Figure produced by starting with a population with Y = 4 in a uniform environment.

Population is allowed to equilibrate for 5,000 time steps and then average potential energy is

calculated using Equation 4 in the Main Text. Y is then lowered. This process is repeated until

Y = �1, at which point the same procedure is used to increase Y. Upper curve corresponds to

decreasing Y. Lower curve corresponds to increasing Y. Note drop in mean potential energy

at Y = 0. We refer to the states on either side of this transition as station-keeping (Y < 0) and

cohesive Y > 0 and below upper transitional regime at Y ~ 1.7. Points and (error bars)

correspond to mean (and 2 standard errors) of 50 replicate simulations. Parameters as in

Figure 1 of the Main Text with lmax = 30.

DOI: 10.7554/eLife.10955.021
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That density is necessarily constant with increasing N is a hallmark of topological interaction

laws which are repulsive at short range. When there is no restriction on the number of

interaction neighbors, an interaction law of the type that we use can give rise to catastrophic

behavior, where the group density increases without bound with increasing

N (D’Orsogna et al., 2006). One feature of the topological interaction is that it allows for

biological realism for agent parameter values that would otherwise lead to catastrophic

behavior.

4 Relationship between ψ0 and the relative strength of
social forces
In order to better understand how changing parameters affect our model, we ignore

stochasticity and consider the equations for the acceleration and velocity in a homogeneous

environment without resources (so that the background velocity is constant). First we define:

v0 ¼
ffiffiffiffiffi

ψ0

h

r

(A10)

The equations become:

dxi

dt
¼ vi (A11)

dvi

dt
¼ h jv0j2 � jv2i j

� � vi

jvij
þrFi (A12)

Let l0 be a characteristic length scale in this problem, let v0 be a characteristic velocity scale,

and let t0 ¼ l0
v0
be a characteristic time scale. Then, let Ca, the attraction coefficient, be the

scale of the potential. We non-dimensionalize our equations by rewriting them in terms of the

dimensionless variables:

x0 ¼ x

l0
t0 ¼ t

t0
v0 ¼ v

v0
F

0 ¼ F

Ca
(A13)

The resulting dimensionless equations are:

dx0

dt0
¼ v0 (A14)

dv
0

dt0
¼ t0jv0jh 1� jv0 j2

� � v
0

jv0 j þ
l20Ca

v20
r0

F
0

i (A15)

The non-dimensional number
l2
0
Ca

v2
0

¼ hl2
0
Ca

ψ0
measures the relative strength of the social potential.

When ψ0 becomes large, social forces become negligible. The reason for this effect is that

agents begin moving too quickly for the social forces to have any appreciable effect on their

trajectories. Therefore, for constant l0 and Ca, an alternative interpretation of ψ0 is as a term

that dictates the relative strengths of autonomous versus social forces.
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5 Continuum description predicts cohesive and dispersed
state
Figure 3 in the Main Text illustrates that populations exhibit distinct regimes, which we refer to

as collective states, as a function of the preferred speed parameter. Two states are evident in

Figure 3 in the Main Text: a state with short inter-individual distances for small Y and a state

with large inter-individual distances for large Y. A third state is evident if the mean potential

energy of all individuals in the population is plotted as a function of Y in a uniform

environment, where potential energy is calculated from Equations 3 and 4 in the Main Text.

For Y < 0 there is a distinct drop in potential energy for decreasing Y (Appendix Figure 9).

We refer to the state that occurs for Y < 0 as station-keeping in the Main Text.

In order to better understand the behavior of agents in the context of our model, we have

developed a continuum equation for the time evolution of agent density. In the context of a

homogeneous environment this description can be used to predict the points in parameter

space at which the uniform, purely solitary state becomes unstable, and to demonstrate that

heterogeneous states cannot be stable at high enough background velocity. Although the

continuum description is only an approximation, it is able to qualitatively predict many of the

features of our multi-agent simulations, which makes the mechanisms responsible for this

behavior mathematically more explicit. In order to derive continuum equations, we begin with

a Liouville equation for the probability density of all the N particles within the full phase space,

and derive a hierarchy of equations by taking moments (Flierl et al., 1999; Born and Green,

1946). This hierarchy can be closed by assuming that stochastic forces are sufficiently strong

to ensure independence of the individual agents. For the analysis presented here, we assume

that the agents travel at a constant velocity v0 ¼
ffiffiffiffi

Y
p

(using the angular variable � to describe

the direction of the velocity), and that there is noise in the angular velocity driven by a Wiener

process with variance
ffiffiffiffiffi

2"
p

per unit time. The assumption of a constant velocity implies that we

have taken a limit where h, ψ0, and ψ1 go to infinity, though their ratios remain constant. We

will let ψ0 and ψ1 stand for the limiting ratios of the original model. We will denote the space

of positions by V , which will be a 2-torus with length LD. The assumption of a constant

velocity and of angular noise lead only to small quantitative changes in agent behavior, and

they make it possible to analyze the resulting equations.

Therefore we begin with the following set of stochastic differential equations:

dxi ¼ v0cosð�iÞdt (A16)

dyi ¼ v0sinð�iÞdt (A17)

d�i ¼
jFiðxÞj
v0

sin Gi xð Þ� �ið Þdtþ
ffiffiffiffiffi

2"
p

dW (A18)

Here Fi is the social force on agent i, and Gi is the angular direction of the social force on

agent i. We assume that this force is produced through a topological interaction of the

following form:

Fi ¼
X

j2Ni

�rwðjxi�xjjÞ (A19)

Here Ni is the set of k closest neighbors to agent xi, and w is an interaction kernel.

From these equations, we are able to write a Liouville equation by introducing a probability

density on phase space, P ðfxg; f�gÞ, where fxg is the set of N agent positions and f�g is the

set of N agent directions. The value of P at a given set of positions and directions is the
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probability that the each of the agents have the specified positions and directions. The

Liouville equation is:

qP

qt
þ v0

X

N

i¼1

ê�i �riP þ 1

v0

X

N

i¼1

q

q�i

P
X

j2Niðf�gÞ
jF ðjxi �xjjÞjsin

�

Gðxi �xjÞ� �i

�

0

@

1

A

¼ "
X

N

i¼1

q
2P

q�2i

(A20)

In order to simplify this equation, we assume that the probability density function P can be

factorized into the product of N identical single particle probability density functions:

P ðfxg;f�gÞ ¼
Y

N

i¼1

pðxi;�iÞ (A21)

This assumption is equivalent to assuming statistical independence of the positions and

directions of the agents, a condition which could be reached either through large stochasticity

" or ergodic single particle trajectories. The assumption allows us to derive a closed equation

for the single particle probability density function p, in a similar fashion to a closure of the

usual BBGKY hierarchy in kinetic theory.

Then, we are able to write the following equation for the single agent probability density

function pðx;�;tÞ (where we have replaced a binomial distribution with a Poisson distribution):

qp

qt
þ v0ê��rxpþ

1

v0

q

q�

ð

V�S1

d2x0d�0Gðx;x0;�Þpðx;�Þ
� �

¼ "
q
2p

q�2

(A22)

Here, the expression lðx;x0Þ is the expected number of agents within a distance jx0j from the

point x, the function wðjxjÞ is the social potential between two particles, and the expression

Gðx;x0Þ is the angle of force from an agent located at x0 to an agent located at x:

G x;x0ð Þ ¼
X

k�1

j¼0

e�lðx;x0Þlðx;x0Þj
j!

jrwðjx�x0jÞjsin G x;x0ð Þ� �ð Þ (A23)

lðx; x0Þ ¼
ð

jx00 j< x�x0j j

ð2p

0

d�d2x00Np1ðxþx0 0;�Þ (A24)

wðxÞ ¼ �Cae
�jxj=la þCre

�jxj=lr (A25)

Gðx; x0Þ ¼ argðrxwðjx�x0jÞÞ (A26)

The presence of the terms involving l are a consequence of the topological interaction law

between the agents. This equation is most accurate in the limit where �cl
2
c � 1, where �c is a

characteristic density and lc is the characteristic length scale of the interaction. In the examples

which we considered in our study, this ratio is typically only slightly larger than 1 (see

Peshkov et al., 2012; Chou et al., 2012) for derivations of continuum descriptions of

topological interactions in a more collisional regime). Despite that, we find both quantitative

and qualitative agreement between the continuum description and the agent based model.

Hein et al. eLife 2015;4:e10955. DOI: 10.7554/eLife.10955 29 of 43

Research article Ecology Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.10955


This kinetic description can be converted into a hierarchy of fluid equations by taking

moments with respect to the angular direction variable �.

We introduce the phase space particle density f:

f ¼Np (A27)

The Fourier series for f gives the important macroscopic variables, for instance:

�¼
ð2p

0

fd� �ux ¼
ð2p

0

fv0cosð�Þd� �uy ¼
ð2p

0

fv0sinð�Þd� (A28)

Here u is the mean velocity of agents at each point in space. We will take moments of the

kinetic equation through Fourier series:

fðx;�Þ ¼
X

¥

m¼�¥

~fmðxÞeim� (A29)

The time evolution equation for the mth Fourier coefficient is:

q~fm

qt
þ v0

2

q

qx
þ i

q

qy

� �

~fmþ1 þ
q

qx
� i

q

qy

� �

~fm�1

� �

þmjFðx; �Þj
2v0

eiQðx; �Þ~fmþ1 � e�iQðx; �Þ~fm�1

� �

¼�m2"~fm

(A30)

Here, we have simplified this expression by introducing two new functionals of the density,

F ðx;�Þ and Qðx;�Þ, which represent the social force exerted at the point x due to the density �

and the direction of that social force. Explicitly these are given by:

F x;�ð Þ ¼ �
ð

V

d2x0
X

k�1

j¼0

e�lðx;x0Þlðx;x0Þj
j!

rw jx�x0jð Þ�ðx
0Þ

N
(A31)

Qðx;�Þ ¼ argð�Fðx;�ÞÞ (A32)

The evolution of the mth moment depends on the value of the mþ 1st moment, so that we

have an infinite hierarchy of equations. Moments with high values of jmj experience strong

damping, and we can use this to justify discarding all moments with jmj above a given

threshold. In the following treatment we will set to zero all Fourier coefficients with jmj > 1,

which is the simplest truncation of the hierarchy that leads to non-trivial equations.

q�

qt
þr�ð�uÞ ¼ 0 (A33)

q�u

qt
þ v20

2
r�� 1

2
F x;�ð Þ�¼ � "�u (A34)

The right hand side of the momentum equation leads to rapid equilibration, and we can

eliminate the time derivative in this equation. This allows us to find an expression for �u in

terms of � only:

�u¼ � v20
2"

r�þ 1

2"
F x;�ð Þ� (A35)
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We can use this to write a single closed equation for �. In order to facilitate the analysis of this

equation, we make one further approximation, replacing the sum over Poisson factors with a

Heaviside function that is equal to 1 if the expected number of agents between inside a ball of

size x0 is less than k, and 0 otherwise. This captures the dominant qualitative feature of the

topological interaction in a simple way: the effective interaction radius is a function of the local

density. This approximation is quantitatively consistent with the assumptions of the previous

section and the results of our simulations. The resulting equation is:

q�

qt
þr� � v20

2"
r�þ �

2"

ð

jx�x0j<Lð�;xÞ
rw jx�x0jð Þ� x0ð Þd2x0

 !

¼ 0 (A36)

L �;xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

k

p�ðxÞ

s

(A37)

The advection-diffusion equation will be used to understand the behavior of our multi-agent

simulations. From its form one can see the effects of v0: large v0 enhances the diffusivity and

reduces the effects of the potential.

5.1 Formation of the cohesive state and stability of the dispersed
state
Any constant density function �0 is an equilibrium solution of Equation A36. A crucial property

of our multi-agent model is that depending on the background velocity, the agents have the

ability to spontaneously form a dense state which we call the cohesive state. In order for this

to be possible, the uniform state must be unstable. One advantage of the continuum

description is that it allows us to investigate such questions within a much simpler framework

than in the original agent based model. In order to do so, we select a uniform state with value

�0 and linearize around it, neglecting terms second order or higher in the deviation away from

�0:

q�1
qt

¼r� v20
2"

r�1 �
�0
2"

ð

jx�x0j<L0

rw jx�x0jð Þ�1 x0ð Þd2x0

 !

(A38)

L0 ¼
ffiffiffiffiffiffiffiffi

k

p�0

s

(A39)

This is translationally invariant, and we have periodic boundary conditions, so we consider the

Fourier coefficients of �1:

q�~1;j
qt

¼ � �~1;j jj2j2p
2v20

"L2
D

�G jjjð Þ
� �

(A40)

The term GðjjjÞ can be calculated by application of the convolution theorem and integration

by parts, using the fact that the integrals are radially symmetric (which is true as long as

L0 < LD):

G jjjð Þ ¼ ��0pij

"LD
�
ð

V

e
�2pij�x
LD rw jxjð ÞH L0 �jxjð Þd2x (A41)

¼ �
ðL0

0

2p2�0jjj
"LD

drr
qw

qr
J1

2pjjjr
LD

� �

(A42)
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Here J1 stand for the corresponding Bessel functions of the first kind. Linear stability is

determined by the sign of the coefficient on �~1;j on the right hand side of the following

expression:

q�~1;j
qt

¼ � 2p2v20jjj
2

"L2
D

�~1;j 1�LD�0
jjjv20

ðL0

0

rdr
dwðrÞ
dr

J1
2pjjjr
LD

� �� �

(A43)

We can use our formula to determine the stability or instability of an arbitrary homogeneous

equilibrium solution. We have plotted an example of this in Appendix Figure 10. A number of

general features emerge from these diagrams. Increases in the background velocity v0 always

promotes stability of the dispersed state. The agents make use of this feature to enable

themselves to transition from the dispersed state to the cohesive state in regions where Y

crosses below the stability threshold. Increases in the number of interaction neighbors k, the

decay length of the attractive interaction la, and the strength of the attractive interaction Ca all

promote instability of the dispersed state, though at large k further increases in k have little

effect. The background density of agents has a more complicated effect on the stability of the

dispersed state, when �0 is low the social forces are very weak because the distance between

agents is large, so that a very small v0 is required for formation of the dispersed state. When

�0 gets too large, the repulsive part of the interaction becomes more important and stability

of the dispersed state is promoted.

Appendix figure 10. Regions of parameter space where dispersed state is stable (white) and

unstable (black).

Instability of dispersed state causes transition to cohesive state. (A) Sensitivity to la, for � =

.0025, K = 25, lr = 1.0, Ca = 1.0, Cr = 1.1. Increasing la promotes instability and formation of

the cohesive state, as does decreased v0. (B) Sensitivity to K, for � = .0025, la = 7.5, lr = 1.0,

Ca = 1.0, Cr = 1.1. Increasing K promotes instability and formation of the cohesive state, as

does decreased v0. Large values of K lead to roughly the same stability properties, due to the

exponential decay of the interaction with length. (C) Sensitivity to Ca, for � = .0025, la = 7.5, lr
= 1.0, K = 25, Cr = 1.1. Increasing Ca promotes instability and formation of the cohesive state,
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as does decreased v0. (D) Sensitivity to �. Smaller v0 promotes instability. When � is very small,

increasing � makes instability more likely.

DOI: 10.7554/eLife.10955.022

5.2 Nonlinear stability of the dispersed state for high v0
Equation A36 combines a diffusive term with effective diffusion coefficient

v2
0

2", and a term due

to the social forces, which is proportional to the magnitude of the social forces and 1
2". On the

basis of this, we expect that as v0 increases the diffusive terms become more important

relative to the social forces. In the linear stability analysis, this manifested itself through

instability of the homogeneous base state when v0 was decreased below a threshold. When v0
is large enough, we are able to prove using energy inequalities (Doering and Gibbon, 1995)

that the homogeneous equilibrium state is a global attractor. The implication of this is that

above a certain threshold the cohesive state can no longer exist, and all the agents enter the

dispersed state. Combined with the results of the previous subsection, this provides an

analytical demonstration of the hysteresis that we observe in our multi-agent model.

In order to establish these results, we rewrite the dynamical equation for � in terms of the

deviation from the mean density � ¼
ð

V

�
L2
D

d2x. We define �1 ¼ �� �. Then the equation for �1

is:

q�1
qt

þr� � v20
2"

r�1 þ
ð�1 þ �Þ

2"

ð

jx�x0j<LðxÞ
rw jx�x0jð Þ�1 x0ð Þd2x0

 !

¼ 0 (A44)

We multiply by �1 on both sides of the equation and integrate:

dk�1k22
dt

¼� v20
2"

kr�1k22�
ð

V

�1�

2"
r�
ð

jx�x0j<L

d2x0rw jx�x0jð Þ�1 x0ð Þd2x

�
ð

V

�1
2"

r� �1

ð

jx�x0j<L

d2x0rwðjx�x0jÞ�1ðx0Þ
 !

d2x

(A45)

Here the expression kfkp ¼
Ð

V d
2xjfðxÞjp

� �1=p
is the standard Lp norm on the space V . The first

term on the right hand side can be bounded through use of the Poincare inequality for a mean

zero function on the torus:

kr�1k22 �
4p2

L2
D

k�1k22 (A46)

The second term on the right hand side can be simplified by performing integration by parts

in order to transfer the gradient operators onto the �1 terms:

1

2"
�

ð

V

d2x�1 xð Þr �
ð

x�x0j j<L

d2x0r! x�x0j jð Þ�1 x0ð Þ
�

�

�

�

�

�

�

�

�

�

� �j j
2"

jjr�1jj2jj�1jj2jjH L� xj jð Þr! xj jð Þjj1 (A47)

Here we have made use of Young’s Inequality, which states that jjf � gjjr � jjf jjp � jjgjjq when
1
r ¼ 1

p þ 1
q � 1.

The third term on the right hand side is the most difficult to deal with because it contains

three powers of �1. To bound this term we make use of the fact that the density � is always

positive, which implies that �1 > � �. Then, because �1 has zero mean, we can bound jj�1jj1:

jj�1jj1 � 2jj�jj1 (A48)
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Using this expression (and Young’s Inequality), we find that:

ð

V

d2x�1r� �1

ð

x�x0j j<L

d2x0r! x�x0j jð Þ�1 x0ð Þ
 !�

�

�

�

�

�

�

�

�

�

� 2

ð

V

d2x

� �

�jjr!jj
¥
jjr�1jj2jj�1jj2 (A49)

Using these bounds, we can write a differential inequality for djj�1jj22
dt :

djj�1jj22
dt

� �n20
2"

þLD�jjH L� xj jð Þrw xj jð Þjj1
4p"

þ L3
D

2p"
�jjrwjj

¥

� �

jjr�1jj 22 (A50)

If v0 satisfies the following inequality:

n0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LD

4p
� jjH L� jxjð Þrw jxjð Þjj1þ 2L2

Djjrwjj
¥

� �

r

(A51)

then the coefficient of jjr�1jj22 in the differential inequality is negative, and we can apply the

Poincare inequality to find:

djj�1jj22
dt

� �2p2v20
"L2

D

þp�jjHðL�jxjÞr!ðjxjÞjj1
LD"

þ 2pLD

"
�jjr!jj

¥

� �

jj�1jj22 (A52)

This inequality allows us to use Gronwall’s lemma (Doering and Gibbon, 1995) to prove jj�1jj2
that converges to 0 as a function of time, which implies that the homogeneous state is globally

attractive for sufficiently large v0.

5.3 Conclusion from continuum model
The simulations of the agent based model indicated that our agents possessed two properties:

for small v0 a cohesive state forms spontaneously, for large v0 only dispersed states are

possible, and for moderate values of v0 both cohesive and dispersed states are possible. We

were able to create a continuum model that demonstrates the mechanisms behind these

numerical observations. We showed that for small v0, homogeneous background states are

linearly unstable to the formation of clumped states. For larger v0, the homogeneous

background states are linearly stable. Further, we showed that for sufficiently large v0, the

homogeneous state is globally attractive, so that clumped states are not possible.

5.4 Some additional properties of the transition between collective
states: nucleation rates and hysteresis
In the theory of first order phase transitions, hysteresis often arises because there is a free

energy penalty for small droplets of the stable phase. This leads to extremely low probabilities

of critical droplet formation near the transition temperature. In order to test whether this

effect is responsible for the hysteresis in our model equations, we performed long time

numerical simulations using values of Y within the hysteresis region, allowing us to estimate

the nucleation rate of the cohesive phase. We performed replicate simulations with 103 agents,

restarting the simulations each time the agents were able to form the cohesive state. The

results of this simulation are shown in Appendix Figures 11 and 12, illustrating the super-

exponential growth in the mean nucleation time as Y increases. This growth in nucleation

times corresponds to an increase in the minimum radius of a stable group. When Y increases

above 1.7, the expected time for nucleating the cohesive state becomes extremely large,

leading to strong hysteresis. We also computed 1
ffiffiffiffiffiffiffi

logT
p to illustrate the approximate scaling of

the nucleation time (Appendix Figure 12). Because we use a topological interaction, we do

not necessarily expect this scaling to hold for much larger values of Y, as groups with N < 25

will have an increasing, rather than constant, potential energy per particle.
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Appendix Figure 11. Mean nucleation time as a function of Y in the hysteresis region.

Bars show mean nucleation time calculated from replicate simulations in which individuals

begin the simulation with random starting positions. Simulation was ended when an agent

reached a social potential value < �14, which is only possible if a dense group has formed. For

each simulation, we denoted the time taken to satisfy this condition as the nucleation time.

Parameter values taken from population at ESSt described above.

DOI: 10.7554/eLife.10955.023

Appendix Figure 12. Approximate scaling of mean nucleation time with Y in the hysteresis

region.

Data from Appendix Figure 11. Black points show means. White points are � 1 standard

deviation. Note that the nucleation time is super-exponential in Y indicating that the
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probability of nucleation becomes extremely small as Y approaches the upper boundary of

the hysteresis region.

DOI: 10.7554/eLife.10955.024

6 Social gradient climbing and aggregation on a resource
peak
In this section we derive a model of collective exploration and exploitation that allows us to

understand how the ability of agents to find the resource peak changes when model

parameters like ψ0 or sociality are varied. We model agents as being either in a cohesive state

near a resource peak or in a dispersed state. Using the model parameters and some simple

assumptions about the dynamics, we calculate the fraction of particles approaching the

resource peak that are able to enter the cohesive state. Using this model, we quantitatively

estimate the rate at which agents are able to find the peak and the advantage of social agents

versus asocial agents. We begin by stating a number of assumptions, each of which arises from

some feature of our multi-agent model, that help make our theoretical analysis tractable.

6.1 Assumptions
1. The environmental response function is YðxÞ ¼ ψ0 � ψ1Ae�r2=s2

, indicating a single peak
located at the origin and a preferred background velocity of v0 ¼

ffiffiffiffiffi

ψ0

p
in regions far from the

resource peak.

2. Agents travel at the speed dictated by the environmental response function Y, so that
vðxÞ ¼ vðrÞ ¼

ffiffiffiffi

Y
p

. Only the direction of the velocity is allowed to vary.

3. Particles exist in one of two states, the cohesive state or the dispersed state. Particles in the
cohesive state are close to the resource peak. Particles in the dispersed state have a uniform
probability distribution in space and in direction. Particles in the cohesive state collectively
produce a potential Fpeak rð Þ ¼ min k; Nð ÞCae

� r
la .

4. Agents in the dispersed state interact only with particles in the cohesive state, and this inter-
action is cutoff for distances r > lmax ¼ rM . The potential force is projected normal to the
velocity of the agents so that it can only effect the agent directions.

5. An agent enters the cohesive state if it has a trajectory that reaches the radius of zero veloc-
ity,
rt ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log
Aψ1

ψ0

� �

r

, which is assumed to mark the transition between the cohesive and dis-
persed states.

6.2 Critical angle for capture by the peak
Consider a particle reaching rM , the radius where it begins to feel the influence of the agents

on the environmental resource peak, as is depicted in Appendix Figure 13. If the angle of the

agent’s trajectory is sufficiently directed towards the resource peak, the agent will reach the

peak, and if the angle is directed sufficiently away, the agent will not reach the peak. There is

a critical angle Di at the boundary between these two scenarios. The size of Di will determine

the fraction of agents captured by the resource peak after crossing r ¼ rM , and it will also

determine the flux of agents onto the resource peak.
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Appendix Figure 13. There is a group agents on the resource peak at the origin.

These agents are contained within the a circle of radius rt, corresponding to the zero velocity

region. An agent enters the region of radius rM and begins to feel the force from the agents

on the peak. The angle of the velocity of the agent relative to the peak is D.

DOI: 10.7554/eLife.10955.025

To derive an expression for Di, we write equations for an agent traveling with a velocity of

magnitude vðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ψ0 � ψ1Ae�r2=s2

q

, in direction !, experiencing the potential force

�rFpeakðrÞ:

Our question is the following: given initial radius r ¼ rM , initial angle �0, and initial direction

!0, does the agent reach the zero velocity radius? The equations of motion are:

dr

dt
¼ v rð Þcos ��!ð Þ (A53)

d�

dt
¼ vðrÞ

r
sin !� �ð Þ (A54)

d!

dt
¼

F
0
peakðrÞ
vðrÞ sin !� �ð Þ (A55)

We define the angle D ¼ � p� !þ �, which is the angle between the velocity vector and the

vector directed from the position of the agent to the origin. Then we can rewrite our

equations in terms of the variables r and D alone, leading to the following planar system:

dr

dt
¼ � v rð Þcos Dð Þ (A56)

dD

dt
¼ �

F
0
peakðrÞ
vðrÞ �vðrÞ

r

 !

sin Dð Þ (A57)

The system of equations described here has the following properties:

1. If D ¼ 0, then dD
dt ¼ 0, so that D ¼ 0 for all further times. Similarly, D ¼ 0 implies dr

dt < 0, so that
any agent with D ¼ 0 will reach the zero velocity radius.

2. If � p

2
< D < p

2
, then dr

dt < 0 and the agent will move closer to the peak.

3. If both
F

0
peakðrÞ
vðrÞ � vðrÞ

r

� �

> 0 and � p

2
< D < p

2
, then djDj

dt < 0, and D becomes closer to 0.
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We make one additional assumption, which has been true in most practical cases, that allows

us to make progress with the analysis.

Assumption: The function F
0
peak rð Þ � vðrÞ2

r has exactly one sign change on the interval ðr0;¥Þ.

The location of the sign change occurs when F
0
peak rð Þ ¼ vðrÞ2

r , a point which we denote by r*.

At r = r*, there is a balance between centrifugal and potential forces. We have the following

inequalities:

F
0
peakðrÞ
nðrÞ <

nðrÞ
r

for r < r�;
F

0
peakðrÞ
nðrÞ >

nðrÞ
r

for r > r� (A58)

This assumption allows us to divide the ðr; DÞ plane into four regions:

1.
�p

2
<D<

p

2
and r < r�

2.
D<�p

2
or

p

2
< D and r > r�

3.
�p

2
< D<

p

2
and r > r�

4.
D<�p

2
or

p

2
< D and r < r�

In region 1, the agents move towards the peak and the potential force is stronger than the

centrifugal force. In region 2, the agents move away from the peak, and the potential force is

weaker than the centrifugal force. In region 3, agents move towards the peak but the potential

force is weaker than the centrifugal force. In region 4, the agents move away from the peak

but the potential is stronger than the centrifugal force. We conclude that:

1. Any trajectory that enters region 1 will reach the zero velocity radius.

2. Any trajectory that enters region 2 will escape to ¥.

Consider again the hypothetical agent in region 3 and at radius r = rM. The agent will

eventually either reach region 1, region 2, or the boundary points between the two regions

(which are unstable equilibria).

1. The points r�;� p

2

� �

are unstable equilibrium points, each corresponding to a periodic orbit
around the resource peak.

2. There are two values of D such that the solution of the initial value problem with initial condi-
tion (rM, D) reach these equilibria. We call these angles �Di, where we define Di > 0. Any tra-
jectory with initial value ðrM ; DÞ, with jDj < Di will enter region I and be captured by the
resource peak, and any trajectory with initial value satisfying jDj > Di will enter region II and
escape the resource peak.

The angle Di is the critical angle that we seek.

6.3 Solving the reduced system
Instead of considering the time dependent differential equation, we search for an equation that

describes the shape of a trajectory, that is, we assume D is a single valued function of r, and

use the original equation in combination with the chain rule to write a differential equation for

DðrÞ. This method is valid in regions where D is actually a single-valued function of r, and for
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this to be the case integration must be restricted to regions where F
0
peak rð Þ � v2ðrÞ

r has only one

sign. The resulting equation will be valid only while a trajectory is in region 3, and the

coefficients of this equation will blow up at the border of region 3.

The quotient of Equation A56 and A57 is the desired equation:

dr

dD
¼ cotðDÞ

F
0
peakðrÞ
vðrÞ2 � 1

r

(A59)

Equation A59 can be solved by integrating along a trajectory beginning at ðrM ;DiÞ, and
ending at r�; p

2

� �

, leading to:

ðr�

rM

F
0
peakðrÞ
vðrÞ2 � 1

r

 !

dr¼
ðp

2

Di

cot Dð ÞdD (A60)

To simplify the resulting expressions, let F ðrÞ be the anti-derivative of
F

0
peakðrÞ
vðrÞ2 .

F rð Þ ¼
ðrF

0
peakðrÞdr
vðrÞ2 (A61)

This leads to an integral equation:

F r�ð Þ�F rMð Þ� log
r�
rM

� �

¼�log sin Dið Þð Þ (A62)

This equation can be solved for the critical angle Di:

Di ¼ sin�1 r�
rM

eF rMð Þ�F r�ð Þ
� �

(A63)

The critical angle Di is a function of the parameters defining the agent behavior, such as ψ0

and ψ1, and the parameters defining the clump, such as the peak occupancy N. When ψ0 is

very small, trajectories spend much more time under the influence of the potential, and

consequently it is much more likely that they are captured by the peak. Thus, for small ψ0,

Di ¼ p=2. As N increases, the potential becomes stronger, and the values of Di are increased

for all ψ0. When ψ0 is too large Di goes to 0 and agents cannot find the peak.

Appendix Figure 15 contains a plot demonstrating the aforementioned properties of Di.
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Appendix Figure 14. Division of the (r, D) plane into trapping and escaping regions.

Any particle that enters region I will eventually reach the zero velocity radius. Any particle that

enters region II will escape capture by the peak. Our initial condition will be in the right half

plane, on the circle of width rM. The two red circles are unstable equilibria, each

corresponding to a circular orbit of the peak.

DOI: 10.7554/eLife.10955.026

Appendix Figure 15. Critical angle Di for capture of agents by the resource peak, for different

peak occupancy levels N and different values of the background velocity v0 ¼
ffiffiffiffiffi

ψ0

p
.

Small v0 and large N lead to increased Di and a greater cross-section for capture of agents by

the resource peak.

DOI: 10.7554/eLife.10955.027

Appendix Figure 16 contains a plot of the direction field Equation A59 and plots of

trajectories that reach r�;� p

2

� �

, demonstrating the trapping of trajectories that enter region I,

and providing numerical confirmation of our formula for the critical angle Di.

Hein et al. eLife 2015;4:e10955. DOI: 10.7554/eLife.10955 40 of 43

Research article Ecology Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.10955.026
http://dx.doi.org/10.7554/eLife.10955.027
http://dx.doi.org/10.7554/eLife.10955


Appendix Figure 16. Solutions of the differential equation for v0 ¼ 2:0 and N = 8.

The green region corresponds to 0 velocity. In the grey region surrounding the green region,

the potential is stronger than centrifugal forces, which for � p

2
< D < p

2
represents the trapping

region. The two red circles correspond to the unstable equilibrium points, and the red

trajectories are the trajectories that begin at �Di; rMð Þ, which reach the equilibrium points and

thus represent the boundaries of the set of initial conditions that are captured.

DOI: 10.7554/eLife.10955.028

6.4 Equation for peak exploration
Using Equation A63 for Di, we can write an equation for the rate at which the number of agents

occupying a resource peak increases.

1. We assume that there is a population of P agents moving in a torus of width L, and that N
of these agents occupy a resource peak at the origin.

2. The spatial density of agents away from the peak is homogeneous and equal to P�N
L2 .

3. The velocity of agents located at r > rM has magnitude v0 ¼
ffiffiffiffiffi

ψ0

p
and is uniformly distributed

in direction.

4. When an agent reaches r ¼ rM , if it has �Di < D < Di, the agent will be captured by the
peak. Otherwise it will escape.

This allows us to calculate the rate of capture of agents on the peak. The flux of agents to the

radius rM and the angle D is equal to �v0
2p
. The flux of agents to a point on the circle with �Di <

D < Di is equal to
�v0Di

p
. Then integrating over the circle with radius rM gives us the total flux to

the peak, or the rate of change of the peak occupancy N:

dN

dt
¼ 2�rMv0Di Nð Þ ¼ 2ðP �NÞ

L2
rMv0Di Nð Þ (A64)

6.5 Comparison of social versus asocial exploration
We can perform a simple calculation to demonstrate how sociality enhances the rate at which

agents occupy a resource peak. In the context of this model, the difference between social
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and asocial agents is that the flux of asocial agents to a peak is not enhanced by the presence

of agents on a peak. Thus the rate at which the number of asocial agents occupying a peak

increases is linear in time. Indeed, if we assume that the total population is large in

comparison with the number of agents on the peak, then we can approximate the arrival of

asocial agents onto the peak with the following differential equation:

dN

dt
¼ 2�rMv0Di 0ð Þ (A65)

If the peak is unoccupied at time t ¼ 0, this equation has solution:

NðtÞ ¼ 2�rMv0Dið0Þt (A66)

In contrast, the flux of social agents to a peak is enhanced by the presence of other agents on

the peak. A similar approximation leads to the equations:

dN

dt
¼ 2�rMv0Di Nð Þ (A67)

Appendix Figure 17 contains a plot of the function DiðNÞ versus N. This plot motivates

approximating DiðNÞ as a piecewise linear function, linearly increasing from Dið0Þ for small N

until the value NM at which Di ¼ p

2
, at which point the flux becomes a constant function equal

to p�rMv0. In the initial phase, we approximate the differential equation with:

Appendix Figure 17. Rate of arrival of social agents onto a resource peak as a function of the

number of agents already on the peak.

There are two behavior regimes, the initial regime in which flux grows linearly with N (giving

rise to exponential growth of the number of individuals on the peak), and a regime where the

flux reaches it’s maximum value (after which point peak occupancy grows linearly). This figure

was calculated using Equation A67, with velocity v0 = 1.0, density � = .01, K = 25 interaction

neighbors, social potential min(N, K)e�|r|/7.5, and resource peak shape 10e�jr2 j=25:0.

DOI: 10.7554/eLife.10955.029

dN

dt
¼ 2�rMv0 Di 0ð Þþ N

NM

p

2
�Di 0ð Þ

� �

� �

(A68)

When the peak is unoccupied at t ¼ 0, this has solution:
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N tð Þ ¼NMDi 0ð Þ
p

2
�Di 0ð Þ

e
2�rMn0

t
NM

p

2
�Di 0ð Þð Þ � 1

� �

(A69)

This solution is good up until N ¼ NM , which happens at:

t¼ tM ¼ log

p

2
�Di 0ð Þ
Di 0ð Þ þ 1

0

@

1

A

NM

2�rMn0
p

2
�Di 0ð Þ

� � : (A70)

When t > tM , the solution is:

NðtÞ ¼NM þðt� tMÞp�rMv0: (A71)

Appendix Figure 18 compares the function NðtÞ for social and asocial agents.

Appendix Figure 18. Comparison of peak occupancy as a function of time between social and

asocial agents, using the parameters that generated Appendix Figure 17 and Equation A66,

A69, A71.

Social agents occupy the peak much more quickly than asocial agents.

DOI: 10.7554/eLife.10955.030

7 Numerical methods
We used the CVODE subroutine of the SUNDIALS package to numerically solve the agent-

based model (Hindmarsh et al., 2005). The resulting system of ODEs is stiff, so we utilized the

variable order backward-differentiation methods provide by SUNDIALS. We found these

implicit methods to be much more efficient than explicit methods for the particular problem

that we considered. We also made use of the armadillo linear algebra library

(Sanderson, 2010), the MATLAB statistics and machine learning toolbox for nearest neighbor

searches, and the mex file libraries to interface all of these different tools (MATLAB, 2015).
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