Synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells

  1. Philippe FY Vincent
  2. Yohan Bouleau
  3. Christine Petit
  4. Didier Dulon  Is a corresponding author
  1. Université de Bordeaux, France
  2. Institut Pasteur, France

Abstract

We show that a cage-shaped F-actin network is essential for maintaining a tight spatial organization of Cav1.3 Ca2+ channels at the synaptic ribbons of auditory inner hair cells. This F-actin network is also found to provide mechanosensitivity to the Cav1.3 channels when varying intracellular hydrostatic pressure. Furthermore, this F-actin mesh network attached to the synaptic ribbons directly influences the efficiency of otoferlin-dependent exocytosis and its sensitivity to intracellular hydrostatic pressure, independently of its action on the Cav1.3 channels. We propose a new mechanistic model for vesicle exocytosis in auditory hair cells where the rate of vesicle recruitment to the ribbons is directly controlled by a synaptic F-actin network and changes in intracellular hydrostatic pressure.

Article and author information

Author details

  1. Philippe FY Vincent

    Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Centre Hospitalier Universitaire de Bordeaux, Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Yohan Bouleau

    Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Centre Hospitalier Universitaire de Bordeaux, Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Christine Petit

    Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Didier Dulon

    Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Centre Hospitalier Universitaire de Bordeaux, Université de Bordeaux, Bordeaux, France
    For correspondence
    didier.dulon@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Christian Rosenmund, Charité, Universitätsmedizin Berlin, Germany

Ethics

Animal experimentation: This study was performed in accordance with the guidelines of the Animal Care Committee of the European Communities Council Directive (86/609/EEC) and were approved by the ethics committee of the University of Bordeaux (animal facility agreement 155 number C33-063-075)

Version history

  1. Received: August 19, 2015
  2. Accepted: November 12, 2015
  3. Accepted Manuscript published: November 14, 2015 (version 1)
  4. Version of Record published: December 17, 2015 (version 2)

Copyright

© 2015, Vincent et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,440
    views
  • 345
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philippe FY Vincent
  2. Yohan Bouleau
  3. Christine Petit
  4. Didier Dulon
(2015)
Synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells
eLife 4:e10988.
https://doi.org/10.7554/eLife.10988

Share this article

https://doi.org/10.7554/eLife.10988

Further reading

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.