Synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells

  1. Philippe FY Vincent
  2. Yohan Bouleau
  3. Christine Petit
  4. Didier Dulon  Is a corresponding author
  1. Université de Bordeaux, France
  2. Institut Pasteur, France

Abstract

We show that a cage-shaped F-actin network is essential for maintaining a tight spatial organization of Cav1.3 Ca2+ channels at the synaptic ribbons of auditory inner hair cells. This F-actin network is also found to provide mechanosensitivity to the Cav1.3 channels when varying intracellular hydrostatic pressure. Furthermore, this F-actin mesh network attached to the synaptic ribbons directly influences the efficiency of otoferlin-dependent exocytosis and its sensitivity to intracellular hydrostatic pressure, independently of its action on the Cav1.3 channels. We propose a new mechanistic model for vesicle exocytosis in auditory hair cells where the rate of vesicle recruitment to the ribbons is directly controlled by a synaptic F-actin network and changes in intracellular hydrostatic pressure.

Article and author information

Author details

  1. Philippe FY Vincent

    Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Centre Hospitalier Universitaire de Bordeaux, Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Yohan Bouleau

    Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Centre Hospitalier Universitaire de Bordeaux, Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Christine Petit

    Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Didier Dulon

    Bordeaux Neurocampus, Equipe Neurophysiologie de la Synapse Auditive, Centre Hospitalier Universitaire de Bordeaux, Université de Bordeaux, Bordeaux, France
    For correspondence
    didier.dulon@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in accordance with the guidelines of the Animal Care Committee of the European Communities Council Directive (86/609/EEC) and were approved by the ethics committee of the University of Bordeaux (animal facility agreement 155 number C33-063-075)

Copyright

© 2015, Vincent et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,454
    views
  • 347
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Philippe FY Vincent
  2. Yohan Bouleau
  3. Christine Petit
  4. Didier Dulon
(2015)
Synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells
eLife 4:e10988.
https://doi.org/10.7554/eLife.10988

Share this article

https://doi.org/10.7554/eLife.10988

Further reading

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.