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Abstract A prerequisite for the systems biology analysis of tissues is an accurate digital three-

dimensional reconstruction of tissue structure based on images of markers covering multiple scales.

Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative

morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly

developed algorithms that address specific challenges of thick dense tissue reconstruction. Our

implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable

to various mammalian tissues. We applied it to the analysis of liver tissue and extracted

quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell

types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of

hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue

organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating

its generality and robustness.

DOI: 10.7554/eLife.11214.001

Introduction
A major challenge for the understanding of mammalian tissue structure and function is the ability to

monitor cellular processes across different levels of complexity, from the subcellular to the tissue

scale (Megason and Fraser, 2007). This information can then be used to develop quantitative func-

tional models that describe and predict the system behaviour under perturbed conditions

(Hunter et al., 2008; Smith et al., 2011; Fonseca et al., 2011; Sbalzarini, 2013). The development

of such multi-scale models requires first a geometrical model of the tissue, that is, an accurate three-

dimensional (3D) digital representation of the cells in the tissue as well as their critical subcellular

components (Peng et al., 2010; Boehm et al., 2010; Mayer et al., 2012). This can be constructed

from high-resolution microscopy images with multiple fluorescent markers, either fusion proteins or

components detected by antibody staining. Since organelles can be as small as ~0.1 mm in size, the

geometrical model has also to cover a wide range of scales spanning over three orders of magni-

tude. However, substantial limitations persist with respect to availability of markers, volume of tissue

to reconstruct, scale of measurements, computational methods to perform the analysis and sample

throughput. Although a few existing platforms provide standard tools for 3D segmentation and

methods to process 2D surface layers of cells [ImageJ/Fiji (Girish and Vijayalakshmi, 2004; Col-

lins, 2007), ICY (de Chaumont et al., 2012) and MorphoGraphX (Barbier de Reuille et al., 2015)],

the challenges posed by dense and thick tissue specimens require the development of new algo-

rithms. Therefore, there is a demand for a platform that can provide the required set of methods for
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the reconstruction of multi-scale digital 3D geometrical models of mammalian tissues from confocal

microscopy images.

The number of fluorescent markers that can be used simultaneously is limited to 4–5, making the

reconstruction of tissue models a challenging problem. For a meaningful model, it is necessary to

properly identify the different cell types within the tissue but also to detect subcellular and extracel-

lular structures, for example, nuclei, plasma membrane or cell cortex, extracellular matrix (ECM) and

cell polarity. Automated morphological cell recognition is a possible way to reconstruct dense tissue

with limited number of markers.

Geometrical digital models of tissues also require 3D information over large volumes. Validated

fluorescent protein chimeras are not always available, especially in the appropriate combination of

fluorescence emission spectral profiles. On the other hand, in dense tissues immunostaining is inho-

mogeneous due to restricted antibody penetration. The development of protocols that render tis-

sues optically transparent and permeable to macromolecules without significantly compromising

their general structure enables the imaging of relatively thick specimens (Chung and Deisseroth,

2013; Ke et al., 2013). However, in the case of a densely packed tissue, for example, liver, homoge-

neous staining is still limited to a thickness of ~100 mm. Therefore, obtaining high-resolution data

from large volumes of tissue (typically from 0.1 mm to a few centimetres) requires sectioning the

sample into serial 100-mm-thick slices that are stained and imaged separately. Furthermore, the cut-

ting process introduces artefacts, such as bending, uneven section surfaces and partial damage of

tissue, that require corrections during tissue model reconstruction. Unfortunately, the publicly avail-

able generic image processing software is unable to deal with such problems.

In this study, we addressed these challenges by developing a set of new algorithms as well as

implementing established ones in an adjustable pipeline implemented in stand-alone freely available

software (http://motiontracking.mpi-cbg.de). As proof of principle, we tested the pipeline on the

reconstruction of a geometrical model of liver tissue. We chose this particular tissue due to its

utmost importance for basic research, medicine and pharmacology. In order to test the accuracy of

the pipeline, we created a benchmark for the evaluation of dense tissue reconstruction algorithms

comprising a set of realistic 3D images generated from the digital model of liver tissue. Furthermore,

eLife digest Understanding how individual cells interact to form tissues in animals and plants is

a key problem in cell and developmental biology. To be able to answer this question researchers

need to use microscopy to observe the cells in a tissue, extract structural information from the

images, and then generate three-dimensional digital models of the tissue. However, the software

solutions that are currently available are limited, and reconstructing three-dimensional tissue from

microscopy images remains problematic.

To meet this challenge, Morales-Navarrete et al. extended the free software platform called

MotionTracking, which had been used previously for two-dimensional work. The software now

combines a series of new and established algorithms for analysing fluorescence microscopy images

that make it possible to identify the different structures that make up a tissue and then create and

analyse a three-dimensional model.

Morales-Navarrete et al. used the software to analyse liver tissue from mice. The resulting model

revealed that liver cells called hepatocytes are arranged in particular zones within the tissue

according to their size and DNA content. The software was also applied successfully to analyse lung

and kidney tissue, which demonstrates that the approach can be used to create three-dimensional

models of a variety of tissues.

Morales-Navarrete et al.’s approach can rapidly generate accurate models of larger tissues than

were previously possible. Therefore, it provides researchers with a powerful tool to analyse the

different features of tissues. This tool will be useful for many areas of research: from understanding

of how cells form tissues, to diagnosing diseases based on the changes to features in particular

tissues.

DOI: 10.7554/eLife.11214.002
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we applied the platform to the analysis of lung and kidney tissue, demonstrating its generality and

robustness.

Results
Despite its importance and a long history of histological studies, only a few geometrical models of

liver tissue have been published (Hardman et al., 2007; Hoehme et al., 2010; Hammad et al.,

2014). The liver is composed of functional units, the lobules. In each lobule, bile canaliculi and sinu-

soidal endothelial cells form two 3D networks between the portal vein (PV) and the central vein (CV).

The bile canalicular (BC) network is formed by hepatocytes and transports the bile, whereas the sinu-

soidal endothelial network transports the blood. The liver tissue has a number of remarkable fea-

tures. One is the zonation of metabolic functions due to the fact that the hepatocytes located in the

vicinity of the PV do not have the same metabolic activities as the hepatocytes located near the CV

(Kuntz and Kuntz, 2006). Second, hepatocytes are remarkably heterogeneous in terms of number

of nuclei (mono- and bi-nucleated) and ploidy (Martin et al., 2002; Guidotti et al., 2003;

Faggioli et al., 2011). Third, the lobules contain two additional important cell types, stellate and

Kupffer cells (Baratta et al., 2009).

To analyse the 3D organization of liver tissue, we established a workflow for confocal imaging of

mouse liver specimens and developed an adjustable pipeline of new and established image analysis

algorithms to process the images and build digital models of the tissue (Figure 1 and Figure 1—fig-

ure supplement 1). First, we established a protocol for the preparation of tissue specimens for sin-

gle- and double-photon confocal microscopy at different resolutions. To cover multiple scales from

subcellular organelles to tissue spanning over three orders of magnitude, we used a 3D multi-resolu-

tion tissue image acquisition approach (Figure 1A). This consisted of imaging a tissue sample at low

resolution (1 mm � 1 mm � 1 mm per voxel) and zooming on the parts of interest at high resolution

(0.3 mm � 0.3 mm � 0.3 mm per voxel). Second, the multi-scale reconstruction of tissue architecture

was obtained following the pipeline of Figure 1B and Figure 1—figure supplement 1. Briefly, (1)

images were filtered using a novel Bayesian de-noising algorithm; (2) individual low-resolution

images of each physical section were assembled in 3D mosaics; (3) tissue deformations caused by

sample preparation were corrected; (4) large vessels were segmented; (5) the 3D mosaics of sections

were combined in a full-scale low-resolution model; (6) high-resolution images were registered into

the low-resolution one; (7) sinusoidal and BC networks as well as nuclei were segmented and, finally,

(8) the different cell types were identified, classified and segmented. We used the geometrical

model to provide a detailed and accurate quantitative description of liver tissue geometry, including

the complexity of the sinusoidal and BC networks, hepatocyte size distribution, stellate and Kupffer

cells distribution in the tissue. Additionally, our platform comprises a set of methods for the proper

statistical analysis of different morphometric parameters of the tissue as well as their spatial variabil-

ity (Figure 1C).

Sample preparation and multi-resolution tissue imaging
Mouse livers were fixed by trans-cardial perfusion instead of the conventional immersion fixation

(Burton et al., 1987) to minimize the time lag between the termination of blood flow and fixation

(Gage et al., 2012). This proved to be absolutely essential to preserve the tissue architecture and

the epitopes for immunostaining. Serial sections of fixed tissues were prepared at a thickness of 100

mm to maximize antibody penetration and limit laser light scattering. Liver sections were stained to

visualize key subcellular and tissue structures, namely nuclei (DAPI), the apical surfaces of hepato-

cytes (CD13), the sinusoidal endothelial cells (Flk1) or ECM (Laminin and Fibronectin) and the cell

cortex (F-actin stained by phalloidin). We tested various reagents and protocols to clear the liver tis-

sue, such as glycerol and 2,20thiodiethanol (TDE), and found that SeeDB (Ke et al., 2013) yielded

the best results. Stained sections were imaged sequentially (generating Z-stacks) by one- and two-

photon laser scanning confocal microscopy to maximize the number of fluorescent channels avail-

able. The same section was imaged twice, at low and high magnification, using 25�/0.8 and 63�/1.3

objectives, respectively. The first covers a large volume to reconstruct the whole lobule and the lat-

ter focuses on a small area to reconstruct the tissue at high resolution. The registration of 3D high-

resolution images within low-resolution ones provides tissue-scale context information that is essen-

tial for the interpretation of the data at the cellular and subcellular level.
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Figure 1. Schematic representation of the proposed pipeline. (A) 3D multi-resolution image acquisition: example of arrays of 2D images of liver tissue

acquired at different resolutions. Low- (1 mm � 1 mm � 1 mm per voxel) and high- (0.3 mm � 0.3 mm � 0.3 mm per voxel) resolution images on the left

and right sides, respectively. (B) Multi-scale reconstruction of tissue architecture: on the left, reconstruction of a liver lobule showing tissue-level

information, i.e., the localization and relative orientation of key structures such as the portal vein (PV) (orange) and central vein (CV) (light blue). The

high-resolution images registered into the low-resolution one are shown in white. On the middle, a cellular-level reconstruction of liver showing the

main components forming the tissue, i.e., bile canalicular (BC) network (green), sinusoidal network (magenta) and cells (random colours). The

reconstruction corresponds to one of the high-resolution cubes (white) registered on the liver lobule reconstruction (left side). On the right,

reconstruction of a single hepatocyte showing subcellular-level information, i.e., apical (green), basal (magenta) and lateral (grey) contacts. (C)

Quantitative analysis of the tissue architecture: example of the statistical analysis performed over a morphometric tissue parameter (hepatocyte volume)

using the information extracted from the multi-scale reconstruction. On the left, hepatocyte volume distribution over the sample (traditional statistics).

On the right, spatial variability (spatial statistics) of the same parameter within the liver lobule. Our workflow allows not only to perform traditional

statistical analysis of different morphometric parameters but also to perform spatial characterizations of them. The graphs were generated from the

Figure 1 continued on next page
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Bayesian foreground/background discrimination (BFBD) de-noising
A major problem for the image analysis of thick tissue sections is the low signal-to-noise ratio deep

into the tissue, especially for stainings that yield high and diffuse background (e.g. actin staining

with phalloidin throughout the cytoplasm). To address this problem, we developed a new Bayesian

de-noising algorithm that first makes a probabilistic estimation of the background and separates it

from the foreground (see ‘Methods’). Subsequently, the estimated background and foreground sig-

nals are independently smoothed and summed to generate a new de-noised image (Figure 1—fig-

ure supplement 2). We applied BFBD de-noising to both low- and high-resolution images. BFBD

de-noising provides better results than the standard ones in the field, such as median filtering, Gauss

low-pass filtering and anisotropic diffusion (Figure 1—figure supplement 4), but also outperforms

(by quality and computational performance) other algorithms, known to be more elaborate, such as

the ‘Pure Denoise’ (Luisier et al., 2010) and ‘edge preserving de-noising and smoothing’ (Beck and

Teboulle, 2009) (see ‘Methods’) (Figure 1—figure supplement 5).

Reconstruction of multi-scale tissue images
The tissue was imaged at low- and high-resolution for the multi-scale reconstruction. The reconstruc-

tion was performed in three steps: (1) images of physical sections were assembled as mosaics of

low-resolution images, (2) all mosaics were corrected for physical distortions and combined in a sin-

gle 3D image (image stitching) and (3) the high-resolution images were registered into the low-reso-

lution one.

In more detail, the partially overlapping (~10% overlap) low-resolution images of each physical

section were combined in 3D mosaics (Figure 2A and Figure 2—figure supplement 1A) using the

normalized cross-correlation (NCC) approach (see ‘Methods’). NCC was chosen because it allows

finding accurate shifts given a coarse initial match between 3D images (Emmenlauer et al., 2009;

Peng et al., 2010; Bria and Iannello, 2012). Then, the 3D image mosaics were combined into a sin-

gle 3D image. The mechanical distortion and tissue damage produced by sectioning are such (as

illustrated in Figure 2B and Figure 2—figure supplement 1C) that even advanced and well-estab-

lished methods for image stitching (Preibisch et al., 2009; Saalfeld et al., 2012; Hayworth et al.,

2015) fail due to the lack of texture correlations between adjacent sections. To address this prob-

lem, we developed a Bayesian algorithm for stitching images of bended and partially damaged soft

tissue sections. The algorithm first corrects section bending and then uses the empty space at the

interior of large structures (e.g. vessels) within adjacent sections to register and stitch them.

A prerequisite for the correction of section bending is the detection of its upper and lower surfa-

ces (Figure 2B). The high degree of image axial blurring in thick samples (Nasse and Woehl, 2010)

and the presence of large vessels pose problems for the detection of surfaces (see Figure 2—figure

supplement 1C). The algorithm reconstructed the probability distribution of the surface excursion

(deviation from the mean position over the neighbourhood) and then used it to predict the localiza-

tion of each point at the surface (see ‘Methods’). The surface predicted by the algorithm closely

Figure 1 continued

analysis of one high-resolution cube of the multi-scale reconstruction (the one shown in middle of panel B). Boundary cells were excluded from the

analysis.

DOI: 10.7554/eLife.11214.003

The following figure supplements are available for figure 1:

Figure supplement 1. Workflow for the multi-scale reconstruction of tissue architecture from multi-resolution confocal microscopy images.

DOI: 10.7554/eLife.11214.004

Figure supplement 2. Probabilistic image de-noising algorithm for 3D images.

DOI: 10.7554/eLife.11214.005

Figure supplement 3. Optimal parameter selection.

DOI: 10.7554/eLife.11214.006

Figure supplement 4. Comparison of our 3D image de-noising algorithm (BFBD) with standard methods in the field.

DOI: 10.7554/eLife.11214.007

Figure supplement 5. Comparison of our 3D image de-noising algorithm (BFBD) with ‘pure denoise’ (PD) (Luisier et al., 2010) and ‘edge preserving

de-noising and smoothing’ (EPDS) (Beck and Teboulle, 2009).

DOI: 10.7554/eLife.11214.008
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matched the surface detected manually (Figure 2—figure supplement 1G). Then, the bending cor-

rection was performed by standard b-spline transformation (Figure 2C,D).

Next, the individual sections were combined. Since approximately one cell layer is removed upon

sectioning, direct matching of two adjacent sections is impossible. Therefore, we first segmented

the large vessels and then aligned the sections by matching them (Figure 2D). The vessels were seg-

mented by using the local maximum entropy (LME) approach (Brink, 1996) (see ‘Methods’). Subse-

quently, the segmented vessels were classified (marked as PV or CV) revealing the precise

arrangement of lobule-level structures. Finally, we interpolated these vessels within the gaps caused

by tissue removal by tri-linear intensity approximation.

Following the assembly of the low-resolution model, we registered the high-resolution images

within it using rigid body transformation. To accelerate the search for registration parameters, we

built a hierarchy of binned images and performed registration sequentially from the coarsest to the

finest one (see ‘Methods’). This method was used for the reconstruction of a liver tissue model from

six serial sections, each imaged as a 3 � 3 mosaic grid with 10% overlap and resolution of 1 mm � 1

mm � 1 mm per voxel. Then, two sections, each imaged as a 2 � 2 mosaic grid at high-resolution

Figure 2. Reconstruction of a multi-scale lobule image. (A) Schematic representing a single serial section obtained from a grid of M � N partially

overlapping 3D images (tiles). The cross-correlation between two neighbouring tiles in the grid provides a local metric, which describes the value of

their relative shifts. The reconstruction of each section was performed by maximizing the sum correlations of each tile to all adjacent tiles (see

‘Methods’ for details). (B, C) Correction of tissue deformations (introduced during the sample preparation process) using a surface detection algorithm

and b-spline transformation. (B) Output of the surface detection algorithm. The proposed Bayesian approach uses prior information about expected

bending of the section, its thickness and measurement error (see ‘Methods’ for details) to determine the volume of the image belonging to the tissue

and to the out-of-field region. (C) The tissue section after correcting its bending by using quadratic b-splines. (D) Tissue section before (left) and after

(right) the correction of the mechanical distortions and the tissue damage. (E) Full lobule-level reconstruction established by the alignment of six low-

resolution sections (1 mm � 1 mm � 1 mm per voxel) and the interpolation of blood vessels. Two high-resolution images (0.3 mm � 0.3 mm � 0.3 mm per

voxel) were registered in the low-resolution reconstruction and are shown in grey (see Video 1).

DOI: 10.7554/eLife.11214.009

The following figure supplements are available for figure 2:

Figure supplement 1. Reconstruction of multi-scale tissue images.

DOI: 10.7554/eLife.11214.010

Figure supplement 2. Reconstruction of multi-scale tissue images.

DOI: 10.7554/eLife.11214.011
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(0.3 mm � 0.3 mm � 0.3 mm per voxel) were registered within the low-resolution model. The recon-

struction covers about 1300 mm � 1300 mm � 600 mm of the tissue and is presented in Figure 2E

and Video 1.

3D image segmentation and active mesh tuning for the accurate
reconstruction of tubular networks (sinusoids and BC) and nuclei
The next step was to reconstruct the tubular structures present in the tissue, that is, sinusoidal and

BC networks. One of the most popular tools for image segmentation is global thresholding (Pal and

Pal, 1993). In particular, the maximum entropy approach has been widely applied to image recon-

struction problems, including the segmentation of fluorescent microscopy images (Dima et al.,

2011; Pecot et al., 2012). However, since 3D confocal images are usually heterogeneous in intensity

due to staining unevenness and light scattering in the tissue (Lee and Bajcsy, 2006), global thresh-

olding approaches may produce segmentation artefacts. In contrast, local thresholding allows

adjusting the segmentation threshold to the spatial variability. We applied the LME method to find

segmentation thresholds in the de-noised images. For this, we split the 3D image into a set of cubes

and calculated the maximum entropy segmentation threshold (Brink, 1996) within each cube. The

threshold values were tri-linearly interpolated to the entire 3D image.

However, this segmentation approach produced two major artefacts. The objects were moder-

ately swollen and contained holes resulting from local uneven staining. We used standard

approaches to close the holes by morphological operations (opening/closing), which unfortunately

led to even higher overestimation of the diameter of thin structures, such as sinusoids and BC. To

correct this, we extended the segmentation algorithm by including the following steps. We gener-

ated a triangulation mesh of the segmented surfaces by the cube marching algorithm (Lorensen and

Cline, 1987) (Figure 3A). Then, we tuned the active mesh so that the triangle mesh vertexes aligned

to the maximum gradient of fluorescence intensity in the original image (Figure 3A). Finally, we gen-

erated a representation of the skeletonized image via a 3D graph describing the geometrical and

topological features of the BC and sinusoidal networks. The reconstruction of sinusoidal and BC net-

works are shown in Figure 3B,C, respectively.

Nuclei were reconstructed similar to the tubular structures. However, as shown in Figure 3—fig-

ure supplement 1A,B, closely packed nuclei are optically not well-resolved in 3D confocal images,

resulting in artificially merged structures. Since 30–60% (depending on the animal strain and age) of

hepatocytes in adult liver are bi-nucleated, artificial nuclei merging compromises the tissue analysis.

To address this problem, we used a probabilistic algorithm for double- and multi-nuclei splitting

(Figure 3—figure supplement 1). Briefly, the algorithm first discriminated between mono-, double

and multi-nuclear structures by learning the mis-

fit distribution of triangulation mesh and nuclei

approximation by single and double ellipsoids

(Figure 3—figure supplement 1A–G). Then, the

seed points for the multi-nuclear structures were

detected using the Laplacian-of-Gaussian (LoG)

scale-space maximum intensity projection

(Stegmaier et al., 2014) and, finally, the real

nuclear shapes were found using an active mesh

expansion starting from the nuclei seeds (see

‘Methods’ for details). Tested in both synthetic

and real 3D images, the algorithm proved capa-

ble of splitting clustered nuclei with different

degrees of overlap (Figure 3—figure supple-

ment 1K) with an accuracy of over 90%.

Although this approach is based on active trian-

gulation mesh, it achieved similar accuracy val-

ues to other recently published voxel-based

methods for nuclei segmentation (Amat et al.,

2014; Chittajallu et al., 2015).

Video 1. 3D image visualization of a multi-resolution

geometrical model of liver tissue. A set of six low-

resolution (1.0 mm � 1.0 mm � 2.0 mm per voxel) and

two high-resolution tissue sections (0.3 mm � 0.3 mm �
0.3 mm per voxel) were used. Central veins are shown in

light blue, portal veins in orange and high-resolution

cubes in grey.

DOI: 10.7554/eLife.11214.012
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Cell classification and reconstruction
Generating geometrical models of tissues requires the proper recognition of different cell types. A

previous automated classification system discriminated hepatocytes from non-parenchymal cells in

2D human liver images with a 97.8% accuracy (O’Gorman et al., 1985). However, the automatic

classification of non-parenchymal cells in 3D liver tissue is more challenging. Given their importance

in physiology and disease (Bouwens et al., 1992; Kmiec, 2001; Malik et al., 2002) and the limita-

tion on the number of fluorescent markers that can be simultaneously imaged, we designed an algo-

rithm to automatically classify different cell types in the tissue based on nuclear morphological

features. We chose two deterministic supervised classifiers, linear discriminant analysis (LDA) and

Bayesian network classifier (BNC). LDA, also known as Fisher LDA (Fisher, 1936), is a fundamental

and widely used technique to classify data into several mutually exclusive groups (Duda et al.,

2001). It has been successfully applied for nuclei discrimination in microscopy images

(Huisman et al., 2007; Lin et al., 2007). On the other hand, BNCs are more recently developed clas-

sifiers which not only show good performance but also allow for probabilistic classification. In

Figure 3. Reconstruction of tubular structures, nuclei and cells. (A) A single 2D image section is shown with the contours of the sinusoidal network

reconstruction overlaid on the de-noised image. The contours of the initial mesh are drawn in yellow, and the ones of the tuned mesh are drawn in

cyan. (B–E) 3D representation of the different structures segmented in a sample of liver tissue: sinusoids (B), BC (C), nuclei (D) and cells (E). All the

reconstructed structures are shown together in (F). The reconstructed triangle meshes are drawn inside the inner box and the raw images are outside.

In the case of tubular networks (i.e. sinusoids and BC), the central lines of the structures are shown together with the raw images.

DOI: 10.7554/eLife.11214.013

The following figure supplements are available for figure 3:

Figure supplement 1. Nuclei splitting.

DOI: 10.7554/eLife.11214.014

Figure supplement 2. Cell classification.

DOI: 10.7554/eLife.11214.015

Figure supplement 3. Cell classification accuracy.

DOI: 10.7554/eLife.11214.016

Figure supplement 4. Reconstruction of tubular structures, nuclei and cells.

DOI: 10.7554/eLife.11214.017

Figure supplement 5. Generation of realistic 3D images of liver tissue.

DOI: 10.7554/eLife.11214.018

Figure supplement 6. Benchmark of images to evaluate 3D reconstructions of dense tissue.

DOI: 10.7554/eLife.11214.019

Figure supplement 7. Model validation: Evaluation of the accuracy of our pipeline for the 3D reconstruction of dense tissue.

DOI: 10.7554/eLife.11214.020
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addition, BNCs reveal the hierarchy of parameters used for the classification (Friedman et al.,

1997), which may provide insights into underlying biological processes.

As input for the classifiers, we manually built a training set of 2301 nuclei using specific cellular

markers (Figure 3—figure supplement 2A) and computed for each nucleus a profile of 74 parame-

ters (Table 1) describing nuclei morphology, texture and localization relative to sinusoids and cell

borders (density of actin in vicinity of nuclei) (see ‘Methods’). For the LDA, the parameters were

ranked using Fisher score (Duda et al., 2001), and the most relevant ones were selected based on

the classification accuracy (Figure 3—figure supplement 2B and ‘Methods’). Independently, the

most relevant parameters were selected on the basis of Bayesian network structure reconstruction

(Friedman et al., 1999) (Figure 3—figure supplement 2C).

The performance of the classifiers was measured using the leave-one-out cross-validation method

on the training set. Both classifiers recognized hepatocytes with ~100% accuracy, thus further

improving the previous performance (O’Gorman et al., 1985). The overall cell-type classification

yielded 95.4% and 92.6% accuracy for the LDA and BNC, respectively. Although discriminating non-

parenchymal cells is difficult even for a person skilled in the art, our algorithms achieved accuracy

higher than 90%. The predictive performance of the classifiers is shown in Figure 3—figure supple-

ment 3A,B. As expected, the first largest population of cells corresponds to hepatocytes (44.6% ±

2.7%, mean ± SEM) followed by sinusoidal endothelial cells (29.8% ± 2.5%). Surprisingly, we found

important quantitative differences for Kupffer and stellate cells. The percentage of Kupffer cells

(8.7% ± 0.7%) was lower than that of stellate cells (11.2% ± 1.0%), against previous estimates on 2D

images (Baratta et al., 2009). The percentage of other cells was 5.7% ± 0.8%. A 3D visualization of

the localization of the nuclei of the different cell types is shown in Figure 3—figure supplement 3C–

F.

Finally, cells were segmented by expansion of the active mesh from the nuclei to the cell surface.

The expansion was either limited to the cell cortex (i.e. the maximum density of actin) or to contacts

with neighbouring cells or tubular structures (Figure 3E). The active mesh expansion was parameter-

ized by inner pressure and mesh rigidity. However, this algorithm over-segmented bi-nucleated cells

into two cells with a single nucleus. Therefore, we used phalloidin intensity and nucleus-to-nucleus

distance to recognize over segmented multinuclear cells and merge them. A manual check of seg-

mentation of 2559 cells revealed only ~2% error for hepatocyte segmentation that is a further

improvement of the state-of-the-art achievements by voxel-based segmentation methods

(Mosaliganti et al., 2012). The results of the segmentation of all imaged cellular and subcellular

structures in the liver tissue (i.e. cells, nuclei, sinusoidal and BC networks) are presented in

Figure 3E, Figure 3—figure supplement 4, and Videos 2 and 3.

Model validation
To evaluate the performance of the pipeline for the reconstruction of dense tissues, we generated a

benchmark comprising a set of realistic 3D images of liver tissue. Each synthetic image consisted of

four channels for the main structures forming the tissue, that is, cell nuclei, cell borders, sinusoidal

and BC networks. We first generated 3D models of liver tissue based on experimental data (see

‘Methods’). The benchmark models had levels of complexity similar to that of the real tissue (Fig-

ure 3—figure supplement 5,6). Second, we imposed uneven staining to the models in order to

resemble the experimental data. Third, the artificial microscopy images were simulated by convolv-

ing the models according to the 3D confocal microscope point spread function (PSF) (Nasse et al.,

2007; Nasse and Woehl, 2010) and adding z-dependent Poisson noise. The resulting benchmark

image statistics were similar to those from the images acquired in our experimental setup (see

‘Methods’) (Figure 3—figure supplement 5). Given their general usefulness for testing image analy-

sis software, the benchmark images and models are provided as supplementary material

(Supplementary file 1, Morales-Navarrete et al., 2016). Finally, we applied our 3D tissue recon-

struction pipeline to the benchmark images and quantified the accuracy of the reconstructed

models using the precision-sensitivity framework (Powers, 2011). The overall quality was expressed

as F-score, the harmonic mean between precision and sensitivity. The benchmark tests were per-

formed in three sets of images with different signal-to-noise ratio (10:1, 4:1, 2:1). For tubular struc-

tures, we achieved average (over the different noise level sets) F-scores of 0.90 ± 0.04 and 0.73 ±

0.06 for sinusoidal and BC networks, respectively. In the case of the nuclei and cell segmentation,

we found average F-scores 0.91 ± 0.03 and 0.92 ± 0.03, respectively. The detailed quantifications
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are shown in Figure 3—figure supplement 7A–L. Additionally, we measured morphometric param-

eters of the reconstructed structures such as the average radius of the tubular structures (BC and

sinusoidal networks) and cell volumes. We obtained values of 2.72 ± 0.13 mm (ground truth value =

3.0 mm) and 0.58 ± 0.05 mm (ground truth value = 0.5 mm) for sinusoidal and BC networks,

Table 1. List of the 74 parameters calculated for the nuclei classification.

Parameter F-score Parameter F-score

FLK1 surface intensity 1 vx 4.802 Mean radius 0.920

FLK1 surface intensity 0 vx 4.737 FLK1 KURT 0.915

FLK1 mean 4.674 MB Frac Dim 0.904

FLK1 surface intensity 2 vx 4.570 Log Lac2 0.885

FLK1 surface intensity 3 vx 4.100 HF2 0.833

Phallo surface intensity 2 vx 3.477 HF13 0.825

FLK1 surface intensity 4 vx 3.453 HF3 0.817

Phallo surface intensity 1 vx 3.430 Phallo surface intensity 9 vx 0.787

FLK1 SKEW 3.351 Surface area 0.768

Phallo surface intensity 3 vx 3.253 Log lac 3 0.718

Phallo surface intensity 0 vx 3.236 Radius variance 0.669

Norm lac 3 2.930 Volume 0.668

Norm lac 2 2.913 BC Frac Dim 0.649

FLK1 surface intensity 5 vx 2.857 Log lac 4 0.612

Norm lac 4 2.847 Phallo surface intensity 10 vx 0.554

Phallo surface intensity 4 vx 2.838 Log lac 5 0.536

Norm lac 5 2.753 Sphericity 0.423

Phallo surface intensity 5 vx 2.347 HF7 0.408

FLK1 surface intensity 6 vx 2.310 Shape index 0.402

HF9 2.141 Lacunarity 1 0.381

FLK1 surface intensity 7 vx 1.893 b/c 0.342

Phallo surface intensity 6 vx 1.868 Lacunarity 2 0.333

HF5 1.575 Lacunarity 3 0.309

HF8 1.554 Lacunarity 4 0.295

FLK1 surface intensity 8 vx 1.552 HF4 0.287

HF11 1.471 Lacunarity 5 0.285

Phallo surface intensity 7 vx 1.444 HF12 0.153

a/c 1.406 DAPI Sd 0.123

Log lac 1 1.287 DAPI gradient surface 0.094

FLK1 surface intensity 9 vx 1.265 Log norm lac 2 0.087

HF6 1.158 CVM 0.076

Phallo surface intensity 8 vx 1.084 Log norm lac 3 0.062

FLK1 surface intensity 10 vx 1.018 Log norm lac 4 0.045

HF1 0.978 DAPI SKEW 0.035

FLK1 Sd 0.942 Log norm lac 5 0.033

HF10 0.939 DAPI mean 0.029

a/b 0.937 DAPI KURT 0.022

Note: The parameters are sorted based on their Fisher score, which is a measure of the discriminative power of

the parameter.

DOI: 10.7554/eLife.11214.021
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respectively (Figure 3—figure supplement 7M,

N). The average error for cell volume estimation

was found to be 5.17% ± 1.97% (Figure 3—fig-

ure supplement 7O). The benchmark experi-

ments showed high accuracy for the

reconstruction of the ‘ground truth’ models of

all the morphologically different structures form-

ing the liver tissue (Figure 3—figure supple-

ment 7).

New insights into liver tissue
organization from the geometrical
model
Next, we applied our software to quantitatively

analyse the geometric features of liver tissue

from three adult mice. Geometric features have

important implications, for example, for the

development of models of fluid exchange

between blood and hepatocytes (Wisse et al.,

1985). A critical parameter for blood flux mod-

els is the radius of sinusoids. We measured a

radius of 4.0 ± 1.1 mm, a value close to quantifi-

cations by electron microscopy (EM) analysis

(Wisse et al., 1985; Oda et al., 2003; McCus-

key, 2008). In the sinusoidal networks, we deter-

mined the angles between two branching arms

to be 111.6˚ ± 12.37˚ (Figure 4—figure supple-

ment 1B), against previous estimates

(Hammad et al., 2014). Moreover, the values

for the BC network are similar to the sinusoidal

network (110.36˚ ± 9.85˚, Figure 4—figure sup-

plement 1B). Additionally, we provided new

geometric information such as the cardinality of

the branching nodes (Figure 4—figure supple-

ment 1C).

Recent studies on the morphometric parame-

ters of the liver tissue (Hammad et al., 2014;

Friebel et al., 2015) provided either average

values or limited data measurements of the hep-

atocytes volume, omitting information on their

heterogeneity. We could not only perform accu-

rate measurements of hepatocytes volumes and

poly-nucleation, but also correlate them with

polyploidy and spatial localization within the tis-

sue. Interestingly, we found a multi-modal distri-

bution of hepatocyte volumes (Figure 4A) in line

with measurements on isolated hepatocytes

(Martin et al., 2002). A trivial explanation is that

it reflects the presence of mono- and bi-nucle-

ated hepatocytes. However, we found that this

was not the case. The distribution of volumes of

both mono- and bi-nucleated hepatocytes can

be independently described by a mixture of two

populations with mean volumes 3126 ±

1302 mm3 (~14% of cells) and 5313 ± 1175 mm3

(~10% of cells), and 5678 ± 1176 mm3 (~45% of

Video 2. Reconstruction of all imaged structures in a

high-resolution image. A 2x2 stitched (~ 400 mm �
400 mm � 100 mm) high-resolution image (0.3 mm �
0.3 mm � 0.3 mm per voxel) was used. First, the

reconstruction of the large vessels, that is, central vein

(CV) (cyan), portal vein (PV) (orange) and bile duct

(green) are shown. Then, raw images and the

corresponding reconstructed objects of the different

structures are shown sequentially: sinusoids (magenta),

BC (green), nuclei (random colours) and cells (random

colours). Additionally, central lines are shown for the

tubular structures. Finally, all segmented structures are

shown. This video provides a complete over view of the

reconstructed objects in a typical high-resolution

image.

DOI: 10.7554/eLife.11214.022

Video 3. Detailed reconstruction of all imaged

structures in a high-resolution image. In order to

highlight the details of the reconstruction of small

structures [e.g. nuclei, bile canalicular (BC) network,

etc.], a video of a small, cropped (~125 mm � 125 mm �
75 mm) high-resolution image (3 mm � 0.3 mm � 0.3 mm

per voxel) was generated. Similarly to Video 2, the raw

image and the corresponding reconstructed structures

of sinusoids (magenta), BC (green), nuclei (random

colours) and cells (random colours) are shown

sequentially.

DOI: 10.7554/eLife.11214.023
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cells) and 10606 ± 1532 mm3 (~30% of cells), respectively (Figure 4B,C). Hence, surprisingly, although

the bi-nucleated hepatocytes are assumed to be larger than the mono-nucleated, we found that a

population of mono-nucleated hepatocytes can have a volume that does not differ from that of bi-

nucleated hepatocytes (Figure 4A–C).

Having found such a peculiar size distribution of bi-nucleated hepatocytes, we measured the total

content of DNA per nucleus in every cell sub-population as the integral intensity of DAPI

(Coleman et al., 1981; Xing and Lawrence, 1991; Dmitrieva et al., 2011; Zhao and Darzynkie-

wicz, 2013) (see ‘Methods’). The resulting distribution (Figure 4D) shows three well-separated

peaks. These presumably correspond to the 2n (diploid nuclei), 4n and 8n (polyploid nuclei) DNA

content previously reported (Guidotti et al., 2003; Martin et al., 2002) (note that this analysis does

not resolve the aneuploidy of specific chromosomes (Faggioli et al., 2011)).

Next, we asked how the nuclei are distributed between the mono- and bi-nucleated cell popula-

tions. Interestingly, in the small bi-nucleated hepatocytes (volume < 8000 mm3) both nuclei had 2n

DNA content, whereas in the large hepatocytes (volume > 8000 mm3) both had 4n DNA content.

Almost no bi-nuclear hepatocytes (<1.0%) with different amount of DNA per nucleus (e.g. one

nucleus with 2n and one with 4n) were observed (Figure 4—figure supplement 2C,D). These results

Figure 4. Distribution of hepatocyte volumes and DAPI integral intensity per cell for all hepatocytes (A, B) and separated by number of nuclei (B, C and

E, F). Whereas experimental data are shown by dots, the log-normal components fitted to data are shown by solid lines. (A) Cell volume distribution of

all hepatocytes. (B, C) Cell volume distribution obtained for mono and bi-nucleated hepatocytes, respectively. (D) Distribution of DAPI integral intensity

(proportional to the content of DNA) of all hepatocytes. (E, F) Distributions of DAPI integral intensity obtained for mono and bi-nucleated hepatocytes,

respectively. The analysis was performed on 2559 hepatocytes (excluding boundary cells) from three adult mice.

DOI: 10.7554/eLife.11214.024

The following figure supplements are available for figure 4:

Figure supplement 1. Morphometric features of the sinusoidal and bile canalicular (BC) networks.

DOI: 10.7554/eLife.11214.025

Figure supplement 2. (A, B) DAPI integral intensity normalization.

DOI: 10.7554/eLife.11214.026
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suggest that the hepatocyte volume does not depend on the number of nuclei but rather on their

polyploidy, in agreement with previous reports (Miyaoka and Miyajima, 2013). Therefore, we classi-

fied hepatocytes with respect to number of nuclei, volume and DNA content using a hierarchical

cluster algorithm. We identified seven populations, namely 2n, 4n, 8n, 16n for mono-nuclear and

2�2n, 2�4n, 2�8n for bi-nuclear hepatocytes (Figure 4—figure supplement 2E,F). Four popula-

tions (mono-nucleated 2n and 4n, and bi-nucleated 2�2n and 2�4n) were major, representing

around 97% of all hepatocytes.

The reports on the spatial distribution of polyploid hepatocytes are controversial (Gentric and

Desdouets, 2014). Whereas some suggest that periportal hepatocytes show a lower polyploidy

than the perivenous ones (Gandillet et al., 2003; Asahina et al., 2006), others suggest that both

regions have similar polyploid compositions (Margall-Ducos et al., 2007; Pandit et al., 2012). These

discrepancies prompted us to analyse the spatial distribution of mono- and bi-nucleated hepatocytes

within the lobule. We particularly analysed the largest populations of hepatocytes, 2n, 4n, 2�2n and

2�4n. Strikingly, we found a pronounced zonation in their localization. Whereas the 2n mono-nucle-

ated were enriched in the PC and PV regions, mono-nucleated 4n showed a homogeneous distribu-

tion between PV and PC regions (Figure 5). The 2�2n bi-nucleated hepatocytes have a similar

pattern as the 2n mono-nucleated (highly enriched in the CV and PV regions), but the density of

2�4n bi-nucleated was lower in those regions and increased in the middle region (Figure 5). As far

as we know, this is the first time that polyploidy and poly-nuclearity are found to be zonated and fol-

low a specific pattern. These findings have important implications for both the structural organiza-

tion of liver tissue and its proliferating and metabolic activities.

Application of the pipeline to lung and kidney tissue
To test the general applicability of the pipeline as well as the robustness of our algorithms, we

applied it to two morphologically distinct tissues, lung and kidney. Lung and kidney sections were

stained for nuclei (DAPI) and the cell cortex (F-actin by phalloidin). Kidney samples were additionally

stained for the apical (CD13) and basal (fibronectin and laminin) cell surface. The pipeline allowed us

to generate geometrical reconstructions of the tissues (Figure 6 and Videos 4 and 5, respectively)

without fine-tuning of the parameters. As proof of principle, we extracted some statistics of the

most relevant structures from each tissue. Structural information from both relatively large structures

like alveoli in lung or glomerulus in kidney, and smaller ones like cells and nuclei were extracted

from the geometrical models. Figure 6—figure supplement 1,2 show the statistical distributions of

some interesting tissue features, such as cell volume and elongation, number of neighbouring cells,

etc. Information about the spatial organization of the alveolar cells (i.e. their localization relative to

the alveoli) in the lung was extracted as well.

For example, in the lung, we found that the alveolar cells constitute around 19% of the volume,

consistent with previous measurements (Irvin and Bates, 2003). In the kidney, we found that proxi-

mal tubule cells have larger volumes than distal tubule cells (Figure 6—figure supplement 2), also

in agreement with previous studies (Nyengaard et al., 1993; Rasch and Dørup, 1997). Altogether,

the new data show that our pipeline is versatile and able to reconstruct geometrical models of tis-

sues with fairly different architectures.

Discussion
We developed a versatile pipeline that combines new algorithms with established ones aimed to

reconstruct geometrical models of dense tissues from confocal microscopy images acquired at dif-

ferent levels of resolution. Our pipeline is implemented in a freely available platform designed to

address unmet computational needs. Despite many efforts, the reconstruction of digital geometrical

models of tissues suffers from critical bottlenecks such as lack of automation, limited accuracy and

low throughput analysis (Peng et al., 2010). The platform developed here overcomes such bottle-

necks in that it (1) achieves high accuracy of geometric reconstruction, (2) can process large volumes

of imaged tissue, for example, a full liver lobule, (3) increases the image analysis performance to

such an extent that the model reconstruction time is shorter than the biological experimental time

and compatible with middle-throughput (this is achieved by combining the computational efficiency

of C++ with the CPU/GPU multi-threading capabilities), (4) can be run on a regular PC and (5) pro-

vides a flexible tool for constructing image processing pipelines that are tuneable for specific tissue
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and imaging conditions. For the automatic recognition of different cell types, we included morpho-

logical classifiers into the software. The user-friendly pipeline assembly mechanism allows adjusting

the platform for specific tissue analysis demands. The newly developed algorithms both increase the

quality of the results (e.g. 3D image de-noising, LME method, active mesh tuning, cell classification)

and deal with problems for which there appears currently to be no real good solutions available

(e.g. correction of tissue deformation and combination of individual sections in the case of partial tis-

sue removal) (Figure 1—figure supplement 1). Our platform is implemented as stand-alone free to

download software (http://motiontracking.mpi-cbg.de). Furthermore, we created a benchmark of

realistic images (with the underlying ground truth model) for the evaluation of 3D segmentation

algorithms in biological images (Supplementary file 1, Morales-Navarrete et al., 2016).

To test its efficacy, we applied it towards the generation of a multi-resolution geometrical model

of liver tissue. The resulting model was used to extract quantitative measurements of various fea-

tures of liver tissue organization, such as radius, branching angles and cardinality of the sinusoidal

and BC networks, and to recognize different cell types based on their morphological parameters.

Our analysis revealed an unexpected zonation pattern of hepatocytes with different size, nuclei and

DNA content within the liver lobule. Furthermore, we extended the analysis to two additional tis-

sues, lung and kidney, demonstrating the general applicability and robustness of our platform.

In building our pipeline, we spent considerable effort to improve the accuracy of the measure-

ments of cell and tissue parameters and preserve their contextual information. The new algorithms

allow correcting major defects originating from tissue sectioning, improve the segmentation of cellu-

lar, subcellular and tissue-level structures, and extract morphological features and distributions in

space. A major limiting factor in the development of a comprehensive geometrical model is the

trade-off between imaging large volumes of samples to gain a view of the overall tissue architecture

and imaging at high-resolution to achieve an accurate description of the structures at the limit of res-

olution of the light microscope, for example, the apical surface of hepatocytes forming the

Figure 5. Relative density of different sub-populations of hepatocytes as function of central vein (CV)-portal vein (PV) axis coordinate. (A, C, E, G)

Relative density of 2n mono-nucleated, 2x�2n bi-nucleated, 4n mono-nucleated, 2x�4n bi-nucleated hepatocytes, respectively. (B, D, F, H) 3D

visualization of the corresponding sub-populations of hepatocytes. The analysis was performed on 2559 hepatocytes (excluding boundary cells) from

three adult mice. The CV-PV axis is determined by the coordinate c, which describes the position of a point relative to the closest CV and PV.

� ¼ 50� jD�dpv j�jD�dcv j
D

þ 1
� �

, where dcv and dpv are the distances to the closest CV and PV respectively, and D is the CV-PV distance. c takes values

between 0 and 100, where 0 and 100 represents a localization at the CV and PV surfaces, respectively.

DOI: 10.7554/eLife.11214.027
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BC network. We solved this problem by imaging the tissue at low-resolution and registering within it

the parts of tissue (the PV-PC area in the case of the liver lobule) imaged at high resolution. In this

way, the measured morphological features (e.g. BC) and parameters (e.g. cell size) are embedded in

their proper context of tissue architecture. For example, the hepatocyte volume is a parameter that

has little value as average without considering the distribution of parameter values in the lobule (Fig-

ure 5). In general, the diversity of geometric features of the cells within the liver lobule could provide

new insights into the regulation of metabolic zonation (see below).

Our nuclei reconstruction approach achieved accuracy higher than 90%. As shown in Figure 3—

figure supplement 1K, the major source of errors is over-segmented nuclei. Additional steps to

improve nuclei reconstruction, such as the region-merging algorithm (Chittajallu et al., 2015) to cor-

rect for over-segmentation, could reduce such errors. Even though our cell segmentation method

proved able to identify and reconstruct cells with high accuracy, in a few cases (~2%), binuclear cells

were mistaken for two separate cells due to weak staining of the cell cortex. Therefore, implementa-

tion of additional methods for enhancing the staining of the cell surface, such as the anisotropic

plate diffusion filters (Mosaliganti et al., 2010; 2012), could help reduce further the over-segmenta-

tion of multi-nuclear cells.

The active mesh tuning allowed improving the accuracy of segmentation of the BC and sinusoidal

networks. This is important since the accuracy of a geometrical model is indispensable for the

Figure 6. Reconstruction of geometrical models of lung and kidney tissues. 3D representation of the different structures segmented in each tissue: (A,

C) nuclei and (B, D) cells in the lung and kidney tissues, respectively. The triangle meshes are drawn inside the inner box and the raw images outside.

DOI: 10.7554/eLife.11214.028

The following figure supplements are available for figure 6:

Figure supplement 1. Morphometric features of lung tissue.

DOI: 10.7554/eLife.11214.029

Figure supplement 2. Morphometric features of kidney tissue.

DOI: 10.7554/eLife.11214.030
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development of predictive models of tissue function. For example, a model of blood flow through

the sinusoidal network and exchange with hepatocytes via the space of Disse (Ohtani and Ohtani,

2008; Wisse et al., 1985) critically depends on the estimation of the sinusoid diameter. An overesti-

mation of the sinusoidal tube radius would have major consequences for the predictions of blood

cells flow through the sinusoidal network. Our geometrical model yielded a diameter of the sinusoi-

dal-walled tube equal to the typical size of erythrocytes and lymphocytes. Therefore, it supports the

model of active exchange of blood serum and lymph in the space of Disse, whereby blood flux pro-

pels cells through the sinusoids causing waves of capillary walls deformation (McCuskey, 2008;

Wisse et al., 1985). The active mesh tuning algorithm yielded a distribution of the radius of sinusoid

capillaries with a mean value that was 20% lower (Figure 4—figure supplement 1A) than previously

estimated by similar approaches (Hammad et al., 2014; Hoehme et al., 2010), but in line with the

values reported by EM (Wisse et al., 1985). The reconstruction also revealed a large difference with

the previously reported angles between two arms of branching sinusoids (112˚ vs. 32˚, Figure 4—fig-

ure supplement 1B). Moreover, the geometrical model provides correct values for other sinusoidal

network parameters such as number of intersection nodes per mm3 (8.3 � 104 ± 1.9 � 104) and net-

work length per mm3 (3.1 � 106 ± 0.3 � 106 mm), which appear to have been overestimated in a

recent report (Hammad et al., 2014) (see ‘Methods’). The discrepancy between our geometrical

model and others (Hoehme et al., 2010; Hammad et al., 2014) could be due to differences in

image processing and/or experimental procedures (tissue fixation, image acquisition, etc.). One pos-

sible explanation for this discrepancy is that our platform applies the active mesh approach to the

segmentation of structures on different scales (from the apical surface of hepatocytes forming the

BC to cells) and this may yield a more precise geometrical reconstruction in comparison with voxel-

based methods (Figure 3A).

For the marker-less cell-type recognition, we compared two approaches, the classical LDA and

the more recent BNC, applied to nuclei morphology. The accuracy of both approaches was compa-

rable, reaching higher than 99% efficiency for hepatocyte recognition and about 92–95% for all cell

types. The latter value is highly significant since the distinction between stellate and sinusoid endo-

thelial cells in the absence of specific markers is challenging even for a skilled person. The analysis of

parameters that were mostly informative for cell type discrimination yielded some unexpected

results. Although nuclear size and roundness were traditionally considered a priori as the most rele-

vant parameters to discriminate hepatocytes from non-parenchymal cells (Baratta et al., 2009;

O’Gorman et al., 1985), we found that they are less informative than the parameters related to

nuclear texture (e.g. moments of lacunarity). The analysis of parameters relevant for cell classification

can shed light on the differences in cell morphology that are difficult to grasp by the naked eye. The

accurate active mesh-based cell shape estimation led to well-separated peaks of cell volume

Video 4. 3D reconstruction of lung tissue. Nuclei and

cells reconstructed from a high-resolution image

(~220 mm � 220 mm � 80 mm). First, the raw images of

the cell cortex (F-actin by phalloidin) and nuclei (DAPI)

staining are displayed. Then, the reconstruction of the

nuclei (random colours) and the cells (random colours)

are shown.

DOI: 10.7554/eLife.11214.031

Video 5. 3D reconstruction of kidney tissue. Nuclei and

cells reconstructed from a high-resolution image

(~220 mm � 220 mm � 80 mm). First, the raw images of

the cell cortex (F-actin by phalloidin) and nuclei (DAPI)

staining are displayed. Then, the reconstruction of the

nuclei (random colours) and the cells (random colours)

are shown.

DOI: 10.7554/eLife.11214.032
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distribution (Figure 4A–C), which failed to be discriminated by approximation through Voronoi tes-

sellation (Bock et al., 2010) (data not shown).

The analysis of liver tissue using our software platform revealed some unexpected biological find-

ings. It is well established that hepatocytes are heterogeneous in size, number of nuclei (mono and

bi-nucleated cells) and DNA content (polyploidy). However, we observed that these features are not

randomly distributed but follow a specific zonation pattern within the liver lobule. Surprisingly, the

mono-nucleated 2n and bi-nucleated 2�2n hepatocytes were enriched in the CV and PV regions,

whereas bi-nucleated 2�4n were more frequent in the middle region. This particular distribution

suggests that polyploidy is spatially regulated and follows a gradient between CV and PV. Zonation

of metabolic activities in the liver is well known, but zonation of mono- and bi-nucleated cells and

total DNA content (polyploidy) remains controversial. The spatial distribution of hepatocytes accord-

ing to their ploidy in the CV-PV axes correlates with the metabolic zonation. This correlation sug-

gests a possible role of polyploidy in regulating hepatocyte functions in the liver lobule.

Interestingly, two unique populations of cells with stem cell-like properties and the capacity to

repopulate the liver have been recently identified (Ray, 2015; Wang et al., 2015; Font-

Burgada et al., 2015). One population located close to the CV, which has been implicated in

homeostatic hepatocyte renewal (Wang et al., 2015), coincides with the mono-nucleated 2n cells

we identified. The other population of hepatocytes located near the PV, which was found to repopu-

late the liver after injury (Font-Burgada et al., 2015), could correspond to the low ploidy cells (2n

and 2�2n) we observed. These results inspire future studies aimed at exploring the mechanisms

underlying regulation of mono- versus bi-nuclearity and polyploidy in the context of liver tissue struc-

ture, function and regeneration (Zaret, 2015; Ray, 2015). In this context, the accurate digital geo-

metrical model of tissue is a valuable resource.

Geometrical models provide the means of extracting structural information as a precondition for

the development of functional models of tissues. They can be a tool for acquiring accurate quantita-

tive measurements of morphological features and, as such, have the potential of uncovering the fun-

damental rules underlying tissue organization. In addition, the measurement of specific parameters,

such as BC and sinusoid diameters, network cardinality, cell volume and shape, etc., can serve as

diagnostic markers of early stages of tissue dysfunction/repairing, thus providing new tools for clini-

cal research and drug development.

Methods

Mice and ethics statement
Six- to nine-week-old C57BL/6JOlaHsd mice were purchased from Charles River Laboratory. All ani-

mal studies were conducted in accordance with German animal welfare legislation and in strict path-

ogen-free conditions in the animal facility of the Max Planck Institute of Molecular Cell Biology and

Genetics, Dresden, Germany. Protocols were approved by the Institutional Animal Welfare Officer

(Tierschutzbeauftragter) and all necessary licenses were obtained from the regional Ethical Commis-

sion for Animal Experimentation of Dresden, Germany (Tierversuchskommission, Landesdirektion

Dresden) (license number: AZ 24-9168.24-9/2012-1, AZ 24-9168.11-9/2012-3).

BFBD algorithm for de-noising images of fluorescent microscopy
We took advantage of the fact that point-spread-function of confocal microscopes is strongly elon-

gated in z-axis and developed a new de-noising algorithm based on the linear approximation of the

image background intensity in the z-direction. Since confocal microscopy images are photon-limited

and therefore obey Poisson statistics, we first found the parameters a and b that convert the photon

counts (N) into the intensity (I) units, such that:

Ih i ¼ a Nh iþb

where the operator :h i represents the average, a is the conversion coefficient from number of pho-

tons to intensity values and b is the offset of the microscope digitization system (dark current).

For this, we calculated the variance of the intensities between sequential optical z-sections for

each X–Y pixel and binned them according to the pixel intensities. Then, the mean variance was cal-

culated within each bin and, as a result, the dependency of mean variance upon the intensities was
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found (Figure 1—figure supplement 2G). This dependency was found to be linear, as expected for

a Poisson noise model:

VðIÞ ¼ a2 Nh i ¼ að Ih i�bÞ

where V(I) is the variance for each intensity level Ih i.
Moreover, when thick 3D tissue samples are imaged, it is required to use different laser intensity

and microscope gain. This results in an increase of the intensity scaling factor a with the image

depth. Therefore, we calculated the Poisson noise model for different image depths (z-direction)

and then, we used a and b to estimate the variance for every pixel.

After that, we estimated the background intensity of every pixel. Briefly, for each pixel a set of

sequential intensities in z-direction was extracted (Figure 1—figure supplement 2H, left). Then, the

intensities were fitted by a straight line using the outlier-tolerant algorithm described in (Sivia, 1996)

(Figure 1—figure supplement 2H, right). The prediction of the straight line was considered as the

background intensity, and the difference between the measured intensity and background was con-

sidered as candidate foreground intensity. The candidate foreground intensities below a defined

threshold (expressed in variance units) were excluded. Finally, the background was added to the

foreground to form the de-noised image.

To evaluate the performance of our algorithm, we applied it to a set of three artificial images of

BC from our benchmark (2:1 signal-to-noise ratio). Additionally, we applied other methods such as

median filtering, Gauss low-pass filtering and anisotropic diffusion, ‘pure denoise’ (PD)

(Luisier et al., 2010) and ‘edge preserving de-noising and smoothing’ (EPDS) (Beck and Teboulle,

2009) for comparison. The performance of each method was quantitatively evaluated using the met-

rics mean square error (MSE) and coefficient of correlation (CoC), defined as follows:

MSE¼
P

i2
ðI i� I�i Þ
2

j
j

CoC¼
P

i2
ðI i� Ih iÞ � ðI�i � I�h iÞ
ðPi2
ðI i� Ih iÞ2 �

P

i2
ðI�i � I�h iÞ2Þ1=2

where W is the region of interest in the image, Ii and I�i are the intensities at voxel i of the de-noised

and noise-free (ground truth) images respectively, Ih i and I�h i are the mean intensities of the de-

noised and noise-free images, respectively. We calculated the MSE and CoC over the whole images

(global) as well as in the vicinity of the objects (Figure 1—figure supplement 3A). For PD and

EPDS, we selected the best parameters for their performance before the comparison (Figure 1—fig-

ure supplement 3B,C). The results of our quantifications are shown in Figure 1—figure supplement

4–5.

Methods for the reconstruction of 3D multi-scale images
Reconstruction of physical sections
To image large and complex tissue structures such as the liver lobule, we generated a grid of par-

tially overlapping low-resolution 3D images (stacks) for each individual tissue section. We applied an

image mosaicking procedure to merge the stacks into a single 3D image of the section (Figure 2A

and Figure 2—figure supplement 1A). Our merging procedure adopts a standard approach to

maximize the sum of cross-correlations calculated for pairs of neighbouring tiles in the grid. The

input data set for the reconstruction of physical sections was composed of N-by-M grids of partially

overlapping 3D images (Z-stacks) (Figure 2—figure supplement 1A). It is assumed that an approxi-

mation of their overlapping area is known and that transitional image registration is sufficient for

reconstruction purposes.

Let ðZx;y0Zx0;y0Þ be a pair of neighbour images located within the grid (0 � x < N, 0 � y < M, 0 �
x0 < N, 0 � y0 < M, |x � x0| = 1 � |y � y0| = 1), and Cx,y,x0,y0(i,j,k) the cross-correlation of their overlap-

ping areas. The quality of their local alignment for a given shift (i,j,k) is measured by the correspond-

ing value of the cross-correlation Cx,y,x0,y0(i,j,k). The goal of the reconstruction is to find a set of

shifts (i,j,k) (one for each image) that maximizes the global metric:
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Gði; j;kÞ ¼
X

N

x¼0

X

M

y¼0

X ðx0;y0Þ 2 xþ 1;yð Þ; x;yþ 1ð Þ; xþ 1;yþ 1ð Þf g
x0 2 0;N½ �ly0 2 0;M½ � Cx;y;x0;y0ðix;y;jx;y;kx;yÞ

To solve this maximization problem, we used the optimization technique proposed in

(Griffiths et al., 1999), which allowed finding the appropriate shifts with high accuracy (Figure 2—

figure supplement 1B). All input 3D images were shifted according to the optimization results and

registered using the multi-band blending approach (Burt and Adelson, 1983; Brown and Lowe,

2003).

Bayesian algorithm for the detection of the surface of tissue sections
Most publicly available 3D image stitching methods were developed for EM data, where the samples

are first embedded in resin or deep-frozen, which makes them solid and prevents partial removal of

tissue by cutting. Therefore, they are based on local correlation of the images (Saalfeld et al., 2012;

Hayworth et al., 2015). In the case of soft tissues, the removal of tissue upon cutting is much more

significant, leading to a lack of texture correlations between two adjacent sections. The sample

preparation process introduces several mechanical artefacts to the imaged sample, including uneven

thickness of the section and tissue bending. When large vessels are aligned along the section sur-

face, it becomes difficult to determine whether the empty space corresponds to the interior of the

vessel or section damages or bending, which constitutes a major obstacle in their segmentation (Fig-

ure 2—figure supplement 1C). To address this issue, we propose a surface detection method,

which uses prior distributions of expected section shape to find the border between the volume of

the image of the sample (including blood vessels) and the out-of-field region.

Our approach is based on Bayesian statistics. According to the Bayes theorem:

p y1;y2jym1;ym2ð Þ ¼ pðym1;ym2jy1;y2Þpðy1;y2Þ
pðym1;ym2Þ

Using the chain rule to obtain the joint probability distribution pðy1; y2Þ, we got:

pðy1;y2jym1;ym2Þ»pðym1;ym2jy1;y2Þpðy1jy2Þpðy1Þ

The empirical analysis of several tissue sections with manually specified surfaces allowed us to

estimate the probabilities ðym1; ym2jy1; y2Þ; pðy1jy2Þ and pðy1Þ :

p ym1;ym2jy1;y2ð Þ ¼
Y

x;y

1

ps 1þ
y1;x;y� ym1;x;y

s

� �2
� �

1

ps 1þ
y2;x;y � ym2;x;y

s

� �2
� �

p y1jy2ð Þ ¼
Y

x;y

1
ffiffiffiffiffiffiffiffiffi

2ps
p exp

ðy2;x;y�y1;x;yÞ2
2s2

 !

pðy1Þ ¼
Y

x;y

Y

"x2½�1;1�

Y

"y2½�1;1�
lexpð�ljy1;xþ"x;yþ"x� y1;x;yjÞ

Where s is a parameter that specifies how close the real surface is to the measured one,

s describes the variability of the section thickness, l specifies the smoothness of the real surface and

(x,y) are the coordinates of the real surface nodes.

By analysing our benchmark data set, we found that the median absolute deviation (tMAD) of the

section thickness |ym2 -� ym1| constituted a good approximation for the parameters s and s. The

parameter l was found by the maximum likelihood estimation of the empirical distribution measured

from the maximum entropy segmentation. Then, the final posterior probability for surface detection

has the following form:
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To check whether the surface energy model of this equation can be applied to different images,

we created a benchmark data set composed of 10 section images with manually segmented surfa-

ces. The model distributions pðym1; ym2jy1; y2Þ; pðy1jy2Þ and pðy1Þ closely matched with the corre-

sponding empirical distributions calculated from the manual detection (Figure 2—figure

supplement 1D–F).

The proposed model was used for the automated surface detection by minimizing the posterior

pðy1; y2jym1; ym2Þ probability . This minimization was performed using iterative conditional modes. The

surfaces calculated by the maximum entropy approach were used as initial guess. To evaluate the

quality of the automatically detected surfaces, we created a benchmark data set composed of 30

sections collected from three tissue samples. The average displacement between the manual and

the automatic segmentation was 4.53 ± 1.12 voxels (Figure 2—figure supplement 1G,H).

Segmentation of tissue-level networks
The goal of the segmentation of tissue-level networks is to identify the volume of a sample, which is

occupied by large vessels such as CV, PV, hepatic artery or bile ducts. These structures appear in the

images as empty volume (Figure 2—figure supplement 2A); therefore, their segmentation is possi-

ble without using a specific staining.

The direct application of thresholding methods like maximum entropy (Kapur et al., 1985) is

troublesome due to several obstacles that arise from sample preparation artefacts. First, mechanical

distortions such as uneven cutting of the section or tissue bending during imaging are introduced in

the imaged sample. Since large vessels are not stained, it is impossible to distinguish them from out-

of-field region using only the voxels intensities. Second, image intensities vary spatially within the

sample due to uneven staining. In consequence, a global threshold underestimates the size of ves-

sels in the bright regions of the image and overestimates it in the dark ones. To address these prob-

lems,we introduced two pre-processing steps. At first, we used the detected surfaces of the section

to discriminate the parts of the image belonging to the sample from the ones in the out-of-field

region. Subsequently, the 3D images (excluding the out-of-field region) were split into regular grids

of overlapping sub-regions and the maximum entropy threshold was calculated for each of them.

After that, the threshold values were interpolated over the entire image using tri-linear interpolation

(Figure 2—figure supplement 2B). Finally, the vessels were segmented using the calculated thresh-

old values (Figure 2—figure supplement 2C).

Multi-resolution image positioning
Multi-resolution image positioning involves the rigid-body registration of a high-resolution 3D image

(moving image) within the reconstructed low-resolution image of a section (fixed image). Since indi-

vidual images have sizes up to 500 Mpx, we performed the image registration in the scaled-space

using a stepwise approach.

We built a three-level scale pyramid using the original images and their copies scaled by factors

of 0.50 and 0.25. The last level of the pyramid was used to find an initial approximation for the rigid-

body registration, which was performed by rotating the moving image with respect to the fixed

image. The rotation (r) with the highest value of cross-correlation was used as initial guess for further

alignment.
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Then, a registration based on polar transformations (Wolberg and Zokai, 2000) was performed.

First, the relative shift between two images was found by the peak of their NCC, the images were

shifted accordingly and its overlapping part was cropped. Second, the cropped images were trans-

formed to polar coordinates (where a shift is equivalent to a rotation in the Cartesian coordinate sys-

tem) and their NCC was calculated. The updated angle r was extracted from the peak of the cross-

correlation of the transformed image. Note that the initial estimation of r (±15˚) found in the initial

step is required for the convergence of the polar registration. The polar registration procedure was

repeated subsequently using the images stored in the second and first level of scale pyramid, which

results in the increase of the registration accuracy and computational time in each iteration of the

algorithm. Also, 2–3 iterations were sufficient to achieve full convergence and register images with

subcellular accuracy (Figure 2—figure supplement 2D–F).

Methods for 3D image segmentation
Nuclei splitting algorithm
In order to split artificially clustered structures, either the volumetric data from the segmented image

or the triangle meshes of the reconstructed objects can be used (Bilgin et al., 2013). We used the

information of the triangle meshes in a probabilistic algorithm, which first learns from the error distri-

bution for the nuclei approximation by single and double ellipsoids. Based on the extracted statis-

tics, the algorithm identifies and splits multi-nuclear structures. Further, we will refer to both the

mono-, bi- and multi-nucleated structures as 3D objects.

First, all 3D objects were approximated by single and double overlapping ellipsoids. The first

model corresponds to the minimum volume ellipsoid (MVE) that encloses the vertexes of the triangle

mesh (Figure 3—figure supplement 1D). For the second model, the triangle mesh was symmetri-

cally split in two subsets and each subset was approximated by an MVE (Figure 3—figure supple-

ment 1E). Both models were evaluated on the data (vertexes) by using mean square error (MSE):

MSE¼ 1

n� 9

X

n

i¼1

pi � cÞTE pi� cð Þ� 1Þ2
��

where n is the number of vertexes, pi is the coordinates vector of the vertex i, c is the centre of the

ellipsoid and E is the matrix describing the orientation and dimensions of the ellipsoid. The model

with the lowest MSE was selected as the best model for the 3D object.

Second, the error distribution (from the best models) resulting from the first step was analysed as

follows: the natural logarithm of each MSE value was computed and the resulting histogram was fit-

ted with a sum of two Gaussian distributions (Figure 3—figure supplement 1F). The two distribu-

tions were split by a threshold value, which was chosen such that it corresponded to the upper limit

of the 95% confidence interval of the first component (the one with lowest mean value) (Figure 3—

figure supplement 1G). The objects whose In(MSE) is smaller than the threshold corresponds either

to one nucleus or two overlapping nuclei, and the rest corresponds to multi-nuclear structures. The

3D objects recognized as two overlapping ellipsoids were reconstructed using the models as bound-

aries to split the initially segmented images.

The multi-nuclear objects were split following two steps: first, the nuclei seeds were detected as

proposed in (Stegmaier et al., 2014) and then the real shape of the nuclei was found by an active

mesh expansion from the seeds. The nuclei seeds were extracted from the Laplacian of Gaussian

scale-space maximum intensity projection (LoGMP) image (Stegmaier et al., 2014):

LoGMPðx;smin;smaxÞ ¼ max
smin�s�smax

LoGðx;sÞ

where LoG(x,s) represents the Laplacian of Gaussian filtered image found using a standard deviation

s. Considering that the radius (r) of the objects to be detected is given by r=H2s (Al-Kofahi et al.,

2010), smin and smax are determined by a priori knowledge of the typical size of the nuclei we want

to detect. Each local maximum in the LoGMP image corresponds to a nuclei seed. Then, we used an

active mesh expansion from the seeds to the real shape of the nuclei. The expansion was either lim-

ited to the nuclei border (regions of maximum intensity at the complement image of the LoGMP) or

to the contact with neighbouring nuclei (Figure 3—figure supplement 1H –J).
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Methods for cell classification
Feature extraction
For each nucleus, a profile of 74 parameters was calculated (Table 1). We used the information of

the triangle mesh of the reconstructed nucleus as well as the information of the DAPI, Flk1 and phal-

loidin channels. All channel intensities were normalized using histogram equalization before the

parameter extraction. The parameters include:

. Nuclear geometrical properties: volume (V), surface area (A), all possible ratios between the

lengths of the semi-principal axis (a,b,c) of the MVE, sphericity (" ¼ p1=3ð6VÞ2=3
A

), mean and vari-

ance values of nucleus radius, shape index (Levitt et al., 2004) and curvature variation mea-
sure (Sukumar et al., 2005).

. DAPI and Flk1 intensity-based features:mean, standard deviation, skewness and kurtosis values
of the intensity inside the nucleus.

. Haralick texture features (Haralick et al., 1973): The intensity of DAPI inside the nucleus was
used. Thirteen statistical features were extracted from the normalized grey-level co-occurrence
matrix, which was calculated from 65 independent co-occurrence matrices (considering all pos-
sible 13 directions in 3D and 5 different distances from 1 to 5 pixels). All co-occurrence matri-
ces were calculated using 256 grey levels.

. Box-counting (BC) (Lopes and Betrouni, 2009) and Minkowski–Bouligand (MB)
(Einstein et al., 1998) fractal dimensions: in both cases, the intensity of DAPI inside the
nucleus was used. Integer values from 1 to 5 pixels were used as box length and radius values
for the respective calculations. For theBC, the gliding box method was applied.

. Mean-weighted lacunarity (Einstein et al., 1998): it was calculated for the intensity of DAPI
inside the nucleus using box lengths from 1 to 5 (lacunarity1, lacunarity2, etc.). Additionally,
the values of the normalized lacunarity (NormLac2 = lacunarity2/ lacunarity1, etc.), and the nat-
ural logarithms of lacunarity (LogLac1, LogLac2, etc.), and normalized lacunarity (LogNorm-
Lac2, etc.) were extracted.

. DAPI mean surface intensity gradient: The surface gradient of DAPI signal was calculated at
the centre of each triangle of the mesh. The mean value was calculated using a weighted aver-
age (using the area of the triangles as weights).

. Phalloidin and Flk1 intensity at different distances of the nucleus surface: the mean signal
intensity (phalloidin or Flk1) at different distance (0 to 10 voxels) from the triangle mesh was
calculated.

Feature selection for the LDA
In order to get the most relevant parameter for the LDA classifier, we used the Fisher score and

one-leave-out cross-validation as measure of the classifier accuracy. Firstly, the Fisher scores (Fi) was

calculated for each parameter i as follows:

Fi ¼
Pm

k¼1 nkðuik � uiÞ2
Pm

k¼1 nkðsi
kÞ

2

where m is the number of classes, nk is the size of the kth class uik and si
k are the mean values and

the standard deviation of the parameter i for the kth class ui is the mean value of the parameter

i over the whole sample.

The parameters were sorted based on Fi (Table 1) and systematically added to the classification

while the accuracy of the algorithm was calculated, i.e., the first parameter from the sorted vector

was taken, the classification was performed and the accuracy was calculated, then the second

parameter was added and the process was repeated. Figure 3—figure supplement 2B shows how

the classifier accuracy depends on the number of parameters used in the classification. For further

analysis, only the set of parameters that yielded the highest accuracy was used.

The LDA was performed in three independent steps. Each corresponds to a two-class classifica-

tion. First, hepatocytes were classified from other nuclei, then SECs were classified from the remain-

ing nuclei and, finally, the rest of the nuclei were classified either into Kupffer or stellate cells.
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Cell classification by Bayesian network
The training set was presented as a vector of 75 parameters. The first one corresponded to the cell

type and the following 74 were the measured nucleus features. Each parameter was discretized into

5 bins with equal population. Then, we calculated the mutual information MI between every parame-

ter and the cell type parameter as

MI X;Yð Þ ¼
X

x;y

P x;yð Þln Pðx;yÞ
PðxÞPðyÞ

� �

where X and Y denote sets of parameters, x and y denote instances of parameters. The probabilities

were calculated from the training set as

P xð Þ ¼ nx þ 1
P

xnx þ r

where nx denotes the number of instances in the bin x and r is the number of bins (in our case

r = 5 for all parameters but the first one). Then the parameters were sorted in descent order accord-

ing to the mutual information. The structure of Bayesian network was learned from the training data

by the K2 algorithm (Heckerman et al., 1995) (Figure 3—figure supplement 2C). For each nucleus,

the probability for each cell type was calculated. The type with the highest probability was taken as

classification output.

Validation of the resulting model
Benchmark for the evaluation of 3D reconstructions of dense tissue
We generated a set of artificial images of liver tissue that can be used for developing and evaluating

methods for the reconstruction of geometrical models of dense tissue. The benchmark consists of a

set of realistic 3D high-resolution images (0.3 mm � 0.3 mm � 0.3 mm per voxel) of normal liver tis-

sue. To generate artificial images that emulate the complexity of the real tissue images as well as

exhibit meaningful biological characteristics, we extracted data from real images to produce ideal-

ized ground truth images of the main structures forming the tissue, that is, nuclei, sinusoids, BC and

cell borders. Then, distortions coming from different sources such as uneven staining, optical distor-

tion due to the PSF of the confocal microscope and spatially variation of Poisson noise were added

to the idealized ground truth images (Figure 3—figure supplement 5).

The ground truth images were generated as follows: (1) the initial outlines were extracted from

three real 3D images: central lines of the tubular networks (e.g. BC and sinusoids), position of the

nuclei centres and cell borders; (2) idealized structures were built on top of the outlines: solid tubes

with a constant radius of ~0.5 mm for the BC networks, hollow tubes with constant internal (~2.5 mm)

and external (~3.0 mm) radius for the sinusoidal networks, solid spheres with radius between ~3.5

and ~5.5 mm for the nuclei and solid border of ~0.5 mm width for the cells.

Next, the uneven staining was simulated by applying random intensities at different scale levels.

Briefly, first a 6 � 6 � 6 binning was applied to a black image and an intensity value extracted from

a log-normal distribution with mean 1000 a.u. and standard deviation 0.5 was assigned to each

binned voxel. Next, the image was unbinned and the new intensity values of each pixel were

extracted from a log-normal distribution with mean equal to the original value and standard devia-

tion 0.2. Finally, the uneven stained image was obtained by applying a mask (ground truth) to the

generated one. Additionally, a homogeneous background (10:1, 4:1 and 2:1 signal-to-noise ratios)

was added to the images (Figure 3—figure supplement 5A,B).

In thick samples far from the coverslip, the acquired images are highly distorted by the illumina-

tion PSF, leading to an asymmetric smearing of the image in z-direction (Nasse et al., 2007;

Nasse and Woehl, 2010). We convolved the uneven stained images with realist PSFs (Figure 3—fig-

ure supplement 5C,D). The PSFs were generated using different excitations wavelengths for each

structure: 568, 647, 780 and 488 nm for BC, sinusoids, nuclei and cell borders, respectively. Finally,

we added Poisson noise with different scaling factors according to the models extracted from the

real data (Figure 3—figure supplement 5E–G). An example of the resulting images is shown in Fig-

ure 3—figure supplement 6.
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Internal consistency of the data extracted from sinusoidal network
reconstruction
In order to check the internal consistency of the morphometric features that we extracted from the

reconstructed sinusoidal networks, we independently calculated the fraction of volume of the sinus-

oids (VS), the length of the sinusoidal network per volume unit (LS) and the average radius of the net-

work (rs). Then, we estimated the fraction of volume of sinusoids (VC) using LS and rs, and

approximating the tubular network by a cylindrical network. We found that Vc/Vs = 0.99 ± 0.09,

showing the internal consistency of our data. When applying the same calculation to the data

reported in (Hammad et al., 2014), we found Vc/Vs = 2.55, which suggests an over-estimation of the

network parameters (e.g. number of intersection nodes per mm3, network length per mm3); see

Table 2.

Quantitative analysis of liver tissue architecture
DAPI integral intensity calculation
For each nucleus, the total content of DNA was calculated as the integral intensity of the original

DAPI image inside the corresponding 3D triangle mesh. Since calculation was performed for three

independent samples, the integral intensity per nucleus was normalized to the intensity of first one.

Briefly, the distribution of DAPI integral intensity per nucleus was independently calculated for each

sample (Figure 4—figure supplement 2). Then, each distribution was aligned (stretched) to the ref-

erence one (the first one in our case) by minimizing the functional:

dj ¼
P

iðf 0ðx0i ÞÞ
2�Piðf 0ðx0i Þ � f jðs � x1i ÞÞ
P

iðf jðs � x1i ÞÞ
2

where
P

i is the sum over the bins of the distributions, f 0ðx0i Þ is the height of the i bin of the refer-

ence curve, f jðxjiÞ is the height of the i bin of the j curve to be aligned and s is the scaling (stretching)

factor.

We found scaling factors 1.19 and 0.93 for the second and third samples respectively. Finally, the

DAPI integral intensity of each nucleus was recalculated using the corresponding scaling factor.
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Table 2. Internal consistency of the sinusoidal network data.

Sample Vs Ls/(mm/mm3) rs/(mm � 103) Vc ~ p � rs
2 � Ls Vc/Vs

1 0.16 2853.4 4.05 0.15 0.92

2 0.14 2976.4 3.75 0.13 0.95

3 0.20 3505.8 4.50 0.22 1.09

Hammad et al., 2014 0.15 5400.0 4.80 0.39 2.55

Notes: The fraction of volume of the sinusoids (Vs), the length of the sinusoidal network per volume unit (Ls) and

the average radius of the network (rs) were measured independently for each sample. A theoretical approximation

of the fraction of volume of the sinusoids (Vc), considering it consists of ideal cylinders, was calculated (Vc ~ p �
rs2 � Ls). Then, the ratio between the measured and the calculated fractions of volume (Vc/Vs) was calculated. Val-

ues close to 1.0 reflect auto consistency on the data. We performed the same calculation with the data reported in

Hammad et al. (2014).
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