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Abstract Neuroimaging has been used to examine developmental changes of the brain. While

PET studies revealed maturation-related changes, maturation of metabolic connectivity of the brain

is not yet understood. Here, we show that rat brain metabolism is reconfigured to achieve long-

distance connections with higher energy efficiency during maturation. Metabolism increased in

anterior cerebrum and decreased in thalamus and cerebellum during maturation. When functional

covariance patterns of PET images were examined, metabolic networks including default mode

network (DMN) were extracted. Connectivity increased between the anterior and posterior parts of

DMN and sensory-motor cortices during maturation. Energy efficiency, a ratio of connectivity

strength to metabolism of a region, increased in medial prefrontal and retrosplenial cortices. Our

data revealed that metabolic networks mature to increase metabolic connections and establish its

efficiency between large-scale spatial components from childhood to early adulthood.

Neurodevelopmental diseases might be understood by abnormal reconfiguration of metabolic

connectivity and efficiency.

DOI:10.7554/eLife.11571.001

Introduction
Recent neuroimaging studies unraveled the developmental changes of the adolescent brains (Blake-

more, 2012). Among those neuroimaging techniques, positron emission tomography (PET) provides

quantitative information regarding regional metabolism or synaptic neurochemicals with high sensi-

tivity. As 18F-Fluorodeoxyglucose (FDG) is taken up in the brain proportional to cerebral energy con-

sumption and neuronal activity, FDG PET studies have been used to investigate regional energy

metabolism during physiologic and pathologic processes. Previous brain developmental studies

using FDG PET in humans assumed that the regional increase of metabolism was accompanied by

regional increase of neuronal activity during brain maturation (Chugani et al., 1987; Phelps and

Mazziotta, 1985). Despite these previous data, the developmental changes are not understood in

terms of dynamic organization of metabolic networks between brain regions.

Since a series of regional brain activity is being coherently organized changing throughout time,

sets of specific brain regions are activated or deactivated during resting or various cognitive tasks.

These specific regional activity patterns, so-called functional brain networks, are identified by neuro-

imaging studies (Deco et al., 2011). Among several imaging approaches, resting state functional

magnetic resonance image (fMRI)-based connectivity analyses revealed maturation of the functional

networks during childhood and adolescence (Fair et al., 2008; Fair et al., 2007; Supekar et al.,

2009). FDG PET can also reveal functional metabolic network and its maturation, exploiting the cou-

pling between neuronal activity and metabolism. While the fMRI-based functional connectivity meas-

ures correlation of fast temporal fluctuations, metabolic connectivity measured by FDG PET reflects
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a cumulative energy consumption in several minutes and provides relatively stable information

regarding steady resting state (Choi et al., 2014; Di et al., 2012; Lee et al., 2008; Lee et al., 2012;

Toussaint et al., 2012; Yakushev et al., 2013). Furthermore, FDG PET measures metabolic activity

and connection patterns during awaken states even in animals as in humans, because FDG is taken

up in the brain mainly during the period after injection and before the imaging under anesthesia.

To organize highly connected functional brain networks, which can be measured by fMRI or FDG

PET, the brain needs efficient energy metabolism (Bullmore and Sporns, 2012). As the high ener-

getic costs are required for brain wiring to construct and maintain hub regions with dense connec-

tions, hub regions will show high glucose metabolism (Lord et al., 2013). Brain regions were found

to show different regional energy efficiency so that, for instance, subcortical regions consumed rela-

tively lower metabolic energy per connection (Tomasi et al., 2013). Therefore, we can say that

metabolism of brain regions could be determined both by the regional complexity of functional net-

works and their energy efficiency for wiring. Since the developmental changes in functional networks

reconfigure the metabolic demands, energy efficiency of the brain networks are going to be

changed during maturation.

We primarily aimed to find the maturation-related changes in both regional metabolic activity

and metabolic connectivity in adolescent period with a longitudinal study in rats. As the animals

allow repeated imaging studies, we could study longitudinal maturation of regional metabolism and

connectivity in the same animals. As the small animals also have default mode network (DMN)

(Lu et al., 2012) defined as brain regions activating during resting state and deactivating during

attention-demanding tasks (Raichle et al., 2001), specific network components were extracted in

the rat brain from minutes-scale metabolic covariance patterns and independent component analysis

(ICA). We hypothesized the metabolic networks are dynamically organized during maturation to

achieve connection efficiency. We investigated maturation of large-scale metabolic connectivity and

analyzed their energy efficiency for wiring in rat brains.

Results
Voxelwise comparisons were firstly performed among rats aged 5, 10, and 15 weeks to disclose tem-

poral changes of regional metabolic activity. The comparison using statistical parametric mapping

revealed that the metabolism increased in 10-week-old age in bilateral frontal cortices and anterior

aspect of striatum compared with 5-week-old age and decreased in bilateral cerebellar cortices, thal-

amus, parieto-occipital cortices, and retrosplenial cortices (Figure 1A) (representative FDG PET

eLife digest The brain consumes a great deal of a sugar called glucose, which is delivered to

the brain through blood vessels. Active regions of the brain need more glucose, and so the brain

has a metabolic network that controls when and where glucose is metabolized. Yet precisely how

this metabolic network changes during brain development is not yet understood.

Choi et al. have now monitored the patterns of glucose metabolism in the brains of awake rats as

they matured from ’childhood’ to early adulthood. The experiments involved injecting the rats with

radioactive glucose, and then using a technique called positron emission tomography (commonly

known as ’PET scan’) to monitor the metabolism of these radioactive sugar molecules in the animals’

brains.

Choi et al. showed that the patterns of glucose consumption in the brain shift drastically as the

rats mature. Importantly, the findings showed that these shifts in glucose metabolism seem to

support the activity of long distance connections that develop as the brain matures. The findings

also showed that the increased long distance connections were energy efficient. The results suggest

that these metabolic changes are likely a way of maintaining high-energy efficiency that is crucial for

the brain to perform normally.

Finally, in addition to revealing the changes involved in normal brain development, these findings

may have implications in neurological and psychiatric disorders in which the brain fails to achieve

efficient metabolic networks as it matures.

DOI:10.7554/eLife.11571.002

Choi et al. eLife 2015;4:e11571. DOI: 10.7554/eLife.11571 2 of 12

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.11571.002
http://dx.doi.org/10.7554/eLife.11571


images for each age are shown in Figure 1—figure supplement 1). Again, metabolism increased in

15-week-old age compared with 10-week-old age, in the clusters of both hippocampi and decreased

in the small clusters of right striatum and left frontal cortex (Figure 1B, Figure1—

figure supplement 2).

Interregional metabolic correlation on FDG PET was supposed to reflect interregional covariance

patterns of neuronal activities. An ICA was performed to yield regional contributing components of

metabolic networks. A total of 13 metabolic independent components (ICs) were identified in rats

similar to components found in previous reports in humans on FDG PET (Di et al., 2012;

Toussaint et al., 2012; Yakushev et al., 2013). All ICs were displayed in Figure 2—figure supple-

ment 1, and a threshold z > 1.5 was applied for the voxels for display purposes. Four particular com-

ponents, IC1, IC5, IC8, and IC9, were selected (Figure 2), which anatomically corresponded to

previously alleged limbic/anterior DMN (IC1), posterior DMN (IC5), motor (IC8), and somatosensory

Figure 1. Voxelwise comparison results among rats aged 5, 10, and 15 weeks. (A) Age-related increase of

metabolism was found in bilateral frontal cortices and anterior aspect of striatum in 10 weeks. Age-related

decrease of metabolism was detected in bilateral cerebellar cortices, thalamus, parietooccipital cortices, and

retrosplenial cortices. (B) In the comparison between 10-week and 15-week-old rats, age-related increase of

metabolism was found in the clusters of both hippocampi and decrease of metabolism in the small clusters of

right striatum and left frontal cortex. The finding implies that considerable metabolic maturation in frontal cortices

occurs between 5 and 10 weeks, i.e. during adolescence.

DOI: 10.7554/eLife.11571.003

The following figure supplements are available for figure 1:

Figure supplement 1. Representative FDG PET images for each age.

DOI: 10.7554/eLife.11571.004

Figure supplement 2. Voxelwise comparison between 5-week-old and 15-week-old rats.

DOI: 10.7554/eLife.11571.005
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network (IC9), respectively (Lu et al., 2012). IC1 included the clusters of dorsal hippocampi and

medial prefrontal cortex. IC5 included the retrosplenial cortex, known as a hub of posterior DMN in

rats (Lu et al., 2012). It is anatomically adjacent to the posterior cingulate and precuneus in human

as cores of DMN (Raichle et al., 2001). These were used further to identify maturing patterns of

metabolic networks consisting of IC-derived volume-of-interests (VOIs). Eight VOIs (3 for IC1, 1 for

IC5, 2 for IC8 and IC9, respectively) were selected taking anatomical structures into consideration

(Figure 2—figure supplement 2) (stereotaxic coordinates and abbreviations of VOIs are summa-

rized in Table 1).

Interregional correlations were calculated between paired VOIs to yield 28 pairs (28 edges upon

8 nodes). This VOI-based metabolic interregional correlation was assumed to yield functionally

coherent covariance patterns among spatial components to represent metabolic connectivity. Meta-

bolic connectivity obtained this way was used to investigate the changes of metabolic networks dur-

ing maturation. Figure 3A shows interregional correlation representing connection strength of pairs

of VOIs in rats aged 5, 10, and 15 weeks. Significantly different connections in interregional correla-

tion were examined using nonparametric permutation tests (Figure 3—figure supplement 1) using

pseudorandom relabeling 5-week/10-week-old rat images or 10-week/15-week-old ones, followed

by FDR correction for multiple comparisons (Kim et al., 2015). Connectivity matrices (Figure 3A)

and p-values for the difference in connection strength (Figure 3—figure supplement 2) between

paired groups suggested that the connection between pairs of retrosplenial, medial prefrontal, and

sensorimotor cortices was strengthened from 5 to 10 weeks, while connectivity involving limbic

regions did not change. According to aging, pairs of anterior-posterior connections were signifi-

cantly strengthened when comparing 10-week-old rats with 5-week-old rats (Figure 3B). The

increase became prominent when we compared 15-week-old rats from 5-week-old rats. Connectivity

was not significantly weakened between areas during maturation (Figure 3—figure supplement 2).

We further investigated energy efficiency to configure the metabolic connectivity between spatial

components at each period of maturation. The energy efficiency was defined as the ratio of meta-

bolic connection strength, a sum of weights of links connected to each VOI, to normalized FDG

uptake of each VOI. Significantly different metabolic energy efficiency was also examined using the

permutation test (Figure 3—figure supplement 1). In 5-week-old rats, energy efficiency was

Figure 2. Major network components in cerebral cortices obtained by ICA. Among 13 large-scale network

components, 4 independent components which corresponded to those in humans were selected for further

connectivity analyses. In particular, independent component (IC) 1 included bilateral hippocampi and medial

prefrontal cortex. IC5 included retrosplenial cortex, a core of default-mode network. IC8 included motor cortex

and IC9 included somatosensory cortex. ICA, independent component analysis.

DOI: 10.7554/eLife.11571.006

The following figure supplements are available for figure 2:

Figure supplement 1. Independent components identified by ICA of FDG PET images (n = 88).

DOI: 10.7554/eLife.11571.007

Figure supplement 2. Eight volume-of-interests (VOIs) were defined as spheres with a radius of 0.8 mm (actual

size), located on each of independent components (ICs).

DOI: 10.7554/eLife.11571.008
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relatively lower in midline structures, that is, medial prefrontal and retrosplenial cortices than sensori-

motor cortices. In 10- and 15-week-old age compared with 5-week-old age, energy efficiency of the

midline structures significantly increased almost reaching those of the sensorimotor cortices

(Figure 4).

Discussion
In the present study, large-scale brain network based on glucose metabolic usage measured by PET

was analyzed to evaluate the maturation of the metabolic brain connectivity in rats. We identified

the specific pattern of changes in regional metabolism and metabolic connectivity during brain

development. In adolescent (10 weeks) and early-adult (15 weeks) period, metabolism increased in

the bilateral frontal lobes compared to childhood (5 weeks), whereas metabolism decreased in

the posterior cerebrum, thalamus, and cerebellum. Metabolic network components extracted using

ICA were default-mode, limbic, motor, and somatosensory ones, which have been regarded as

important functional components also in humans. Further connectivity analyses using VOIs put on

these components showed connection strength increased particularly in the anterior-posterior con-

nections during maturation. This connection strength increase was accompanied by increased energy

efficiency in the midline structures including medial prefrontal and retrosplenial cortices. Our work

suggested large-scale functional networks matured to increase anterior-posterior long-distance con-

nections and achieved energetically efficient wiring in the midline structures during maturation from

childhood via adolescence to early adulthood.

Voxelwise comparison revealed metabolism increase in bilateral frontal cortices during matura-

tion, prominent during 510 weeks of ages, which complied with previous perfusion studies. A study

using 99mTc-HMPAO SPECT showed perfusion increase in the neocortex at juvenile to young adult

periods in mice, particularly in frontal lobes relative to the cerebellum and subcortical structures

(Apostolova et al., 2012). In humans, perfusion was lower in the neonates’ neocortex while higher

in the basal ganglia and cerebellum (Fockele et al., 1990). Additionally, positive correlation was

found between age and frontal lobe perfusion (Kuji et al., 1999). FDG PET studies in human showed

significantly higher metabolism mostly in anterior cingulate and thalamus before 25-year-old

(Van Bogaert et al., 1998) and linear metabolism increase from the age of 115 in prefrontal/orbito-

frontal cortices (Kang et al., 2004). As a first study in terms of longitudinal age-related brain metab-

olism in rats, our findings of age-related frontal metabolism increase corresponded to human PET

findings as well as perfusion studies in rodents.

Table 1. List of the streotaxic coordinates for the functional networks nodes in rat brain.

Abbreviation

Paxinos atlas (mm)

ML DV AP

IC1

Left Hippocampus Hp_L -2.6 3.2 -3.2

Right Hippocampus Hp_R 2.6 3.2 -3.2

Medial Prefrontal Cotex MedF 0.0 3.8 4

IC5

Retrosplenial Cortex Rsp 0.0 1.8 -6.4

IC8

Left motor cortex Mot_L -2.2 2.2 2.2

Right motor cortex Mot_R 2.2 2.2 2.2

IC9

Left somatosensory cortex SS_L -5.0 3.8 0.6

Right somatosensory cortex SS_R 5.0 3.8 0.6

ML: medial-lateral; AP: anterior-posterior; DV: dorsal-ventral; IC: independent component.

DOI: 10.7554/eLife.11571.009
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Analysis of metabolic network are based on the sequential coupling of neuronal activity, brain

metabolism, and blood flow, which more closely represent the neuronal networks than blood flow

networks. Because metabolic activity measured by FDG uptake reflects the cumulative energy con-

sumption in steady states, while BOLD signal from fMRI reflects fast temporal fluctuation of physio-

logic factors such as blood flow, blood oxygenation, and cerebral metabolic rate of oxygen, the

metabolic network provides distinct information from the functional network on fMRI as well as from

the structural network disclosed on diffusion tensor imaging (Di et al., 2012; Wehrl et al., 2013).

Furthermore, network construction using neuronal activity-coupled metabolism found on FDG PET

could take regional metabolic activities into account to disclose energy efficiency rather than only

Figure 3. Metabolic connectivity between brain regions. (A) To find functional relevance between brain regions,

metabolic activities of several brain regions were correlated to each other. Eight volume-of-interests (VOIs) were

selected from the results of independent component analysis, and interregional correlations between them were

calculated. Correlation strengths between different networks increased according to age. (B) Blue lines indicate

pairwise connections which showed positive correlation. Note that line width means strength of the connectivity.

Significant increase of metabolic connectivity is shown mainly in anterior-posterior connections according to

maturation (for multiple comparison, false discovery rate < 0.05 was applied). More number of pairs of significant

increase in metabolic connectivity was shown between 5 and 15 weeks of age than 5 and 10 weeks of age.

DOI: 10.7554/eLife.11571.010

The following figure supplements are available for figure 3:

Figure supplement 1. Statistical analysis for metabolic connectivity maturation based on permutation test.

DOI: 10.7554/eLife.11571.011

Figure supplement 2. Statistical significance (p-values) for difference in strengths of connections between groups

of different aged rats.

DOI: 10.7554/eLife.11571.012
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concentrate on the changes of fluctuating neural activities without considering absolute amount of

regional perfusion or metabolism (Hyder et al., 2011; Smith et al., 2002).

Using metabolic network analyses, we could identify networks of rat brains similar to humans

using ICA. In human brains, ICA for metabolic networks revealed DMN successfully (Toussaint et al.,

2012; Yakushev et al., 2013). We also found homologous patterns in rats to those of humans.

According to the studies comparing the networks acquired from fMRI and PET, each DMN from

these modalities shared quite the similar anatomical regions, although distinctive patterns were

found on these two modalities (Di et al., 2012; Wehrl et al., 2013). Of note, our PET-derived IC5

shared the regions of fMRI-derived DMN including retrosplenial cortices and small clusters of bilat-

eral posterior hippocampi. The IC1 shared the regions of anterior part of DMN derived from fMRI,

medial frontal cortices (Lu et al., 2012). Considering that DMN-related regions are deactivated dur-

ing attention-demanding and working memory tasks (Raichle et al., 2001), DMN may be con-

structed during brain maturation in adolescence to learn attention-demanding tasks. Previous

human studies on the fMRI-derived functional networks revealed connectivity increase in DMN

regions during maturation, particularly between the anterior and posterior midline structures

(Fair et al., 2008), which might be closely associated with the developmental process of working

memory (Satterthwaite et al., 2013). Moreover, fMRI-derived DMN showed two distinctive clusters,

temporal-prefrontal and parietal subsystems, which considerably corresponded to our IC1 and IC5

(Lu et al., 2012). According to our results, the metabolic connections of these two clusters of DMN

developed during brain maturation in rats. In spite of homologous network patterns of rat brain,

metabolic networks derived from FDG PET were partly different from fMRI-derived networks. A dis-

crepancy in DMN between fMRI and PET was also reported in human (Di et al., 2012). In PET-

derived networks in the rat brain, anterior and posterior part of DMN was separately extracted (IC1

and IC5). Furthermore, cingulate cortex was rarely included in IC1 or IC5, which was different from

previous fMRI-derived DMN (Lu et al., 2012; Sierakowiak et al., 2015). Nevertheless, a hub region

of posterior part of rat DMN was retrosplenial cortex and that of anterior part was medial prefrontal

cortex in fMRI study, which corresponded to PET-derived IC5 and IC1, respectively.

During connectivity maturation, metabolic connections between component VOIs strengthened,

particularly in anterior-posterior long-distance ones. Along with increased long-distance connections,

the retrosplenial and medial prefrontal cortices showed efficient energy consumption. This matura-

tion pattern may represent enhancement of efficiency of information flow between network compo-

nents, which has been suggested in human brain maturation (Fair et al., 2007; Stevens et al.,

Figure 4. Increased energy efficiency in the medial prefrontal and retrosplenial cortices during maturation. Energy

efficiency defined as a ratio of metabolic connectivity strength to normalized FDG uptake was estimated for each

region. The energy efficiency changes and was interpreted to be reorganized during brain maturation. While

efficiency in the midline structure was lower at 5 week of age, that is, medial prefrontal and retrosplenial cortices,

but increased significantly in 10 and 15 weeks. (*p < 0.05 based on Bonferroni correction over permutation test).

FDG, 18F-Fluorodeoxyglucose.

DOI: 10.7554/eLife.11571.013

The following source data is available for figure 4:

Source data 1. Energy efficiency of each brain region.

DOI: 10.7554/eLife.11571.014
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2009). The strengthened connections between long-distance network components are likely to sup-

port dynamically organizing brain networks to achieve efficient connections according to cognitive

demands (Bullmore and Sporns, 2012). The functional interactions of large-scale brain networks are

dynamically evolving, which could be associated with cognitive, behavioral developments during

maturation and pathophysiology of brain disorders (Deco et al., 2011). In this investigation using

metabolic connectivity analysis, we could localize the components, that is, medial prefrontal and ret-

rosplenial areas, showing strengthened connections and at the same time enhanced connection

efficiencies.

Cognitive developments demand highly connected functional brain networks, particularly in hub

regions (Micheloyannis et al., 2009; van den Heuvel and Sporns, 2013). They could accompany

high-energy consumption in spite of limited supply of glucose for brain (Smith et al., 2002;

Tomasi et al., 2013). Our results of increased energy efficiency in retrosplenial and medial prefrontal

cortex imply long-distance connectivity maturation coincide with the redistribution of energy con-

sumption. High-energy efficiency in hubs was previously reported in adult human brain

(Tomasi et al., 2013), which was recapitulated in our study in rats, and we also found that their high

efficiency developed during brain maturation. Comprehensively, large-scale networks are formed

during adolescent period accompanied by these networks’ efficient energy consumption for long-

distance connectivity. As deficits in these relationships are found in several brain disorders

(Broyd et al., 2009), metabolic network analyses might be used to find the relevant functional con-

nectivity abnormalities. Specifically, the hub regions are well known as culprit components for several

developmental and degenerative brain disorders (Fornito et al., 2015). Our results could explain

the underlying biological background of the vulnerability that hub regions might be easily influenced

by developmental problems in reconfiguration of metabolic connectivity efficiency.

To find the disease-related abnormalities differentiated from normal developmental changes in

neurological or psychiatric disorders, we need to characterize first the normal developmental pat-

terns of metabolic networks. Although metabolic networks have advantages to reveal steady-state

connectivity in longer term scale than resting fMRI, it is difficult to perform longitudinally repeated

PET in the growing normal children. And thus, our findings in rats of maturational changes of meta-

bolic connectivity can be referred to as surrogates, considering the homology between humans and

rats in network components disclosed by ICA (Lu et al., 2012; Wehrl et al., 2013).

Although rat brains have similar features of metabolic network to human brains, there are several

technical issues of interest. Unlike human studies, rats should be anesthetized during either FDG

injection or image acquisition. Since anesthesia could affect brain metabolism, rats were awake after

the injection until imaging to minimize the anesthesia effects. The images acquired from small animal

PET had the voxel size of 0.3875 mm and physical spatial resolution of PET scanner is more than 1

mm due to positron range and acollinearity. Thus, we were afraid that it might prevent the delinea-

tion of network components during ICA. However, despite this limited spatial resolution, the brain

regions with specific covariance patterns were identified and further metabolic connectivity analyses

were finally feasible to provide characteristic pattern of brain maturation.

Conclusion
We showed that metabolic activity of rat brain matured to build connectivity between network com-

ponents accompanied by enhanced energy efficiency from childhood to early adulthood. Metabo-

lism increased during adolescence in frontal cortices compared to childhood in rat brain similarly to

that in human brain. Components of metabolic networks were identified, and connectivity analysis

showed efficient connection developed between the components particularly pair of VOIs including

DMN during adolescent period. Furthermore, the midline structures showed increase in energy effi-

ciency of metabolic connections. This study about metabolic network maturation gave insights into

normal brain developments and might elucidate the plausible pathophysiology of neuropsychiatric

developmental diseases.
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Materials and methods

FDG PET for animals
Thirty adult male Sprague-Dawley (SD) rats (Koatech, Seoul, Korea) were used for FDG PET scans.

They were kept at standard laboratory condition (22–24˚C, 12 hr light and dark cycle) with free

access to water and standard feed. All the experimental procedures were approved by Institutional

Animal Care and Use Committee at Seoul National University Hospital (IACUC Number 13–0224).

FDG PET images were acquired at the age of 5, 10, and 15 weeks. PET scans were performed on a

dedicated small animal PET/CT scanner (eXplore VISTA, GE Healthcare, WI). Rats were fasted for at

least 8 hr before the start of the study. Rats were anesthetized 2% isoflurane at 1–1.5 L/min oxygen

flow for 5–10 min. After an intravenous bolus injection (0.3–0.5 mL/rat) of FDG (100–150 MBq/kg),

each rat has 45 min period of FDG uptake (Schiffer et al., 2007). Static scans at 45 min after the

injection best reflects absolute rates of glucose metabolism in rodents (Schiffer et al., 2007). During

FDG uptake period, rats were awake for 35 min and anesthetized for preparation, 10 min before

PET/CT scans. Emission scan data were acquired for 20 min with the energy window 400–700 keV

and reconstructed by a three-dimensional ordered-subsets expectation maximum (OSEM) algorithm

with attenuation, random and scatter correction. The voxel size was 0.3875 � 0.3875 � 0.775 mm.

We acquired 88 PET images considering voxelwise statistical difference after multiple comparison

correction: 30 scans at 5 weeks, 30 scans at 10 weeks, and 28 scans at 15 weeks.

Image preprocessing
For preprocessing, all voxels were scaled by a factor of 10 in each dimension. All brain PET images

were spatially normalized to the FDG rat brain template (Schiffer et al., 2006) (PMOD 3.4, PMOD

group, Zurich, Switzerland) using nonlinear registration on Statistical Parametric Mapping (SPM8,

University College of London, London, UK). After spatial normalization, a binary mask for brain was

applied. The images were smoothened by Gaussian filter of 12 mm full width at half maximum. For

scaling voxel intensities, the voxel counts were normalized to the global brain uptake in each PET

image.

Voxelwise comparison of regional FDG uptake along the brain
maturation
Testing for age effects on the brain metabolism was performed with SPM. Paired t-test was per-

formed between two groups of PET images acquired at 5 and 10 weeks. Additional paired t-tests

were performed between PET images at 10 and 15 weeks and PET images at 5 and 15 weeks. False

discovery rate (FDR) corrected p < 0.05 was set as the significance threshold and an extent threshold

of 100 contiguous voxels was applied.

Identification of network components using ICA
We applied a group ICA algorithm to define coherent network components (GIFT, http://mialab.

mrn.org/, GIFT ver 2.0a). All preprocessed PET images (n = 88) were included in this spatial ICA to

find spatially independent components and coherently activated regions among subjects. The group

ICA approaches have been used to obtain multivariate patterns for metabolic networks

(Toussaint et al., 2012; Yakushev et al., 2013). Prior to perform ICA, the optimal number of com-

ponents extracted from PET images was determined. We used the dimensional estimation algorithm

implemented in GIFT software based on the assessment of entropy rate of independent and identi-

cally distributed (i.i.d.) Gaussian random process (Li et al., 2007; Xu et al., 2009). The estimated

optimal number was thirteen components. ICA was performed using an infomax neural network

algorithm that minimized the mutual information of the outputs. The resulting independent compo-

nents were z-transformed and visualized using the threshold z > 1.5.

Connectivity analysis using independent components as nodes to reveal
the changes during maturation
To compare the changes of brain metabolic connectivity according to age, we engaged VOI-based

correlation analyses. VOIs were placed on four ICs (IC1, IC5, IC8, and IC9) referring to rat brain atlas,

which was constructed on 3D digital map based on Paxinos and Watson atlas (Schiffer et al., 2006;
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Toga et al., 1995). We selected these ICs to concentrate on the relationship between functional

components including DMN as intrinsically coherent regions at resting state and sensory-motor net-

works. The total eight VOIs (3 on IC1, 1 on IC5, 2 on IC8 and IC9) were defined as spheres with a

radius of 8 mm, centered at each IC (the actual size of a radius was 0.8 mm as voxels were scaled by

a factor of 10). The size of VOI was determined considering initial voxel size (0.775 mm) and to a rep-

resentative small cluster of a network not to overlap other networks. The VOIs were displayed in Fig-

ure 2—figure supplement 2. We compared the connectivity between rats aged 5, 10, and 15

weeks.

We obtained normalized FDG uptake in the VOIs of each rat and Pearson’s correlation coeffi-

cients were calculated between the pairwise VOIs (8x7/2= 28 paired VOIs) using subjects variation.

These correlation coefficient matrices were constructed for 5 week-, 10 week-, and 15 week-old rats.

For statistical comparison of correlation matrices between these groups of different ages, we per-

formed permutation tests. We tested whether there was significantly different connectivity, repre-

sented by Fisher-transformed Z values, between 5 vs 10 weeks and 10 vs 15 weeks of age. At first,

PET images of each age group were randomly permuted to make pseudo-random groups reas-

signed 10,000 times and from each paired group of rats, interregional correlation matrices were cal-

culated. Type I errors were determined by the comparison between the observed Z score for each

connection of VOI pairs and Z score distribution of VOI pairs from the permuted data (Figure 3—fig-

ure supplement 1). For multiple comparison correction, we applied false-discovery rate (FDR) at a

threshold of FDR < 0.05.

Maturation of metabolic energy efficiency
To analyze energy efficiency for metabolic connectivity, undirected networks with the eight nodes

were constructed where strength of each connection was simply defined as correlation coefficients.

Strength of metabolic connectivity was calculated for each VOI as a sum of weights of positive links

(correlation coefficients) per VOI (Kaiser, 2011). The ratio of metabolic connectivity strength to nor-

malized metabolic activity was defined as energy efficiency for each VOI (Tomasi et al., 2013). For

statistical comparison of energy efficiency of VOIs between 5, 10, and 15 week-old rats, we per-

formed permutation tests. Again PET images of each paired group of rats were permuted to make

pseudo-random groups reassigned 10,000 times and distribution of metabolic energy efficiency of

each VOI was drawn. The observed energy efficiency was compared with distribution of energy effi-

ciency of each of VOIs from the permuted data (Figure 3—figure supplement 1).
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