Capturing the temporal evolution of choice across prefrontal cortex

  1. Laurence Tudor Hunt  Is a corresponding author
  2. Timothy EJ Behrens
  3. Takayuki Hosokawa
  4. Jonathan D Wallis
  5. Steven Wayne Kennerley
  1. University College London, United Kingdom
  2. University of California, Berkeley, United States

Abstract

Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behavior in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making.

Article and author information

Author details

  1. Laurence Tudor Hunt

    Sobell Department of Motor Neuroscience, University College London, London, United Kingdom
    For correspondence
    laurence.hunt@ucl.ac.uk
    Competing interests
    No competing interests declared.
  2. Timothy EJ Behrens

    Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    Timothy EJ Behrens, Senior editor, eLife.
  3. Takayuki Hosokawa

    Helen Wills Neuroscience Institute, Department of Psychology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Jonathan D Wallis

    Helen Wills Neuroscience Institute, Department of Psychology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Steven Wayne Kennerley

    Sobell Department of Motor Neuroscience, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: Ethical approval was obtained for this study. All procedures were in accord with the National Institute of Health guidelines (Assurance Number A3084-01) and the recommendations of the U.C. Berkeley Animal Care and Use Committee (Protocol Number R283).

Human subjects: All human subjects provided informed consent, including consent to publish. Ethical approval for this study was obtained from NHS Oxfordshire Research Ethics Committee C, approval reference 08/H0606/46.

Copyright

© 2015, Hunt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,778
    views
  • 1,054
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laurence Tudor Hunt
  2. Timothy EJ Behrens
  3. Takayuki Hosokawa
  4. Jonathan D Wallis
  5. Steven Wayne Kennerley
(2015)
Capturing the temporal evolution of choice across prefrontal cortex
eLife 4:e11945.
https://doi.org/10.7554/eLife.11945

Share this article

https://doi.org/10.7554/eLife.11945

Further reading

    1. Cancer Biology
    2. Neuroscience
    Jeffrey Barr, Austin Walz ... Paola D Vermeer
    Research Article

    Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a mouse model for head and neck cancer and neuronal tracing, we show that tumor-infiltrating nerves connect to distinct brain areas. The activation of this neuronal circuitry altered behaviors (decreased nest-building, increased latency to eat a cookie, and reduced wheel running). Tumor-infiltrating nociceptor neurons exhibited heightened calcium activity and brain regions receiving these neural projections showed elevated Fos as well as increased calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment restored nesting and cookie test behaviors, it did not fully restore voluntary wheel running indicating that pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer.

    1. Neuroscience
    Xinlin Hou, Peng Zhang ... Dandan Zhang
    Research Article

    Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift’s specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.