A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning

  1. Nicholas T Franklin
  2. Michael J Frank  Is a corresponding author
  1. Brown University, United States

Abstract

Convergent evidence suggests that the basal ganglia support reinforcement learning by adjusting action values according to reward prediction errors. However, adaptive behavior in stochastic environments requires the consideration of uncertainty to dynamically adjust the learning rate. We consider how cholinergic tonically active interneurons (TANs) may endow the striatum with such a mechanism in computational models spanning three Marr's levels of analysis. In the neural model, TANs modulate the excitability of spiny neurons, their population response to reinforcement, and hence the effective learning rate. Long TAN pauses facilitated robustness to spurious outcomes by increasing divergence in synaptic weights between neurons coding for alternative action values,whereas short TAN pauses facilitated stochastic behavior but increased responsiveness to change-points in outcome contingencies.A feedback control system allowed TAN pauses to be dynamically modulated by uncertainty across the spiny neuron population,allowing the system to self-tune and optimize performance across stochastic environments.

Article and author information

Author details

  1. Nicholas T Franklin

    Department of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, United States
    Competing interests
    No competing interests declared.
  2. Michael J Frank

    Department of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, United States
    For correspondence
    Michael_Frank@brown.edu
    Competing interests
    Michael J Frank, Reviewing editor, eLife.

Copyright

© 2015, Franklin & Frank

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,957
    views
  • 561
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicholas T Franklin
  2. Michael J Frank
(2015)
A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning
eLife 4:e12029.
https://doi.org/10.7554/eLife.12029

Share this article

https://doi.org/10.7554/eLife.12029

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.

    1. Computational and Systems Biology
    Alessandro Bitto
    Insight

    Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.