
*For correspondence: gb288@

cam.ac.uk (GBB); bs251@cam.ac.

uk (BS)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 32

Received: 06 October 2015

Accepted: 10 May 2016

Published: 16 May 2016

Reviewing editor: Ewa Paluch,

University College London,

United Kingdom

Copyright Tetley et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Unipolar distributions of junctional
Myosin II identify cell stripe boundaries
that drive cell intercalation throughout
Drosophila axis extension
Robert J Tetley1†, Guy B Blanchard1*†, Alexander G Fletcher2,3, Richard J Adams1,
Bénédicte Sanson1*

1Department of Physiology, Development and Neuroscience, University of
Cambridge, Cambridge, United Kingdom; 2School of Mathematics and Statistics,
University of Sheffield, Sheffield, United Kingdom; 3Bateson Centre, University of
Sheffield, Sheffield, United Kingdom

Abstract Convergence and extension movements elongate tissues during development.

Drosophila germ-band extension (GBE) is one example, which requires active cell rearrangements

driven by Myosin II planar polarisation. Here, we develop novel computational methods to analyse

the spatiotemporal dynamics of Myosin II during GBE, at the scale of the tissue. We show that

initial Myosin II bipolar cell polarization gives way to unipolar enrichment at parasegmental

boundaries and two further boundaries within each parasegment, concomitant with a doubling of

cell number as the tissue elongates. These boundaries are the primary sites of cell intercalation,

behaving as mechanical barriers and providing a mechanism for how cells remain ordered during

GBE. Enrichment at parasegment boundaries during GBE is independent of Wingless signaling,

suggesting pair-rule gene control. Our results are consistent with recent work showing that a

combinatorial code of Toll-like receptors downstream of pair-rule genes contributes to Myosin II

polarization via local cell-cell interactions. We propose an updated cell-cell interaction model for

Myosin II polarization that we tested in a vertex-based simulation.

DOI: 10.7554/eLife.12094.001

Introduction
Polarised cell rearrangements drive the simultaneous elongation and narrowing of cell sheets (con-

vergence and extension) during development. These collective cell behaviours have been mostly

studied in the context of axis elongation that accompanies gastrulation in bilaterian animals, but are

also found in organogenesis, for example underlying kidney tubule elongation (Keller, 2002;

Tada and Heisenberg, 2012). Understanding convergence and extension movements is important

as their failure is associated with congenital diseases, including neural tube defects

(Wallingford et al., 2013). The first molecular mechanism for convergence and extension was found

in Drosophila, where planar polarisation of actomyosin was shown to underlie the polarised cell rear-

rangements of germband extension (GBE) (Zallen and Wieschaus, 2004; Bertet et al., 2004). This

discovery paved the way for in-depth studies of how the planar polarisation of actomyosin and other

components such as Bazooka (Par-3) and E-Cadherin drives the selective shortening of cell-cell junc-

tions during active intercalation of epithelial cells (Zallen and Wieschaus, 2004; Rauzi et al., 2008;

2010; Levayer et al., 2011; Levayer and Lecuit, 2013; Blankenship et al., 2006; Fernandez-

Gonzalez et al., 2009; Simões et al., 2010; 2014; Tamada et al., 2012). Recently, actomyosin pla-

nar polarisation was also found to be required during convergence and extension in vertebrate
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tissues (Rozbicki et al., 2015; Nishimura et al., 2012; Lienkamp et al., 2012; Shindo and Walling-

ford, 2014).

The upstream signals that pattern these polarities in the plane of the converging and extending

tissues are starting to be deciphered. In vertebrates, the conserved planar cell polarity (PCP) path-

way controls planar cell rearrangements during axis extension (Wallingford, 2012). In the Xenopus

model, this pathway was recently shown to do so by biasing the polarisation of actomyosin

(Shindo and Wallingford, 2014). In Drosophila, the PCP pathway is not required for polarisation of

the actomyosin cytoskeleton (Zallen and Wieschaus, 2004), which instead depends on the segmen-

tation cascade, the most downstream cues being the striped expression of pair-rule transcription fac-

tors such as Eve or Runt (Zallen and Wieschaus, 2004; Bertet et al., 2004). Misexpression of these

pair-rule transcription factors causes a local reorientation of polarity, which led to the hypothesis

that local cell-cell interactions generate planar polarity in the Drosophila germband, rather than

more global cues (Zallen and Wieschaus, 2004). Recent work has provided molecular evidence for

this; three Toll-like receptors are expressed in overlapping stripes in the early embryo under the con-

trol of the pair-rule genes eve and runt (Paré et al., 2014). Genetic disruption of these receptors

leads to defects in GBE and a corresponding loss of the planar polarisation of Myosin II and Bazooka

in the tissue. A model was proposed in which the germband is planar polarised through the prefer-

ential enrichment of Myosin II at sites of heterophilic Toll-like receptor interactions (Paré et al.,

2014). The overlapping expression domains of Toll-like receptors would therefore establish a

eLife digest Early in development, a growing embryo elongates to form its main body (head–

tail) axis. This elongation is driven by a process called cell intercalation – when cells insert between

each other. The mechanism that controls this coordinated cell movement is well understood on a

small scale. However, it is not known how hundreds of cells rapidly intercalate across a whole tissue

without deforming a tissue or inappropriately mixing.

During fruit fly development, an embryo divides into repeated segments of tissue while

elongating. While this happens, cells redistribute an essential structure called the actomyosin

cytoskeleton so that it is found more commonly along certain sides of the cell. This structure, which

can be thought of as the cell’s “muscle”, is a contractile web made of proteins called actin and

myosin. It is closely associated with the cell’s membrane and causes cells to contract and push past

each other. The enrichment of the actomyosin cytoskeleton on certain sides of a cell is determined

by signaling systems, which are controlled by the segmentation genes in the fruit fly and by the so-

called planar cell polarity pathway in vertebrates.

Tetley, Blanchard et al. have now investigated cell intercalation across a whole tissue by filming

live fruit fly embryos in which both actomyosin and cell membranes were made visible with

fluorescent markers. Computational tools were then used to quantify how much actomyosin is

enriched in the sides of thousands of cells in the embryo at particular points in time while the

embryos elongated. This revealed reproducible patterns of actomyosin enrichment. As embryos

elongated, the actomyosin cytoskeleton redistributed itself inside the cells: whereas at the start two

opposite sides of each cell were enriched in actomyosin (a bipolar distribution), at later times the

enrichment occurred on just one side (a unipolar distribution).

Incorporating these patterns into a model of tissue-wide cell intercalation showed that cells along

the head–tail axis acquire a specific identity depending on their position. Interactions between the

cells then allow the cells to compare their identities with each other and modify their pattern of

actomyosin enrichment accordingly. Where the identities of neighbouring cells are different, the

cells enrich actomyosin along their shared sides, creating boundaries between stripes of cells that

share the same identity.

These findings show that actomyosin-rich boundaries drive the elongation of the head–tail axis

while limiting cell intermixing. Future work will investigate how the patterns of actomyosin

enrichment are altered in fly mutants in which the identities of the cells along the head–tail axis are

disrupted.

DOI: 10.7554/eLife.12094.002
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combinatorial code where every cell along the antero-posterior (AP) axis has a different ’identity’,

resulting in the bipolar distribution of Myosin II in every cell.

These findings open new questions. One is what becomes of the combinatorial code and the pla-

nar polarisation of Myosin II once the cells have started intercalating and the number of cells

increases along AP? Specifically, if the cell identity stripes defined by the Toll-like receptor code are

one cell wide to start with as hypothesised (Paré et al., 2014), then these would increase to two cells

wide on average after one round of cell intercalation. Heterophilic interactions between Toll recep-

tors would no longer be expected at the interfaces between pairs of cells of the same ’identity’.

Therefore one possibility is that these interfaces are not enriched in Myosin II at later stages of GBE.

Alternatively, a secondary mechanism might be required to polarise the germband in later GBE, for

example relying on a global polarising signal, more akin to PCP pathway-reliant polarisation in verte-

brates (Devenport, 2014; Goodrich and Strutt, 2011).

Another unsolved question is how the AP patterns established early in development are main-

tained during the cell movements of convergent extension (Dahmann et al., 2011; Vroomans et al.,

2015). Cell rearrangements by intercalation are sufficient to cause mixing of adjacent cell popula-

tions (Umetsu et al., 2014), therefore it is likely that a mechanism exists to maintain order along the

AP axis of the germband. At later stages of embryonic development in Drosophila, an enrichment of

actomyosin at parasegmental boundary (PSB) cell-cell interfaces is required to prevent cell intermin-

gling caused by cell proliferation (Monier et al., 2010; 2011). The actomyosin enrichment in this

case is thought to act as a mechanical barrier, since the enriched PSB cell-cell interfaces align, indi-

cating line tension. Supporting this notion, laser ablation experiments have demonstrated an

increase in interfacial tension at compartmental boundaries in the wing disc and abdomen

(Umetsu et al., 2014; Aliee et al., 2012; Landsberg et al., 2009). Since parasegmental boundaries

are defined genetically by pair-rule gene expression before gastrulation starts (Lawrence and John-

ston, 1989), an unexplored possibility is that actomyosin enrichments at PSBs could form early, dur-

ing GBE, and limit intermingling of cells during the large-scale cell rearrangements of convergence

and extension.

Here we take a systems biology approach to answer these questions by investigating the relation-

ship between segmentation, the planar distribution of the motor Myosin II and the cell behaviours

contributing to axis extension. We aimed to develop an analysis of these at the scale of the tissue, in

living wild-type embryos. In particular, we asked what the relationship is between the described

bipolar distribution of Myosin II at AP interfaces early in GBE and the later formation of parasegmen-

tal boundaries that stop mixing between anterior and posterior compartments. We show that Myo-

sin II has a bipolar distribution in early embryos, which then transitions to a unipolar distribution as a

direct consequence of polarised cell intercalation in the germband. Such an observation strongly

supports that a cell identity mechanism polarises Myosin II throughout the whole of GBE. We show

that the boundaries defined by the unipolar patterns, which include the PSBs, are the sites of the

cell intercalation events driving GBE. We demonstrate that the PSB is a distinct mechanical structure

from very early in GBE. These findings suggest that the boundaries we identify have a dual role, driv-

ing axis extension while ensuring that cell mixing remains limited. Finally, we propose an updated

differential cell identity model.

Results

Bidirectional polarity of Myosin II is short-lived during axis extension
and unidirectional polarity patterns soon dominate
We reasoned that analysing the spatiotemporal modulations of actomyosin enrichment during GBE

might answer the above questions by revealing undiscovered patterns. To quantify changes in Myo-

sin II polarisation during GBE, we imaged the ventral surface of Drosophila embryos co-expressing

the fluorescent fusion proteins GAP43-mCherry (Martin et al., 2010), to label the cell membranes,

and sqh-GFP (Royou et al., 2004), to label Myosin II (Figure 1A, Video 1). Because sqh-GFP was

expressed in a sqhAX3 null mutant background, all Myosin II molecules were tagged with GFP

(Royou et al., 2004). Images were acquired every 30 s, from before the start of extension, until the

enrichment of Myosin II at parasegmental boundaries (PSBs) (Monier et al., 2010) was clearly

detectable at the end of extension (Video 1, Figure 2A). The GAP43-mCherry signal was used to
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Figure 1. Quantifying Myosin II polarisation over time during Drosophila axis extension. (A) sqhAX3; sqh-GFP; GAP43-mCherry embryos are imaged

ventrally by confocal microscopy with a 196 x 173 mm field of view, with cell membranes visualised in the red channel and Myosin II in the green

Figure 1 continued on next page
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segment and track apical cell membranes over time (Blanchard et al., 2009; Butler et al., 2009;

Lye et al., 2015), while the sqh-GFP signal was used to quantify Myosin II fluorescence intensities

for each cell-cell interface identified by cell tracking (Figure 1A, Video 1). We synchronised movies

from 6 embryos to the start of GBE, using our previously described measure of tissue strain rate in

the anteroposterior (AP) axis (Butler et al., 2009) (Figure 1—figure supplement 1). This allowed us

to average the Myosin II fluorescence intensities associated with apical cell-cell junctions (interfaces)

across embryos, which increased from the start of GBE as expected (Figure 1B).

We further extracted independent measures of bidirectional and unidirectional Myosin II planar

polarities in the orientation of the AP axis (Figure 1—figure supplement 2). Bidirectional polarity of

Myosin II (an enrichment at both anterior and posterior cell-cell interfaces for a given cell, Figure 1C,

C’) was detectable just before the onset of extension and then peaked very early (at 10 min) before

declining gradually (Figure 1C”), consistent with previous studies (Kasza et al., 2014). In contrast, uni-

directional polarity (an enrichment in Myosin II at either anterior or posterior cell-cell interfaces,

Figure 1D,D’) increased progressively for most of GBE (Figure 1D”). This suggests that there is a tran-

sition from bidirectional to unidirectional Myosin II polarisation over the course of GBE.

To ask whether actomyosin polarities are patterned across the AP axis, we generated spatiotem-

poral heat maps for both types of polarity for the 6 embryos, as a function of time and position

along the AP axis (maps for a representative embryo in Figure 1E,F; see other embryos in Figure 1—

Figure 1 continued

channel. Apical cell-cell interfaces are tracked over time based on the cell membrane signal. Next, Myosin II fluorescence intensities associated with the

tracked cell-cell interfaces are quantified. Six movies were collected. VML: ventral midline. SEM image on the left from Flybase (dos Santos et al.,

2015). (B) Total fluorescence intensities for Myosin II at apical cell-cell interfaces over time. Data shown in B, C’, C”, D’ and D” is averaged for the 6

movies. (C–C”) Quantification of Myosin II bidirectional polarity. (C) Fourier quantification of Myosin II bipolarity, depicted here on a movie frame

8.5 min after GBE onset. The length of the bipolar green vector represents the amplitude of polarity and its angle, the orientation of the polarity

relative to the AP embryonic axis. Because the polarity is essentially aligned along the AP embryonic axis (rosette in C’), the polarity amplitude can be

projected onto the AP axis and quantified using a Gaussian fit which allows a better separation between bidirectional and unidirectional polarity

signals, compared to the Fourier method (Figure 1—figure supplement 2). (C”) Amplitude of Myosin II bidirectional polarity along the AP axis and

over time, calculated using the Gaussian method. (D) Fourier quantification of Myosin II unidirectional polarity, shown on a movie frame 39 min after

GBE onset. The length of the unipolar green vector represents the amplitude of polarity and its slope, the orientation of the polarity relative to the AP

embryonic axis (see corresponding rosette in D’). The vector either points towards the anterior or the posterior, depending which side of a given cell is

enriched in Myosin II. (D”) Absolute amplitude of Myosin II unidirectional polarity along the AP axis and over time, calculated using the Gaussian

method (Figure 1—figure supplement 2). (E) Spatio-temporal map showing Myosin II bidirectional polarity for one representative movie (SG_4,

Figure 1—figure supplement 1 and 3), as a function of the AP position in the field of view (x-axis, in mm) and time relative to the start of GBE (y-axis,

in min). Movie frames corresponding to 0 and 50 min are shown on the left. At time 0, the mesoderm is invaginating through the ventral furrow (VF,

white streak in the middle of the image). Mesoderm and mesectoderm cells on either side of the VF are not included in the analysis, nor are the

germband cells at the posterior, because these move out of the field of view with the convergence extension of the tissue. Germband cells included in

the analysis are labelled in magenta on both frames. At 50 min, most of the cells in the field of view are included in the analysis, except the

mesectoderm cells at the midline (VML) and very dorsal germband cells coming in the field of view (bottom). The amplitude of Myosin II bipolarity is

expressed as a proportion (Abbreviated as pp in all figures) of the mean Myosin II intensity around the perimeter of each cell. Scale shows highest

bidirectional polarity in bright green and no polarity in black. White lines on the plot follow the displacement of AP coordinates over time, which move

posteriorly as the tissue undergoes extension. (F) Spatio-temporal map showing Myosin II unidirectional polarity for the same representative movie. The

amplitude of unipolarity is expressed as a proportion (pp) of mean Myosin II intensities at cell-cell interfaces. Scale shows enrichment towards anterior

cell-cell interfaces as green (negative values) and towards posterior as magenta (positive values). Input data and statistics are in Figure 1—source data

1.

DOI: 10.7554/eLife.12094.003

The following source data and figure supplements are available for figure 1:

Source data 1. Source data for Figure 1, including statistical analysis.

DOI: 10.7554/eLife.12094.004

Source data 2. Source data for Figure 1—figure supplement 1, including statistical analysis.

DOI: 10.7554/eLife.12094.005

Figure supplement 1. Synchronisation of sqhAX3; sqh-GFP; GAP43-mCherry movies.

DOI: 10.7554/eLife.12094.006

Figure supplement 2. Methods for calculating bidirectional and unidirectional Myosin II polarity.

DOI: 10.7554/eLife.12094.007

Figure supplement 3. Spatiotemporal maps for all sqhAX3; sqh-GFP; GAP43-mCherry movies.

DOI: 10.7554/eLife.12094.008
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figure supplement 3). Note that in these maps,

the data for all cells along the dorsoventral (DV)

axis, within an AP bin of defined width, are aver-

aged. Myosin II bidirectional enrichment is

strong across the whole AP axis from just before

the start of extension until about 20 min, then

fades away (green signal in Figure 1E). In the

unidirectional polarity maps, cells with posterior

interfaces enriched in Myosin II (positive values,

magenta signal) are distinguished from those

where the enrichment is at anterior interfaces

(negative values, green signal) (Figure 1F). A

juxtaposition of opposing unidirectional polari-

ties along the AP axis (magenta next to green

signal) thus indicates that shared interfaces

between neighbouring cells are enriched in Myo-

sin II. Although the signal is noisy for single

embryos, many such juxtapositions are found

(Figure 1F). These motifs follow the movement

of the tissue as it extends towards the posterior

(white guide lines in Figure 1F). The most prom-

inent ones occur at a regular spacing (arrows in

Figure 1F). We hypothesised that those correspond to early cable-like enrichments of Myosin II at

parasegmental boundaries (PSBs) (Monier et al., 2010).

Parasegment boundaries become mechanically active soon after GBE
onset
To test this, we tracked PSBs using two different approaches. First, we identified PSBs from clear

cable-like enrichments of Myosin II at the end of the 6 movies analysed above, 60 min after the start

of GBE (arrows in Figure 2A). Using these boundaries, we manually assigned a parasegment identity

to each tracked cell (Figure 2B), which could be followed back to the beginning of each movie. This

identified PSB cell-cell interfaces at each time point (Video 2). We also identified the cell-cell interfa-

ces one-cell diameter anterior and posterior to each PSB (named ‘-1’ and ‘+1’ interfaces, respec-

tively) over time (Figure 2C,D). We then quantified the amount of Myosin II found at these three

columns of interfaces over time for 3 to 4 parasegments per embryo, for all 6 embryos (Figure 2E).

We found that the enrichment in Myosin II at PSB interfaces becomes stronger than in the flanking

columns of interfaces by 10–15 min of extension. If these cell-cell interfaces enriched in Myosin II

were interconnected, they would be expected to straighten, a signature of line tension as shown for

other tissue boundaries (Umetsu et al., 2014; Monier et al., 2010; Aliee et al., 2012;

Landsberg et al., 2009; Fagotto, 2014; Calzolari et al., 2014). To test this, we quantified the pro-

portion of interfaces oriented between 60 and 90 degrees relative to the AP axis (thus DV-oriented),

for each class (Figure 2—figure supplement 1A,J). We find that PSB interfaces are more DV-ori-

ented compared to flanking -1 and +1 interfaces, throughout most of GBE (note that all interfaces

become briefly very DV-oriented at the beginning of GBE, which is caused by mesoderm invagina-

tion transiently stretching the germband cells along DV, see Lye et al., 2015). We interpret this as

evidence that PSB interfaces align more than flanking interfaces. Together with the preferential

enrichment in Myosin II at PSBs (Figure 2E), this suggests that PSB interfaces are under higher ten-

sion than flanking interfaces during GBE.

To confirm this, we performed laser ablations to probe tension at specific cell-cell interfaces

(Figure 2F–I) (Rauzi et al., 2008; Farhadifar et al., 2007). We ablated interfaces located at the

PSBs at 40 min (identified by their enrichment in Myosin II, see Materials and methods) and com-

pared them with the ablation of +1 interfaces (one cell diameter posterior to PSB). We checked that

PSB and +1 interfaces selected for ablation did not have significantly different lengths (Figure 2—

figure supplement 1G). PSB interfaces had more Myosin II than +1 interfaces, as expected (Fig-

ure 2—figure supplement 1H). PSB interfaces are also more DV-oriented than +1 interfaces (Fig-

ure 2—figure supplement 1I) as expected from our interface alignment analysis. We found that PSB

Video 1. Representative sqhAX3; sqh-GFP; gap43-

Cherry movie (SG_4), showing the red (top left) and

green (top right) fluorescence channels as well as the

tracked cell shapes (bottom left) and the quantification

of Myosin II fluorescence at tracked interfaces (bottom

right). See also Figure 1A.

DOI: 10.7554/eLife.12094.009
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Figure 2. Parasegmental boundaries become mechanically active early during axis extension. (A, B, D) Frames of a representative sqhAX3; sqh-GFP;

GAP43-mCherry movie (SG_6) at 60 min after the start of GBE. (A) PSBs are identified at the end of the movie by strong enrichments in actomyosin

Figure 2 continued on next page
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vertices recoiled significantly faster than +1 inter-

faces and to a greater extent (Figure 2H). We

estimated the difference in recoil velocities to be

a factor of 2 (Figure 2I). This confirms that PSB

interfaces are under higher tension than flanking

interfaces and validates our interface alignment

analysis.

To further confirm that PSBs are mechanically

active during axis extension, we used a second

approach to identify these boundaries, using eve-

EGFP (Venken et al., 2009) to directly label the

PSBs in embryos expressing GAP43-mCherry (the

latter to track cell interface behaviours as before).

We found that eve-EGFP reliably marks the ante-

rior edge of odd-numbered parasegments

throughout GBE (Figure 2J, Figure 2—figure

supplement 1B–F). This allowed us as before to

assign parasegment identities to cells and to

track the PSB and flanking -1 and +1 interfaces at

Figure 2 continued

(arrows). (B) These are used to manually identify each parasegment (differently coloured cell centroids). Note that the mesectodermal cells (ME,

highlighted in yellow) present at the midline are not included in our analyses. (C,D) Using parasegment identification, we define 3 classes of linked

columns of interfaces, the PSB interfaces (green) and those one cell anterior (named ‘-1’, in blue) and posterior (named ‘+1’, in red) to the PSB, shown in

a schematic (C) and on the representative movie frame (D). (E) Myosin II fluorescence intensities (y-axis) found at the three different classes of interfaces

over time (x-axis) for the six sqhAX3; sqh-GFP; GAP43-mCherry embryos. Solid lines represent means. Ribbons (error bands) show an indicative

confidence interval of the mean, calculated as a sum of the variance of the embryo means and the mean of the within-embryo variances. Blue and red

bars at the top of the panel show time intervals over which -1 and +1 interfaces, respectively, differ from the PSB. Significance is calculated for each

one-minute bin using a mixed model (‘lmer4’ package in ‘R’) using variation between embryos as the random effect. We use p<0.0005 as the

significance threshold, which corresponds to a 0.05 threshold (*) modified by a Bonferroni correction to take into account the 81 one-minutes bins. The

same conventions for displaying confidence intervals and statistical significance are used in all subsequent ribbon plots. (F-I) Comparison of junctional

tension at PSB and +1 cell-cell interfaces using laser ablation. (F) Overlay of a PSB junction immediately prior to (-1 time point, green) and after ablation

(+5 time point, magenta). The rectangle shows the ablated region. Green arrows show the position of the vertices flanking the junction just prior to

ablation. White dashes indicate the line used to produce the kymograph in (G). Scale bar, 3mm. The kymograph shows the vertices recoil after ablation

(black frame indicated by yellow arrow at time zero). Time corresponds to -3.65 to 29.95 s relative to ablation. The changes in distance between vertices

as measured on similar kymographs for each ablation are plotted in (H). The graph shows the mean change in vertex distance over time for ablations at

PSB (black) and +1 (red) interfaces (N=19 ablated junctions for each). Error bars represent the 95% confidence interval of the mean. (I) Graph showing

linear regression (solid lines) for the first 5 time points after ablation. The 95% confidence interval of the regressed line is also shown (dotted lines). The

data did not significantly deviate from linearity. Slopes were significantly different, with gradients of 0.2245 (+-0.02665) for PSBs and 0.1084 (+-0.0201)

for +1s, so a ratio of 2.07 between the two. (J) Immunostaining of an eve-EGFP embryo at stage 8 using a-GFP and a-Engrailed antibodies, showing

that the odd-numbered stripes of Engrailed-expressing cells are faithfully labelled by Eve-EGFP. Scale bar=25 mm. (K) -1, PSB and +1 interfaces were

identified in the three eve-EGFP, GAP43-mCherry movies and their orientation relative to the AP embryonic axis measured. The graph shows the

proportion (pp) of interfaces oriented between 60 and 90 degrees relative to the AP axis, as a function of time. A LOWESS curve with a smoothing

window of 10 points has been fitted to the data, for this graph and all other interface alignment graphs. Statistical comparisons are shown for the time

point 40 min (Cumulative interface orientation distribution for all interfaces at 40 min are shown in Figure 2—figure supplement 1K). The convention

for P values for this graph and all subsequent similar graphs are: NS: p>0.05; *p<0.05; **p<0.01; ***p<0.001. (L) Same analysis for 3 wgCX4; eve-EGFP,

GAP43-mCherry movies (See also Figure 2–supplement 1L). This shows that in wingless mutants, PSB interfaces are more DV-oriented than -1 or +1,

as in wildtype (K). (M) Graph comparing Myosin II enrichment at PSBs relative to +1 interfaces in fixed embryos labelled with a-Sqh1P antibodies,

during GBE (stage 8) and at later stages (stage 9, 10, 11), in wildtype and wingless mutants. Input data and statistics are in Figure 2—source data 1.

DOI: 10.7554/eLife.12094.010

The following source data and figure supplement are available for figure 2:

Source data 1. Source data for Figure 2, including statistical analysis.

DOI: 10.7554/eLife.12094.011

Source data 2. Source data for Figure 2—figure supplement 1, including statistical analysis.

DOI: 10.7554/eLife.12094.012

Figure supplement 1. Identification and characterisation of parasegmental boundaries properties during axis extension.

DOI: 10.7554/eLife.12094.013

Video 2. Representative sqhAX3; sqh-GFP; gap43-

Cherry movie (SG_4) showing the green channel (sqh-

GFP) with identification of the different parasegments

and the parasegmental boundary interfaces. See also

Figure 2A,B,D.

DOI: 10.7554/eLife.12094.014
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Figure 3. Within-parasegmental patterns reveal two further myosin-enriched boundaries at stereotypical AP locations. (A) Schematic of Drosophila

embryo showing the parasegment domains along AP (VML: ventral midline). Cells expressing Engrailed (En) and Wingless (Wg) abut the posterior and

anterior edge, respectively, of each parasegmental boundary (PSB). The identification of PSBs in movies (Figure 2) was used to allocate an AP

coordinate to each cell within each parasegment domain. The anterior-most position is recorded as 0 (red in the heat scale) and the posterior-most

position is recorded as 1 (blue). This coordinate system is used to pool cell information from all the different parasegments present throughout each

movie, in order to look for stereotypical within-parasegment patterns. AP coordinates for a representative movie are shown at a late (38.5 min) and an

early (4 min) timepoint, for 3 parasegments tracked (PS4, PS5 and PS6). (B) Spatio-temporal map showing Myosin II bidirectional polarity for all

averaged PS domains, as a function of the within-parasegmental AP coordinate (x-axis) and time relative to the start of GBE (y-axis, in min). Heat scale

shows highest bidirectional polarity in bright green and no polarity in black (See statistics in Figure 3—figure supplement 1A,B). (C) Spatio-temporal

map showing Myosin II unidirectional polarity for all averaged PS domains, as a function of the within-parasegmental AP coordinate (x-axis) and time

relative to the start of GBE (y-axis, in min). Heat scale shows enrichment of posterior cell-cell interfaces as magenta (positive values) and of anterior

ones as green (negative values) (See statistics in Figure 3—figure supplement 1A,C). (D) Quantification of average cell number per parasegment

domain as a function of time relative to the start of GBE (y-axis, in min). Cell numbers are obtained by dividing the average parasegment width (psw) by

the average cell width (cw). (E) Diagram showing the proposed model: at the start of GBE, 3 to 4 cells of distinct identity per parasegment enrich

Myosin II at their shared interfaces. After cell rearrangement, stripes of cells of the same identity become adjacent. Myosin II is enriched preferentially

at interfaces shared between cells of different identity (PSBs, S1/2Bs and S2/3Bs, also marked on panel (C). There is more Myosin II enrichment at PSBs

compared to other boundaries, indicated as thicker green lines. We postulate that the third stripe, S3 as defined by unidirectional polarity data above

(panel C), is composed of a mixture of two identities, named 3 and 4 here, whose boundary is more variable. In support of this, S3 is wider than S1 and

S2, but not wide enough for 4 cells across (2+2) (see also cell numbers per stripe in Figure 4D). Input data and statistics are in Figure 3—source data

1.

Figure 3 continued on next page
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odd-numbered PSBs through time, for 3 eve-EGFP, GAP43-mCherry movies. We confirmed that

interface orientation differences between PSB and flanking interfaces were replicated in these mov-

ies, where PSBs are labelled without relying on their enrichment in Myosin II (Figure 2K and Fig-

ure 2—figure supplement 1K). Together, these results show that PSB interfaces are mechanically

active by 15–20 min at the latest after GBE onset, much earlier than their previously known role at

stage 10 when they segregate dividing boundary cells (Monier et al., 2010). Since cell division in

the germ-band ectoderm does not commence until 40 min after GBE onset in our movies (Figure 1—

figure supplement 1B), this suggested that PSBs have an early mechanical role during polarised cell

intercalation.

Because later in development, Myosin II enrichment at PSBs depends upon Wingless (Wnt-1

homologue, expressed in one row of cells immediately anterior to the PSB interfaces; Monier et al.,

2010; Sanson, 2001), we asked if this signalling pathway was also required for the mechanical activ-

ity of the PSBs during GBE. To test this, we generated 3 movies expressing eve-GFP and GAP43-

mCherry in a wingless null mutant background (wgCX4; eve-EGFP, GAP43-mCherry embryos). We

performed the same interface orientation analysis as before, and found that the PSBs straightened

in wingless mutant embryos as in wildtype (compare Figure 2K and L and Figure 2—figure supple-

ment 1K and L). We also quantified Myosin II enrichment at PSBs (relative to +1 interfaces) in fixed

embryos at stages 8 to 11 (Figure 2M and Figure 2—figure supplement 1M–M”’). Although Myo-

sin II is significantly decreased in wingless mutants at PSBs once the germband has finished extend-

ing (stages 9, 10 and 11), confirming our previous findings (Monier et al., 2010; 2011), we found no

difference during GBE (stage 8). We conclude that the selective enrichment in Myosin II at PSB inter-

faces and their straightening during GBE is not controlled by Wingless, suggesting that it is under

pair-rule gene control.

Unidirectional polarity patterns are a consequence of polarized cell
intercalation
There were more unidirectional polarity patterns

in our spatiotemporal maps than just those corre-

sponding to PSBs (Figure 1F and Figure 1—fig-

ure supplement 3). To characterise those, we

increased the resolution of our maps by averag-

ing the data collected for each of the 6 sqhAX3;

sqh-GFP; GAP43-mCherry movies. We used our

identification of PSB interfaces to attribute a

within-parasegment coordinate value to each cell

from 0 (anterior-most) to 1 (posterior-most) over

time (Figure 3A and Video 3). Using this coordi-

nate system, we averaged data from 3 to 4 para-

segments per movie for our 6 movies. We

replotted bidirectional and unidirectional polarity

patterns at this parasegmental scale (Figure 3B,

C). Confirming individual movie maps (Figure 1E

and Figure 1—figure supplement 3), we found

that AP-oriented bidirectional Myosin II polarisa-

tion is strong across parasegmental domains until

Figure 3 continued

DOI: 10.7554/eLife.12094.015

The following source data and figure supplement are available for figure 3:

Source data 1. Source data for Figure 3, including statistical analysis.

DOI: 10.7554/eLife.12094.016

Source data 2. Source data for Figure 3—figure supplement 1, including statistical analysis.

DOI: 10.7554/eLife.12094.017

Figure supplement 1. Within-parasegmental patterns of Myosin II cell polarity.

DOI: 10.7554/eLife.12094.018

Video 3. Representative sqhAX3; sqh-GFP; gap43-

Cherry movie (SG_4) showing the tracked cell contours

with within-parasegment coordinate colour-coded as

shown in Figure 3A.

DOI: 10.7554/eLife.12094.019
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about 15 min after extension, decreasing thereafter (bright to dark green signal in Figure 3B; statis-

tics in Figure 3—figure supplement 1A,B,D). In contrast, unidirectional polarity emerges gradually

from the start of GBE (Figure 3C; Figure 1F; statistics in Figure 3—figure supplement 1A,C,E).

First, as expected, anterior and posterior interfaces at PSBs have strong Myosin II enrichments of

opposite sign, from as early as 10 min after GBE onset (green and magenta respectively at each

edge of the plot in Figure 3C). Second, the increase in resolution reveals two more positions along

the AP axis where anterior and posterior unidirectional polarities alternate (magenta/green bound-

aries highlighted with arrows in Figure 3C; statistics in Figure 3—figure supplement 1C). This sug-

gests that there are columns of interfaces in at least two stereotypical locations within each

parasegment that become enriched in Myosin II. This gradual transition from global bidirectional

polarities to precisely located unidirectional polarities suggested that new DV-oriented junctions not

enriched in Myosin II form as a consequence of cell rearrangements. To monitor the progress of cell

rearrangements, we quantified the number of cells across the parasegmental domains over time.

The average number of cells per parasegment width (along AP) almost exactly doubles, from 3.6

cells at the start of axis extension to 7.3 after 60 min (Figure 3D and Figure 3—figure supplement

1F). This shows that the emergence of unidirectional polarity is concurrent with the progress of

polarised cell intercalation.

To explain these patterns, we propose the following model. Because of the precision of the seg-

mentation cascade (Dubuis et al., 2013; Tkačik et al., 2015), it is conceivable that there are as

many cell identities as there are cells per parasegment width (3–4 on average, see Figure 3D and

model in Figure 3E). At the start of GBE, actomyosin enrichment would occur at each cell-cell inter-

face based on these differences in identity along the AP axis. When cells intercalate and make new

contacts, this would bring cells of the same identity adjacent to each other along AP. Because their

identities are the same, their new shared interfaces would not enrich in Myosin II (Figure 3E). In con-

trast, interfaces between stripes of cells of different identity would continue to enrich in Myosin II,

driving the emergence of persistent unidirectional polarity. A corollary of this model is that Myosin II

polarisation is a consequence of local cell-cell interactions rather than global signals. If a global

mechanism was at play, actomyosin would be expected to be enriched at all new DV-oriented inter-

faces, maintaining bidirectional polarisation, which is not what we find (Figure 3B,C).

S1/2 and S2/3 boundaries in each parasegment enrich Myosin II and
straighten during axis extension
This model generates specific predictions that we can test. In particular, the two new columns of

interfaces identified as having strong unidirectional polarity within each parasegment should have

more Myosin II and straighten more than the intervening cell-cell interfaces, after they emerge

through cell intercalation. We tracked these, by manually identifying junctions enriched in Myosin II

at the end of each movie (as previously done for the PSBs), at the AP locations mapped in our spa-

tiotemporal plots (Figure 3C). This initial analysis defined 3 stripes per parasegment (S1, S2 and S3,

Figure 4A and Video 4) and identified cell-cell interfaces separating stripes 1 and 2 (S1/2B) and

stripes 2 and 3 (S2/3B) (boundary interfaces), from cell-cell interfaces within each stripe (non-bound-

ary interfaces) (Figure 4B, see also Figure 3C,E). We checked that the S1/2B and S2/3B interfaces

identified at the end of GBE had AP positions consistent with their expected boundary positions

throughout the movies (Figure 4C). Next, we checked that cell numbers for each stripe matched

those expected from the model, with S1 and S2 increasing approximately from 1 to 2 cells wide, and

S3 from 1.5 to 3 cells wide, from start to end of GBE (Figure 4D). The larger width of S3 is explained

in our model: S3 would be composed of a mixture of cell identities 3 and 4, because there are not

enough cells in a parasegment (3.6 cells on average rather than 4 at the onset of GBE, Figure 3D) to

make a two-cell stripe for either identities 3 or 4 at the end of GBE (Figure 3E).

Next, we quantified Myosin II enrichment at the within-parasegment boundaries. As predicted,

interfaces belonging to the boundaries S1/2B and S2/3B become more enriched in Myosin II than

interfaces immediately anterior (-1) or posterior (+1) (Figure 4E,F). We then examined the orienta-

tion of the different classes of interfaces over time. As predicted, S1/2B and S2/3B are more DV-ori-

ented than +1 or -1 control interfaces (Figure 4G–J). Note that as expected from the unipolarity

maps (Figure 3C), S1/2B and S2/3B are less enriched in Myosin II and less DV-oriented than the

PSBs (see PSB curves shown for comparison in Figure 4E–H), but overall these three boundaries

have comparable behaviours. Based on our analysis of cell number, Myosin II enrichment and
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Figure 4. Behaviour of S1/2 and S2/3 boundaries. (A) The image is taken from a sqhAX3; sqh-GFP; GAP43-mCherry movie 60 min after the start of GBE,

where cells have been manually allocated to putative within-parasegment stripes S1 (red centroids), S2 (green centroids) and S3 (blue centroids), based

on Myosin II enrichment and position along AP. In this movie, allocation was done for 3 parasegments (magenta centroids highlight cells belonging to

other parasegments and yellow centroids belong to midline cells, ME). (B) Same movie frame where interfaces are classified as belonging to

boundaries between stripes (PSB interfaces in magenta, S1/2B interfaces in yellow, S2/3B interfaces in cyan) or not belonging to any boundaries (red

interfaces in S1, green interfaces in S2 and blue interfaces in S3). (C) Spatiotemporal plot (time in y-axis and within-parasegment coordinates in x-axis)

to check that the locations of manually identified within-parasegment boundaries correspond to the location of the S1/2B and S2/3B given by the

unidirectional polarity map (arrows, see Figure 3C). The proportion (pp) of non-boundary interfaces is colour-coded so that 1 is green (only non-

boundary interfaces) and 0 is magenta (only boundary interfaces). There is high concordance between the locations of S1/2B and S2/3B interfaces in

both plots (compare with Figure 3C). (D-J) Once stripe and interface identities are allocated, analyses can be performed on all tracked parasegments

throughout GBE. (D) Average cell number per stripe in AP (y-axis) as a function of time from the start of GBE (x-axis). At the bottom of the panel, red

bar indicates the time intervals where S1 differs from S2, and blue bar where S1 and S2 differ from S3. (E) Average Myosin II intensity at boundary

interfaces between stripe 1 and 2 (S1/2B) compared to interfaces immediately anterior (-1) or immediately posterior (+1). Mean for PSB interfaces is

shown for reference (dashed line). Blue and red bars at the top of the panel show time intervals where -1 and +1 interfaces, respectively, differ from S1/

2B interfaces. (F) Same quantifications as in E but for S2/3B. (G) Proportion of interfaces with orientation between 60 and 90 degrees relative to the AP

axis (y-axis), as a function of time (x-axis), for S1/2B interfaces compared to -1 or +1 interfaces. The same measure for PSB interfaces is shown for

Figure 4 continued on next page
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interface orientation, we conclude that we have identified two new columns of interfaces enriched in

Myosin II within parasegments, with the behaviour predicted by our model (Figure 3E).

Boundary and non-boundary interfaces have distinct behaviours during
axis extension
A further prediction of our model is that Myosin II enrichment should respond to the juxtaposition of

different cell identities rather than to the orientation of the cell-cell interfaces relative to the main

embryonic axes. To test this prediction, we examined Myosin II enrichment at boundary interfaces

(PSBs, S1/2B and S2/3B) relative to non-boundary interfaces, as a function of interface orientation

relative to the AP axis. Before 25 min of GBE, boundary interfaces have more Myosin II than non-

boundary interfaces for all orientations except those parallel to AP (0 to about 20 degrees) (left

panel in Figure 5A and Figure 5—figure supplement 1A–C’). For both types of interface, there is

some dependency upon orientation, with higher enrichment for interfaces closer to 90 degrees rela-

tive to AP (DV-oriented interfaces), consistent with previous studies (see for example Figure 4D in

Kasza et al., 2014). This dependency upon orientation is lost after 25 min, with boundary interfaces

strongly enriched compared to non-boundary interfaces, irrespective of orientation (right panel in

Figure 5A and Figure 5—figure supplement 1A–C’). We conclude that although some more global

mechanism might contribute to Myosin II enrichment at the beginning of GBE, cell-cell interactions

dominate overall.

Another prediction from our model is that the boundary interfaces should drive convergence

extension, in other words they should shorten actively, since they are more enriched in Myosin II

than non-boundary interfaces. We have already shown that PSBs, S1/2Bs and S2/3Bs become

straighter than intervening interfaces, which is evidence that they are more contractile. To ask if they

participate more in cell rearrangements, we developed a method to capture the cell neighbour

exchanges called T1 transitions (see Materials and methods). T1 transitions are identified by follow-

ing the shrinkage of a given interface and linking it to the growth of a new interface (Figure 5B).

Using this method, we identified every T1 transition occurring in stripes S1 and S2 for all tracked par-

asegments in our 6 sqhAX3; sqh-GFP; GAP43-mCherry movies. We did not analyse stripe S3 as we

cannot unambiguously identify boundary interfa-

ces separating the putative cell identities 3 and

4 in that stripe. For each T1 transition identified,

we have information on how much Myosin II is

found at shortening and elongating interfaces.

Pooling all the T1 transitions in S1 and S2

together, we find that Myosin II increases with

interface shortening prior to the interface swap

(Figure 5C), consistent with prior studies (see

for example Figure 1g,i in Rauzi et al., 2010).

To distinguish between the interfaces that are

shortening actively from those that may shorten

passively, we developed another method to

probe geometric stress (see

Materials and methods). We assume that a Voro-

noi tessellation based on cell centroid locations

represents a mechanically neutral configuration

for the cell-cell interfaces. We measured the

deviation in interface length from this

Figure 4 continued

reference (grey curve). A statistical comparison is shown at 40 min (see also I). (H) Same quantifications as in G, but for S2/3B. (I, J) show the cumulative

distributions of interface orientation for S1/2B and S2/3B and control interfaces at 40 min. Input data and statistics are in Figure 4—source data 1.

DOI: 10.7554/eLife.12094.020

The following source data is available for figure 4:

Source data 1. Source data for Figure 4, including statistical analysis.

DOI: 10.7554/eLife.12094.021

Video 4. Representative sqhAX3; sqh-GFP; gap43-

Cherry movie (SG_4) showing the within-parasegment

stripes colour-coded as in Figure 4A.

DOI: 10.7554/eLife.12094.022
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Figure 5. Characterisation of the behaviours of boundary and non-boundary interfaces. (A) Average Myosin II intensity in boundary versus non-

boundary interfaces for two time periods of GBE (0–25 and 25–50 min), as a function of their orientation relative to the AP embryonic axis. 0 degrees is

parallel to AP, 90 degrees parallel to DV. (B, C) Analysis of cell neighbour exchanges. (B) Example of a T1 transition where the interface between cells C

and D shortens to a single vertex, followed by the growth of a new interface between cells A and B. The graph gives the interface length (y-axis) as a

function of time after the start of GBE (x-axis). In this particular example, the T1 transition starts at 5 min and finishes at 15 min after the start of GBE.

Figure 5 continued on next page
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tessellation for boundary and non-boundary interfaces (Figure 5D, Figure 5—figure supplement

1D and Materials and methods). We find that boundary interfaces are shorter than predicted by a

Voronoi tessellation (Figure 5E), particularly so in the 15 min prior to a T1 transition (Figure 5F),

indicating that they actively shorten during GBE. We conclude that the boundary interfaces that we

have identified drive convergence of the germ-band.

Next, we examined the behaviour of all interfaces during GBE for S1 and S2 (Figure 5G–K). We

identify four main interface behaviours. About a quarter of interfaces are boundary interfaces which

are not involved in any T1 transitions and remain boundary interfaces throughout GBE (black in

Figure 5G–K). At the start of GBE, these interfaces are oriented on average about 50 degrees rela-

tive to the AP axis, then rotate to become oriented closer to DV, around 70 degrees (Figure 5J,K

and Figure 5—figure supplement 1E). Another quarter of interfaces are boundary interfaces

involved in T1 transitions, with two distinct behaviours: some remain boundary interfaces after the

T1 swap, while others become non-boundary interfaces (grey and orange, respectively, in

Figure 5G–K and Figure 5—figure supplement 1E). Finally, the rest of the interfaces are non-

boundary interfaces which, for their large majority, are not involved in T1 transitions as expected

(purple, Figure 5G–K and Figure 5—figure supplement 1E). This confirms that boundary interfaces

are those involved in cell neighbour exchange. Each interface behaviour occurs at the expected AP

locations within each stripe, giving further support to our model (Figure 5H,I).

Figure 5 continued

(C) Aligning all interfaces in time so that the T1 transitions are at zero min, this plot shows how the shortening of interfaces (black curves) correlates with

the increase in Myosin II fluorescence intensity (magenta curves) during neighbour exchange. (D-F) Analysis of cell geometries. (D) We compared

interface lengths predicted by a Voronoi tessellation (black on the left, dotted grey on the right) with real interface lengths (magenta) to extract a

length deviation from the Voronoi tessellation, a geometric proxy for local stress. (E) Graph showing the average deviation in length from a Voronoi

prediction (y-axis), for all interfaces (black line), for boundary interfaces (magenta curve) and for non-boundary interfaces (green curve), as a function of

GBE time (x-axis). Non-boundary interfaces are on average longer and boundary interfaces shorter than the average length deviation for all interfaces.

(F) On average, boundary interfaces become increasingly geometrically stressed (shorter than Voronoi prediction) over a period of 15 min just prior to

T1 transitions. (G-K) Fate of boundary (abbreviated to B) and non-boundary (abbreviated to nonB) interfaces during GBE, for stripes S1 and S2 (Data

pooled from 6 embryos, N=96,343 interface instances). (G) S1 and S2 interfaces behaviours fall into four main types: interfaces that remain boundary

throughout GBE and do not go through a T1 transition (black); interfaces that remain boundary throughout but go through a T1 transition (grey);

boundary interfaces that go through a T1 transition and become non-boundary (orange); interfaces that remain non-boundary interfaces throughout

(purple). The percentage of each interface type is shown. Within each type, interfaces are sorted according to the time of T1 transition (white lines).

Black arrows indicate two infrequent subtypes. In the orange class, a subtype of boundary interfaces corresponds to interfaces between either cell

identities 1 and 3 (cell identity 2 is missing) or 3 and 2 (cell identity 1 is missing). We call these interfaces ’super-boundaries’ (abbreviated to superB)

(see main text). We have inferred that identity 1 or 2 are skipped because for this subtype the tracking data shows that either stripe S1 or stripe S2 has

a local width of zero. The other subtype is in the purple class (arrow) and corresponds to rare non-boundary interfaces that do go through a T1

transition. (G’) Comparison of the timings of T1 transitions in the different interface types. The two infrequent subtypes have opposite behaviours: the

super-boundary T1 transitions (dashed orange curve) are earliest, while non-boundary T1 transitions are latest (purple curve) compared to boundary T1

transitions (orange and grey). (G’’) Comparison of the distributions of the orientations of interfaces 2.5 min prior to T1 transition for the different types

of interface. ’Super-boundary’ interfaces are the most DV-oriented (dashed orange). (H) Cartoon showing the expected location of the four types of

interfaces relative to the position of the stripe boundaries (dashed black lines). Green shows Myosin II enrichment. (I) Graph giving the frequency (y-axis)

of each type of interface as a function of the AP position within a S1 or S2 stripe (x-axis). Each AP location (bin) within a stripe is attributed a within-

stripe coordinate from 0 (anterior-most) to 1 (posterior-most). (J) Plot showing the fates of each type of interface during GBE. The mean interface

orientation (y-axis) and length (x-axis) is plotted for each type over time. Dashed arrows show the direction of time. Dashed lines connect interfaces

before and after T1 transitions. See Figure 5—figure supplement 1E for individual curves for each sqhAX3; sqh-GFP; GAP43-mCherry movie. (K)

Cartoon summarising the behaviour of each type of interface during GBE. Changes in length and orientation of interfaces are depicted as well as the

transition between boundary and non-boundary class. Direction of time is indicated by arrows. The dashed part of the grey arrow depicts the situation

where a boundary interface remains a boundary after a T1 swap. Input data and statistics are in Figure 5—source data 1.

DOI: 10.7554/eLife.12094.023

The following source data and figure supplement are available for figure 5:

Source data 1. Source data for Figure 5, including statistical analysis.

DOI: 10.7554/eLife.12094.024

Source data 2. Source data for Figure 5—figure supplement 1, including statistical analysis.

DOI: 10.7554/eLife.12094.025

Figure supplement 1. Analysis of cell-cell interface behaviour.

DOI: 10.7554/eLife.12094.026
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Furthermore, examining now the whole data set (considering all three stripes S1, S2 and S3), we

find that the number of T1 transitions consistently peaks at the expected locations for PSBs, S1/2B

and S2/3B (Figure 5—figure supplement 1F). Interestingly, we also find a T1 transition peak in the

middle of S3 (blue curves in Figure 5—figure supplement 1F,F’), which would correspond in our

model to an incomplete or variably located boundary between cell identities 3 and 4 (Figure 3E).

This is corroborated by a peak in Myosin II in the middle of stripe S3 (Figure 5—figure supplement

1G). Using an independent measure of cell intercalation (intercalation strain rate, see (Butler et al.,

2009; Blanchard et al., 2009) and Materials and methods), we find that the rate of intercalation is

higher in stripe S3, compared to stripe S1 and S2 (Figure 5—figure supplement 1H). We think that

this higher rate of intercalation in stripe S3 is caused by missing cells of identity 3 or 4 in this stripe.

Figure 6. Finding the smallest number of receptors explaining Myosin II planar polarization during axis extension.

(A) Expression patterns of two putative receptors A and B repeated every double parasegment (corresponding to

the expression patterns of, respectively, Toll-2 and Toll-8 as described in Figure 1p in Paré et al., 2014). PSBs are

shown as solid black lines. Summing the number of receptor differences at each boundary, this combination lacks

a difference at the PSBs. For cell pairs brought together when single cells are missing (second line), the number of

cell receptor differences increases only when cell identity 2 or cell identity 3 is missing (grey boxes highlight an

increase in receptor differences). There is no increase in receptor differences, hence no robustness, built in if two

contiguous cells are missing at any location (third line). We calculate a ’robustness’ score by adding the number of

instances, for two parasegments, where there is an increase in receptor differences in the event of 1 or 2 cells

missing: the score for this scenario is 10 (number of grey boxes for a double parasegment unit) (see Figure 6—

figure supplement 1C). (B) When considering 0, 1 or 2 missing cells, the most robust solution with three receptors

is achieved with an additional receptor C spanning one parasegment out of two (either odd or even). This

provides a receptor difference at the PSBs (grey boxes in first line) and systematically increases receptor

differences when one cell is missing at a given location (grey boxes in second line). When 2 cells are missing, the

number of receptor differences increases at a subset of locations, notably in the case where cell identities 3 and 4

are missing (grey boxes in third line). The robustness score for this solution is 20 (arrow in Figure 6—figure

supplement 1C). Code for receptor permutations is in Source code 1.

DOI: 10.7554/eLife.12094.027

The following source data and figure supplement are available for figure 6:

Source data 1. Source data for Figure 6—figure supplement 1, including statistical analysis.

DOI: 10.7554/eLife.12094.028

Figure supplement 1. Combinatorial receptor patterns.

DOI: 10.7554/eLife.12094.029
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We postulate that when a cell identity is missing in the AP parasegmental sequence, such as cell

identity 3 or 4, the resulting interface enriches more Myosin II and consequently intercalates faster

and earlier that other interfaces. We expect these ’superboundary’ interfaces (behaving as ’superin-

tercalators’) to be most prevalent in stripe S3 because of insufficient cells there, but our data sug-

gest that these can be found also (but rarely) in stripe S1 and S2 (SuperB subtype in Figure 5G–G”).

We conclude that the variable number of cells per parasegment along AP causes a faster intercala-

tion rate in the posterior part of the parasegment compared to the anterior part (Figure 5—figure

supplement 1H).

Modelling the minimum number of receptors required for the planar
polarisation of Myosin II during axis extension
The current molecular explanation for the planar polarization of Myosin II during GBE is that pair-

rule genes control the expression in stripes of three Toll-like receptors that provide a heterotypic

code for the enrichment of Myosin II at AP cell-cell interfaces (Paré et al., 2014). The code is

thought to be incomplete because it currently does not explain interface enrichment at PSBs

(Paré et al., 2014). Here we asked what is the minimum number of receptors that could explain all

of the Myosin II patterns that we have uncovered in this study. We first considered a scenario reca-

pitulating as closely as possible the expression of the three Toll-like receptors (Toll-2, Toll-6 and Toll-

8) identified in Paré et al. (2014). We noted that Toll-6 and Toll-8 were largely interchangeable

(Paré et al., 2014). Therefore our first scenario has a receptor A and a receptor B respectively

expressed in pair-rule patterns broadly similar to Toll-2 and Toll-6/8 (Figure 6A). Assuming initially 4

cells per parasegment, we counted by how many receptors adjacent cells differed along the AP axis.

For example, if a cell expresses a receptor and the adjacent cell does not, then we recorded a differ-

ence of 1 for the corresponding AP interface (Figure 6A). We postulate that a difference of one

receptor or more triggers Myosin II enrichment at the corresponding interface. In this first scenario,

all interfaces along AP differ by one receptor, except at the PSBs where there are no differences,

consistent with the conclusion that the Toll-like receptor patterns currently do not explain Myosin II

enrichment at PSBs (Paré et al., 2014).

We then considered what happens when one cell is missing in the sequence of four cell identities

along AP in each parasegment. We know this has to be frequently the case since we find an average

of 3.6 cells per parasegment at the start of GBE (Figure 3D). We counted again the number of

receptors at interfaces, when a cell is missing at a given position. For example, if cell identity 2 is

missing, cell identities 1 and 3 become adjacent; since cell identity 1 is expressing receptor A and

cell identity 3, receptor B, we scored a difference of two receptors for this particular interface

(Figure 6A). Remarkably, we find that the number of receptor differences increases by one in many

locations when a cell identity is missing (Figure 6A). We predict that the number of receptor differ-

ences is likely to be proportional to the amount of Myosin II recruited. In other words, we propose

that the receptor identity system is quantitative. If the amount of Myosin II enriched is indeed pro-

portional to the number of receptor differences, then more rapid cell intercalation would be

expected to occur where cells are missing in the AP sequence (see ’superboundaries’ and ’superin-

tercalators’ introduced earlier). Increased cell intercalation would fill the gaps in cell identity during

GBE and maintain the cell order along AP. From our data, the cell identities that are most likely to

be missing are 3 and 4, since we find that there are not enough cells to make two columns of two

cells at the end of GBE in stripe 3 (Figure 3D,E

and 4D). For example, according to the scenario

in Figure 6A, if cell identity 3 is missing, the

receptor numbers at adjacent interfaces 2/4

increases from 1 to 2 (Figure 6—figure supple-

ment 1A). This in turn should translate into an

increase in Myosin II at those interfaces, which

then would increase the rate of intercalation.

This notion is supported by our data, since we

find that the cell intercalation rate is higher in

stripe 3 containing identities 3 and 4, than in

stripes 1 or 2 (Figure 5—figure supplement

1H).
Video 5. Movie of simulation 4 shown in Figure 7G.

DOI: 10.7554/eLife.12094.030
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From the above, we propose that the receptor system is robust to missing cells because gaps in

the pattern will be ’repaired’ by speeding up intercalation at cell-cell interfaces most different in

their receptor composition. Building on this hypothesis, we looked for the most likely expression pat-

tern for a third putative receptor that would both explain the enrichment at the PSBs but also confer

enhanced robustness to missing cells. To do this, we explored all possible permutations of three

receptors, where each is expressed in a putative pair-rule pattern (four cell-stripes out of eight, in a

Figure 7. A vertex model based on cell-cell interactions replicates the interface behaviours during axis extension. (A) Summary of vertex model of

germband extension. Cells are considered as two-dimensional polygons representing cell-cell interfaces, with vertices forming where three polygons

meet. An ‘energy function’ is calculated and used to update the position of every vertex i over time. This energy function encodes mechanical

contributions associated with cell elasticity, cortical contractility and interfacial ‘line tension energy’. We consider a number of simulations (see main

text), which differ in the hypothesised dependence of the line tension f on interface lengths. (B) The initial configuration for each simulation comprises

regular hexagonal cells organised into parasegments, each comprising cells of 4 stripe identities (S1-S4). Note that the initial configuration starts with

14x20 cells (Video 5) and smaller snapshots are shown in this Figure and Figure 7—figure supplement 1. (C) In simulation 2, the line tension energy f

varies linearly with interface length for non-boundary interfaces, but we specify a nonlinear dependence for boundary interfaces to represent a positive

feedback between interface shortening and Myosin II enrichment. In this simulation, cells undergo neighbour exchanges but become stuck locally in

four-cell junctions and hence convergent extension cannot proceed (D, D’). In Simulation 3, we apply our non-linear dependence of line tension to the

total length of contiguous boundary interfaces for a given cell (length Li;m) (E), rather than to individual boundary interfaces (length li;j) (D, D’). This

allows vertices to slide independently on either side of a column of interfaces that makes a boundary (E’, E”) and the simulated tissue now undergoes

convergent extension (F), but identities S3 and S4 clump together. (G) Simulation 4 resolves this issue by incorporating ‘supercontractility’, where

boundary interfaces between cells of non-adjacent identities (‘skipped boundary’) are more contractile. Code for vertex model is in Source code 1.

DOI: 10.7554/eLife.12094.031

The following source data and figure supplement are available for figure 7:

Source data 1. Source data for Figure 7—figure supplement 1, including statistical analysis.

DOI: 10.7554/eLife.12094.032

Figure supplement 1. Further details of vertex model simulations for interface behaviours during axis extension.

DOI: 10.7554/eLife.12094.033
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given double parasegment unit) (Figure 6B). We scored each permutation by summing both the

number of immediate neighbour receptor differences, and also the increase in receptor differences

at each interface if one or two cell identities are missing in a given row of cells. The permutation that

scored highest (20, see Figure 6—figure supplement 1C) expresses two receptors in the same

exact pattern as our first scenario (Figure 6A) and a third receptor in every other parasegment

(Figure 6B). With this solution, the number of receptors at cell-cell interfaces increases systematically

from one to two when a cell identity is missing anywhere in a double parasegment unit, therefore

showing robustness. When two cells are missing, this number increases to three receptors at a sub-

set of locations. Interestingly, one of these locations corresponds to the case where cell identities 3

and 4 are both missing (Figure 6B; Figure 6—figure supplement 1B). Since our data suggest that

identities 3 and/or 4 are those most likely to be absent (1 and 2 being more systematically specified),

this solution confers adequate robustness, taking into account the observed polarity of the paraseg-

ment. Note that a solution with 4 receptors instead of 3 does show a better robustness throughout

the double parasegment unit (Figure 6—figure supplement 1D,E), but since cell identities 1 and 2

are less likely to be missing according to our data, we conclude that the three-receptor solution

shown in Figure 6B is the most parsimonious.

A vertex model based on cell-cell interactions replicates the interface
behaviours during axis extension
To test our cell identity model more formally, we implemented a vertex model with a starting config-

uration of 20 rows and 14 columns of regular hexagonal cells, organised into 4 parasegments, with

each parasegment comprising 3 to 4 cell identities along AP (Video 5). In vertex models, the move-

ment of junctional vertices is governed by the strength of cell-cell adhesion, the contractility of the

actomyosin cortex and cell elasticity (Farhadifar et al., 2007; Fletcher et al., 2014; Honda and Egu-

chi, 1980). These contributions are encoded in a ‘free energy’ function, whose gradient determines

the velocity of each vertex. In addition, cell neighbour exchanges (T1 transitions) occur whenever a

cell-cell interface’s length falls below a threshold value. We use a free energy function based on

(Farhadifar et al., 2007) (Figure 7A), keeping the ‘cell elasticity’ and ‘cortical contractility’ terms the

same throughout, but varying the ‘line tension energy’ term in successive simulations to model dif-

ferent features of interface contractility inferred from the real data (Figure 7—figure supplement

1A).

In simulation 1, the line tension energy associated with each cell-cell interface varies linearly with

its length, but the boundary interfaces are twice as contractile as the non-boundary interfaces (Fig-

ure 7—figure supplement 1B). Cells fail to undergo neighbour exchange in this simulation. In simu-

lation 2, the linearity of line tension energy is replaced at boundary interfaces by a non-linear

relationship, where the line tension energy decreases at an ever-faster rate as the interface shortens.

This models a positive feedback between interface shortening and Myosin II enrichment, supported

by our data (Figure 5C). In this simulation 2, cells do now undergo neighbour exchanges, but

become stuck in a four-cell junction topology (Figure 7C–D’). In simulation 3, we allow vertices to

slide independently on either side of a column of interfaces that makes a boundary (Figure 7E–F).

We implement this (for boundary interfaces only) by applying our non-linear dependence of line ten-

sion to all interfaces present at a given boundary for a given cell (combined length L) (Figure 7E–F),

rather than to individual interfaces (length l) (Figure 7C–D’). The cells are now able to intercalate

and the simulated tissue undergoes convergent extension, elongating in AP while shortening in DV

(Figure 7F). As a consequence, single columns of cell identities 1 and 2 become double columns of

cells at the end of the simulation, as predicted in Figure 3E. However, because of their insufficient

number, cells of identities 3 and 4 end up clumping together according to their identity, thereby dis-

rupting the AP order of the starting pattern (Figure 7F).

To address this, we implemented a fourth simulation (Figure 7G) that incorporates our hypothes-

ised ‘supercontractility’, where interactions between cells of non-adjacent identities in the paraseg-

mental sequence generate more contractile interfaces than cells of adjacent identities. For example,

contractility would be higher at interfaces between identities 2 and 4, than between 2 and 3 or 3

and 4. Implementing this, simulation 4 solves the clumping problem and maintains the AP order of

cell identities throughout axis extension (Figure 7G), as postulated in Figure 3E. So simulation 4

recapitulates the intercalary cell behaviours that we hypothesise based on our data. Finally, we ana-

lysed interface behaviours as for the real data (Figure 5I). We find that boundary and non-boundary
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interfaces in simulation 4 have behaviours qualitatively similar to real data (Compare Figure 7—fig-

ure supplement 1C with Figure 5I), demonstrating that this simulation successfully models the cell

interface behaviours of GBE.

Discussion
We have developed new computational methods to quantify and analyse patterns of Myosin II planar

polarisation and cell behaviours in the extending Drosophila germband in both time and space. In

previous studies, the analysis of Myosin II planar polarity has focused on bipolarity, often comparing

the enrichment in Myosin II at the DV-oriented sides (also called vertical sides) of germband cells rel-

ative to their AP-oriented sides (also called horizontal sides) (for example, see Simões et al., 2014;

Paré et al., 2014; Kasza et al., 2014). Here, in addition to using a measure of bidirectional polarity,

we have developed a measure of unidirectional polarity, to identify when one side of a cell is

enriched relative to all other sides. By distinguishing between bi- and unidirectional polarities, we

have been able to identify novel patterns that inform how Myosin II planar polarisation arises and

drives cell and tissue behaviours. Furthermore, by taking a live-imaging approach, we have been

able to observe how these polarities evolve with unprecedented temporal resolution.

Our study provides further experimental evidence that differential cell identity generates the pla-

nar polarity of Myosin II in the germband and extends existing models. A long-standing hypothesis

in Drosophila segmentation is that the cascade of genes from maternal determinants, gap genes

and then pair-rule genes is able to establish differential ’identities’ with single-cell precision along

the AP axis (Dubuis et al., 2013; Tkačik et al., 2015). The discovery of a role for Toll-like receptors,

under the control of pair-rule genes in GBE, has provided compelling molecular evidence for this

model (Paré et al., 2014). One question arising from this work is what happens to Myosin II planar

bipolarity once polarized cell intercalation proceeds. Indeed, polarized cell intercalation will increase

the cell number along AP, thus bringing cells with the same identity next to each other along this

axis. If differential cell identity via heterotypic interactions drives Myosin II polarisation throughout

GBE, then some cells should find themselves in homotypic interaction with either an anterior or pos-

terior neighbour, which would not lead to Myosin II enrichment (See Figure 3E). The unipolarity pat-

terns that we find are consistent with this hypothesis, identifying alternating domains of enriched

and not enriched cell-cell interfaces along AP, which emerge during the course of axis extension.

These correspond to Myosin II-enriched boundaries between parasegmental domains (PSBs) and to

at least two more locations within each parasegment from early in GBE. The AP position of these

enrichments is consistent with these being the consequence of the doubling of cell numbers along

AP via polarized cell intercalation. Therefore the differential identity model predicts a transition

between bidirectional and unidirectional polarities over the course of GBE, which is validated by our

data.

Another prediction of the differential identity model is that Myosin II enrichment should be

dependent upon the type of cell-cell interface (homotypic versus heterotypic) rather than interface

orientation (DV versus AP-oriented). We were able to test this by comparing the orientation of

enriched boundary interfaces (heterotypic in our model) versus non-boundary interfaces (homotypic).

Early GBE (0–25 min) is characterised by two features. First, as predicted by a cell-cell interaction

model, boundary interfaces are significantly more enriched than non-boundary interfaces for most

orientations. However, overlaid on this, DV-oriented interfaces are also more enriched in Myosin II,

irrespective of their boundary/non-boundary identity. This relationship between interface orientation

and Myosin II enrichment in early GBE is at odds with a model based solely on cell-cell interactions.

It is unclear what the cause of this relationship might be. Some planar polarity and cell intercalary

behaviours remain in mutants for all three Toll-like receptors identified (Paré et al., 2014). A possi-

bility is that the remaining polarity is due to a more distant polarising signal operating in early

embryos, which would direct Myosin II to all DV-oriented interfaces. Later in GBE (25–50 min), our

analysis shows that Myosin II enrichment becomes independent of interface orientation, indicating

that distant polarising signals are not acting on the germband at this stage and that local cell-cell

interactions dominate.

The Toll receptor model proposed in Paré et al. (2014) relies on each parasegment being four

cells wide. Our quantification shows that parasegments are in fact on average only 3.6 cells wide at

the onset of GBE (sampling parasegments 4 to 7, see Materials and methods). The widths of the
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stripes containing cell identities 1 and 2 are consistent with single-cell wide columns increasing to

two-cell wide columns and therefore behave as expected from the differential cell identity model.

However, the distinction between the stripes containing cell identities 3 and 4 as predicted by

Paré et al. (2014) was less clear. Instead we observe a third stripe, which is 1.5 cells wide in AP on

average at the start of GBE, increasing to 3 after 60 min. We think it likely that the cell types 3 and 4

do exist as postulated by Paré et al. (2014), since there are detectable peaks of Myosin II and

neighbour exchanges in the middle of our third stripe (Figure 5—figure supplement 1F,G). But

because parasegments are less than 4 cells across at GBE onset, some rows would have only cell

types 1,2,3 or 1,2,4, while others have the full complement of cell types 1,2,3,4 (see Figure 3E).

After 60 min of GBE, stripes 3 and 4 would then give a mixture of arrangements, such as 3,3,4 and

3,4,4. As a result, the expected enrichment of Myosin II at heterotypic interfaces between cells of

identity 3 and 4 would not align well, explaining why we cannot resolve a stripe 3/4 boundary in our

data. If our reasoning is correct, this implies that there is an inherent polarity within each paraseg-

ment, with the anterior half made of cell types 1 and 2 being robustly specified, while in the poste-

rior half, specification of cell identities 3 and 4 is more variable. This polarity might be important for

the tissue to cope with the variation of cell number across parasegments and to repair the AP pat-

terns during cell intercalation. Indeed, at the start of axis extension, although parasegments are usu-

ally 3 or 4 cells across, they occasionally have rows that are fewer or more cells across

(Lawrence and Johnston, 1989; Busturia and Lawrence, 1994). We conclude that the mechanism

of active convergence of the germ-band must be robust to variable cell number within each paraseg-

mental unit.

Our modeling suggests a mechanism by which the embryo copes with this variable cell number

during axis extension. We postulate that the cell-cell interaction mechanism that triggers Myosin II

enrichment at interfaces along AP is quantitative. It has been proposed that the stripy expression of

Toll-2, 6 and 8 receptors generate heterotypic interactions that result in Myosin II enrichment

(Paré et al., 2014). We further propose that these receptors, in addition to at least another receptor

at the PSB, produce Myosin II enrichment which is proportional to the strength of the heterotypy. In

other words, the more adjacent cells differ in the number of receptors they express, the more Myo-

sin II will accumulate at their shared interfaces. We find that three receptors expressed in a pair-rule

pattern is sufficient in theory to explain the planar polarization of Myosin II at every interface along

AP in the germband, including the PSB interfaces which were not accounted for by the Toll-2,6,8

combinatorial code (Paré et al., 2014). Two of the receptor patterns we identify correspond to the

patterns of Toll-2 and Toll-6/8 (Toll-6 has a pattern similar to Toll-8) and the third provides hetero-

typy at the PSB. The remarkable finding with this minimal combination of receptors is that hetero-

typy increases when one cell is missing in any position along AP. Moreover, heterotypy increases

further when two cells are missing at half of the positions along AP. This is true in particular when

identities 3 and 4 are both missing, which are the identities we think are most likely to be absent,

based on our data. So when cells are missing, heterotypy would increase, triggering more Myosin II

enrichment. This would increase the intercalation rate at the most mismatched interfaces and lead to

pattern repair. In support of this, we do find an increased rate of cell intercalation in the posterior

part of the parasegment (Figure 5—figure supplement 1H), where we predict more mismatches

because of too few cells of identities 3 and 4.

We tested these hypotheses in a vertex model and recapitulated qualitatively the tissue-scale

behaviours in the data. We had to implement specific interface behaviours in the model to have suc-

cessful convergence-extension of the in silico tissue. These are based on plausible behaviours in

vivo. In particular, one limitation of vertex models is that apposed cortices are modeled as a single

interface. The changes between Simulation 2 and 3 attempt to go round this limitation: what we

tried to model is a situation where cells behave independently on either side of a boundary. For

example, junctions could slide independently of each other on either side of the boundary. This is

possible in vivo because a boundary is made of two cell cortices, and each cell cortex at the bound-

ary interface could elongate or shorten independently. This could conceivably happen if the two cell

cortices on either side of a boundary have different contractile forces. In addition to junctional slid-

ing, cell-cell sliding could occur along the boundary, for example if adhesion is decreased there. Fur-

ther work is required to determine if these processes are happening during GBE. Another point of

note, we have implemented ratios of 1:2:8 for the line tension energies between non-boundary,

boundary and ’supercontractile’ boundary interfaces in Simulation 4. The 1:2 ratio is quantitatively
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consistent with observed ratios of tension between PSB boundary and non-boundary interfaces

obtained by laser ablation (Figure 2I). We do not know what to expect as a ratio between boundary

and supercontractile boundary interfaces, but 8 seems high. A discrepancy between the ratios of

tension needed for a successful simulation of boundary behaviour and the ratios estimated in vivo by

laser ablation has been noted by Landsberg et al. (2009) and so the relationship between line ten-

sion energies in vertex models and tension measured by laser ablation might not be simple/linear.

For this paper, the key point is that the model qualitatively supports the idea that some boundary

interfaces are more contractile than others.

In combination with the two other receptor patterns which would correspond to those of Toll-2

(receptor A in our model) and Toll-6/8 (receptor B), our parsimonious three-receptor combination is

in theory sufficient to explain all of the Myosin II polarity patterns we identify in our study. By identi-

fying PSB interfaces at late stages by their strong myosin enrichment and backtracking to earlier in

development, we have further demonstrated that the PSB dominates over the two intra-paraseg-

mental boundaries in terms of myosin enrichment. The predominance of the PSB is detectable from

very close to the start of GBE. At the onset of GBE, PSBs are already demarcated genetically by the

expression of the pair-rule genes such as eve and ftz and the gradually increasing expression of seg-

ment polarity genes wg and en (Jaynes and Fujioka, 2004). However, this is the first time that a cel-

lular (rather than genetic) characteristic has been identified for PSBs this early. After the end of

germband extension, later in development when epidermal cells are actively dividing, the movement

of dividing cells across PSBs is prevented because the boundary interfaces enrich in Myosin II relative

to non-boundary interfaces (Monier et al., 2010), as for other compartmental boundaries in Dro-

sophila (Umetsu et al., 2014; Aliee et al., 2012; Landsberg et al., 2009; Major and Irvine, 2006)

and for tissue boundaries in zebrafish (Calzolari et al., 2014) and Xenopus (Fagotto, 2014;

Fagotto et al., 2013). In all these cases, the enrichment in Myosin II has been proposed to increase

interfacial tension and promote tissue segregation. A possibility is that the PSBs fulfill a similar role

during GBE, to prevent mixing between adjacent parasegments that cell intercalation might cause

otherwise. Our interface orientation analyses and our laser ablation experiments demonstrate that

there is indeed an increase in interfacial tension at PSBs early in GBE. We propose that elevated line

tension at PSBs and also, to a lesser extent, at the two intra-parasegmental boundaries that we have

identified, contribute to maintain the AP sequence of cell identities while cell rearrangements are

occurring.

It is unclear why the PSB boundaries are enriching Myosin II more than the other two intrapara-

segmental boundaries we have identified. This could be explained if the heterotypy between cell

identity 1 on the posterior side of the PSB is strongest in combination with cell identities 3 or 4 on

the anterior side of the PSB. We predict that a not yet identified receptor, with a pattern of expres-

sion corresponding to receptor C in our most parsimonious model (Figure 6B), directs myosin II

recruitment at the PSB interfaces. It could be that this putative receptor triggers a stronger response

at the PSBs compared to the Toll-like 2,6,8 receptors at the other boundaries. Alternatively, more

than one receptor might be contributing heterotypy at the PSBs. Our data suggest that we can rule

out an early role for Wingless signaling in contributing to a PSB-specific response. Indeed, while

Wingless is required to maintain Myosin II enrichment at the PSB later in development

(Monier et al., 2010; 2011), it is not required for the enrichment during germ-band extension

(Figure 2M), which is corroborated by the fact that PSBs straighten in wingless mutants as in wild-

type (Figure 2L). Thus it is likely that the pathway directing strong enrichment of Myosin II specifi-

cally at PSBs is under pair-rule control.

Finally, our analysis shows that cell interface behaviour associated with active intercalation pre-

dominantly occurs at the boundary interfaces that we identify. Thus in Drosophila GBE, intraparaseg-

mental boundaries and PSBs enriched in actomyosin appear to drive GBE. Supracellular Myosin II

cables are already known to drive tissue elongation through the formation of multicellular rosettes

(Blankenship et al., 2006). These have not been linked to specific positions along the AP axis, but it

is likely that rosettes form exclusively at PSBs or intraparasegmental boundaries, where our analysis

suggests that Myosin II is enriched in continuous cable-like structures.

In conclusion, we think that we have identified segmentally repeated boundaries, which enrich in

Myosin II and simultaneously drive cell intercalation while keeping cells ordered along the AP axis.

Our findings contribute to the growing evidence that cell fate heterogeneities are translated into dif-

ferential interface contractility to govern morphogenesis (Paré et al., 2014; Bielmeier et al., 2016;

Tetley et al. eLife 2016;5:e12094. DOI: 10.7554/eLife.12094 22 of 35

Research article Computational and systems biology Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.12094


Bosveld et al., 2016). Extending the work of Paré et al. (2014), we propose an updated differential

cell identity model that is robust to missing cells, postulating a third receptor expressed in every

other parasegment as the most parsimonious solution. In Xenopus, the antero-posterior patterning

of the mesoderm also drives convergent extension (Ninomiya et al., 2004), and thus similar order-

ing mechanisms might operate in vertebrate systems. As a whole, this system is reminiscent of the

’self’ versus ’non-self’ recognition mechanisms thought to play a role during neuronal wiring in the

nervous system (Zipursky and Grueber, 2013; He et al., 2014), and might represent a more ancient

and primitive ’non-self’ avoidance system, co-opted here by AP patterning to control cell behav-

iours. The logic and rules that we have uncovered for Drosophila axis extension provides a paradigm

for more complex structures such as the brain (Hassan and Hiesinger, 2015).

Materials and methods

Drosophila strains
We used the null mutants sqhAX3 (Jordan and Karess, 1997) and wgCX4 (Baker, 1987) and the trans-

genes en-lacZ (on II) (Busturia and Morata, 1988), sqh-GFP42 (on II) (Royou et al., 2004), GAP43-

mCherry (on III) (Martin et al., 2010) and eve-EGFP (on III) (Venken et al., 2009) to construct the

stocks sqhAX3; sqh-GFP42; GAP43-mCherry/TM6B, yw;;eve-EGFP,GAP43-mCherry/TM6B and w;

wgCX4, en-lacZ/CTG. yw67embryos were used as WT. The CTG balancer chromosome was CyO, twi-

GAL4, UAS-GFP (Halfon et al., 2002).

Immunohistochemistry and imaging of fixed Drosophila embryos
We followed standard methods for fixing and staining Drosophila embryos, using the primary anti-

bodies goat anti-GFP (ab6662, Abcam, 1:200), rabbit anti-Engrailed (d300, Santa Cruz Biotechnol-

ogy; 1:50), rabbit anti-b-gal (ECK0341, MP Biomedicals; 1:2500), rat anti-DE-CAD (DCAD2, DSHB;

1:50), guinea pig anti-Sqh-1P (Zhang and Ward, 2011; 1:100). We used the following secondary

antibodies: goat anti-rabbit-Alexa-594, goat anti-rat-Alexa-594 and goat anti-guinea pig-Alexa-488

(Life Technologies, 1:500). To improve immunostaining against Sqh-1P, embryos were post-fixed in

4% formaldehyde for 15 min before secondary antibody staining.

Embryos were mounted individually on slides in VECTASHIELD (Vector Labs) under a coverslip

suspended by a one-layer thick magic tape (Scotch) bridge on either side. This flattened the

embryos sufficiently so that all cells were roughly in the same z-plane. Prior to placing the coverslip,

embryos were rolled so that their ventral surfaces were facing upwards towards the coverslip.

Embryos were imaged on a Nikon Eclipse TE2000 inverted microscope incorporating a C1 Plus con-

focal system (Nikon). Images were captured using Nikon EZ-C1 software. Optical z-stacks were

acquired with a depth of 0.25 mm between successive optical z-slices and with a total optical z-stack

depth sufficient to capture both the top of the embryo and any more basal markers of the paraseg-

ment boundary (PSB). All embryos were imaged using a violet corrected 60x oil objective lens (NA

of 1.4). Laser illumination at 488 nm wavelength was used for Alexa-488 fluorophores and 543 nm

for Alexa-594. Neutral density (ND) 4 filters were applied to all lasers. Recursive averaging of 4 was

used. The gain and offset were optimized for each embryo.

Semi-automated quantification of cortical Myosin II in fixed embryos
For each stage and each genotype quantified (yw67 or w; wgCX4, en-lacZ), 9–10 embryos (1–4 bound-

aries per embryo) were analysed. Embryos were immunostained for Sqh-1P (as a marker of Myo II),

DE-CAD (as a marker of cell membranes) and a PSB marker (En or bgal, depending on the embryo

genotype). Quantification was performed on PSB interfaces and +1 interfaces, which could all be

identified relative to the position of PSB marker staining.

Connected interfaces, in which Myo II was to be quantified, were traced using the FIJI plugin Sim-

ple Neurite Tracer (Longair et al., 2011) based on DE-CAD staining. Where possible, a line of inter-

connected interfaces was traced between the ventral midline and the amnioserosa. If a region of

dividing cells was encountered along one of these lines of interconnected interfaces, the tracing was

stopped and restarted the other side of the dividing cells. The traced lines were then increased in

width by one pixel each side, giving a total line width of three pixels. Quantification was performed

in the Sqh-1P channel. Fluorescence values lower than the modal pixel intensity were subtracted as
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background fluorescence. Average fluorescence intensity was calculated for each 3-pixel wide line

trace using ImageJ. PSB interface fluorescence intensity was then normalised to +1 interface fluores-

cence intensity on a per PSB basis. Statistics were performed in Prism (GraphPad).

Live imaging of Drosophila embryos
Embryos were dechorionated in commercial bleach before being rinsed thoroughly in water. An oxy-

gen permeable membrane was pulled tightly over a custom-made metal imaging insert. Nine stage

5 embryos were mounted, ventral-side towards the objective, on the membrane in halocarbon oil

(Voltalef PCTFE, Atofina, France) in a 5 mm spaced 3x3 array. A coverslip was placed over the

embryos, supported by a bridge of a single coverslip on each side.

Embryos were imaged under a 40x oil objective lens (NA of 1.3) on a Nikon Eclipse E1000 micro-

scope with a Yokogawa CSU10 spinning disk head and a Hamamatsu EM-CCD camera. Embryos

were illuminated using a Spectral Applied Research LMM2 laser module (491 nm and 561 nm excita-

tion). Images were captured using Volocity Acquisition Software (PerkinElmer). Embryos were posi-

tioned under the objective lens so that the field of view was slightly posterior to the point at which

embryos were widest in their DV axis. Optical z-stacks of a thickness of 28 mm were captured, with

14 mm above the top of the embryo and 14 mm into the embryos at the beginning of acquisition (to

allow for movement of the embryo in the z-axis). Consecutive optical z-slices were separated by

1 mm. Embryos were imaged every 30 s from late stage 5 for 100 min. Movies were recorded at 20.5

± 1˚C, measured with a high-resolution thermometer (Checktemp1).

To check that embryos survived the imaging process to the end of embryogenesis. sqhAX3; sqh-

GFP; GAP43-mCherry and eve-EGFP, GAP43-mCherry embryos were allowed to develop on the

imaging insert to hatching in a humidified box. wgCX4; eve-EGFP, GAP43-mCherry embryos were

treated similarly, but because wingless mutants are embryonic lethal, the cuticle of embryos was pre-

pared using standard methods to check their phenotype. Occasional movies acquired for embryos

that did not hatch or did not make a cuticle at the end of embryogenesis were discarded.

Cell tracking
The confocal z-stacks were converted into stacks of curved quasi-two-dimensional representations,

the outermost of which followed the surface of the embryo with deeper layers shrinking progres-

sively in 0.5 mm steps towards the centre of the embryo. The section giving the clearest view of cell

apices was selected for tracking. Bespoke tracking software identifies cells and links them in an itera-

tive process using an adaptive watershedding algorithm (Blanchard et al., 2009; Butler et al.,

2009). For each cell at each time point, coordinates of cell centroids, perimeter shapes, cell-cell

interfaces, and links forwards and backwards in time for both cells and interfaces (even through

neighbour exchange) are stored.

No statistical method was used to predetermine embryo number. We previously tracked cells in 5

embryos per treatment in Butler et al. (2009), which was sufficient to show treatment differences.

WT morphogenesis is remarkably reproducible (see Figure 1—figure supplement 1A,B) so we con-

sidered 6 sqhAX3; sqhGFP; GAP43-mCherry embryos would be sufficient to show robust patterns.

For eve-EGFP, GAP43-mCherry and wgCX4; eve-EGFP, GAP43-mCherry embryos, we performed

manual correction of segmented cell outlines at all time points. This improved the tracking in the

embryos, hence we required only 3 embryos per treatment (summarized in Table 1).

Movie synchronisation in space
Movie x and y pixel coordinate axes were rotated and transformed into embryonic AP and DV coor-

dinates in mm. The origin of embryonic coordinates was set at the start of GBE as the intersection

Table 1. Summary of embryos analysed per genotype.

Embryo Genotype # Movies analysed Mode of Tracking

sqhAX3; sqh-GFP; GAP43-mCherry 6 Automated

eve-EGFP, GAP43-mCherry 3 Automated, manual correction

wgCX4; eve-EGFP, GAP43-mCherry 3 Automated, manual correction

DOI: 10.7554/eLife.12094.034
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between the anterior of the field of view and the ventral mid-line, with positive AP aligned towards

the embryonic posterior. The origin of this coordinate system moved with the location of the inter-

section point, for example if there was any lateral movement of the embryo in AP or if the embryo

rolled in DV.

Domain strain rates
Using the relative movements of cell centroids, local tissue 2D strain (deformation) rates were calcu-

lated for small spatio-temporal domains (see Figure 8 below and Blanchard et al.,

2009; Butler et al., 2009; Lye et al., 2015), composed of a focal cell and one corona of neighbour-

ing cells over a 2 min interval (contained within five movie frames). A separate direct measure of 2D

cell shape change was calculated by first approximating each cell with its best-fit ellipse, then finding

the strain rate tensor that best mapped a cell’s elliptical shape to its shape in the subsequent time

point. The difference between the local tissue strain rates (calculated above) and the average cell

shape strain rate of cells in the same spatio-temporal domain was attributed to cell intercalation. All

strain rates were then projected onto the embryonic axes, AP and DV.

Movie synchronization in time
WT movies were synchronized in time (Figure 1—figure supplement 1A) with zero min defined as

the last frame in which there was no extension at the posterior edge of the image. This was further

refined to the frame before which tissue extension in the AP axis exceeded a proportional rate of

0.01 / min. We confirmed that ectodermal cell division and the timing of the cessation of cell interca-

lation in different embryo movies were clustered in time as a result (Figure 1—figure supplement

1B).

Cell selection
For all analyses, we included only neurectoderm cells, having classified and excluded all head, meso-

derm, mesectoderm, non-neural ectoderm and amnioserosa cells.

Myosin II quantification
We subtracted the modal pixel intensity as background from raw images in the Myosin II channel at

each time point. We set the width of cell-cell interfaces at 3 pixels, a compromise between being

wide enough to encompass all interface Myosin II fluorescence, and narrow enough to minimise the

inclusion of medial Myosin II. The fluorescence intensity for each cell-cell interface in each movie

frame (every 30 s) was calculated as the average intensity of interface pixels.

Measures of bidirectional and unidirectional polarity
We measured apical cell membrane Myosin II polarity using the Myosin II fluorescence intensities of

each cell-cell interface calculated above. We first expressed interface fluorescence intensity around

each cell perimeter as a function of angle, from the embryonic posterior (zero) anti-clockwise (Fig-

ure 1—figure supplement 2A). Treating this intensity signal from 0 – 360 degrees as a periodic

repeating signal, we calculated its Fourier decomposition, extracting the amplitude of the period 2

Figure 8. Methodology for quantifying tissue strain rates.
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component as the strength of Myosin II bipolarity (equivalent to planar cell polarity), with its phase

representing the orientation of cell bipolarity (Figure 1—figure supplement 2B–D, red lines). We

also extracted the period 1 component as a Myosin unipolarity measure (Figure 1—figure supple-

ment 2B–D, cyan lines). The orientations of both uni- and bipolarity distributions for our dataset

were strongly and consistently biased towards the AP-axis (Figure 1C’, D’). However, there was

some pollution of the unipolarity signal in the bipolarity signal, with the latter enhanced because of

the castellated (discontinuous) nature of the average interface intensity signal (Figure 1—figure sup-

plement 2A–D, black lines). We therefore explored further methods to calculate independent uni-

and bipolarity quantities. Based on the consistent AP bias to both kinds of polarity, we measured

the polarity in the AP axis only. We found that fitting two Gaussians independently, centred on the

anterior and posterior sides of each cell works well, and is able to separate combinations of uni- and

bipolarity (Figure 1—figure supplement 2B’-D’).

We fitted the amplitudes and variances of anterior and posterior Gaussians through minimising

the discrepancy between the combined Gaussian signal and the Myosin II signal. The bipolarity sig-

nal was taken as two peaks of the amplitude of the smaller of the two Gaussians. Subtracting the

bipolarity signal from the combined Gaussians, the remainder is the unipolarity signal. Because over-

all Myosin II intensity differed between embryos, we normalised the strength of both polarities by

dividing the allocated Gaussian amplitude area by the cell’s mean perimeter Myosin II signal, so that

they would be consistent across embryos.

Finally, we made an adjustment to account for an imaging artefact that results in a domed inten-

sity of Myosin II in all images, with corners less bright than the image centres. The differences in

brightness are not an issue per se, since we express polarity amplitudes as a proportion of mean cell

perimeter fluorescence, but an artefactual gradient in intensity across a cell will introduce a unipolar-

ity signal. We therefore fitted a smooth to the Myosin II intensity across each image separately (with

a kernel size of 1/20th of the image width), calculated the local gradient of this smooth for each cell,

and rebalanced the local gradient effect while keeping the mean cell perimeter fluorescence the

same.

Using the above methods we produced uni- and bipolarity measures projected along the AP axis

for each cell at each time point, that are independent of each other and normalised to control for

variation in Myosin II fluorescence.

Contoured heat maps
Heat maps show time on the y-axis plotted against some measure of AP location on the x-axis, with

heat colour representing a third variable. Variation of the third variable was averaged over the DV

axis. Heat maps show the mean values of the third variable for each grid square of the plot, the size

of which is shown in ‘N’ heat maps. For example, for Figure 3B,C, the ‘N’ heat map is Figure 3—fig-

ure supplement 1A, with 80 time bins and 60 AP coordinate bins. White guidelines drawn over con-

toured heat maps are the average cell trajectories, showing the gross extension of the tissue in the

AP axis over time.

Defining PSB interfaces and cell types
Tissue domains were defined in individual tracked movies using two different techniques, depending

on the embryo’s genotype. For movies of sqhAX3; sqh-GFP; GAP43-mCherry embryos, strong PSB

enrichments of Sqh-GFP were identified at the end of movies. Groups of cells in between strong

Sqh-GFP enrichments were manually selected (each group corresponding to a single parasegment)

in a single time point at the end of each movie. Because cells were tracked over time, these classifi-

cations of parasegmental group identity could be automatically backtracked to define the same

groups of cells at all earlier time points.

For movies of eve-EGFP, GAP43-mCherry embryos, the anterior boundaries between paraseg-

ments were identified by clear anterior margins of Eve-EGFP positive nuclei. Groups of cells in

between successive clear anterior margins of Eve-EGFP positive nuclei were manually selected (each

group corresponding to two parasegments) in a single time point at the end of each movie. Groups

of cells were again classified at earlier time points by backtracking through movies.

We only used parasegments that were seen throughout each movie, excluding, for example, pos-

terior parasegments that flowed out of the field of view as a result of axis extension. Data used in
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subsequent analyses were from parasegments 4–7 (summarised in Table 2), as calculated from the

distance along the AP axis of the embryo, and from the timing and location of cell division nests in

abdominal parasegments (Foe, 1989).

Quantifying interface co-alignment
Interface orientations, relative to the embryonic axes, were calculated for PSB, -1 and +1 interfaces

at all time points in movies from eve-EGFP, GAP43-mCherry or wgCX4; eve-EGFP, GAP43-mCherry

and for PSB, S1/2B, S2/3B, +1 and -1 interfaces at all times points in movies from sqhAX3; sqh-GFP,

GAP43-mCherry embryos. All distributions of interface orientations (from 0, parallel to the AP

embryonic axis, to 180˚) were reflected around 90˚, producing distributions from 0˚, AP-aligned, to
90˚, DV-aligned. As a measure of co-alignment, the proportion of interfaces oriented between 60

and 90˚ relative to the AP axis was plotted over time, from -20 to 60 min. Cumulative frequencies

were calculated for each reflected distribution of interface orientations at 40 min (corresponding to

when Myosin II levels were significantly different). Two-sample Kolmogorov-Smirnov tests on the

cumulative frequency distributions of interface orientation were used to compare treatments (Prism,

GraphPad).

We repeated the analysis, treating the distribution of interface angles from 0˚ to 180˚ as a circular

distribution, and calculating the parameter of concentration (k) of the von Mises probability density

function. Both the plots of k versus time and the comparison of distributions at 40 min gave very

similar results to the above methods (data not shown).

Laser ablation of cell-cell interfaces
Junctional laser ablation experiments were carried out in sqhAX3; sqh-GFP; GAP43-mCherry

embryos. PSBs were located by eye by finding i) connected junctions that had the strongest Sqh-

GFP intensity and ii) had mirror image Sqh-GFP enrichments the other side of the embryonic mid-

line. We confirmed that the PSB interfaces we selected were significantly more strongly enriched in

Myo II than + 1 interfaces by quantifying the mean Sqh-GFP intensity in a line section drawn over

the junction at the time point prior to ablation (Figure 2—figure supplement 1H). We also con-

firmed that +1 interface orientations relative to the embryonic midline were more broadly distrib-

uted than PSB interface orientations (Figure 2—figure supplement 1I). Further quantification

showed that interface types did not differ in mean length (Figure 2—figure supplement 1G).

Ablations were carried out as described in Lye et al. (2015). 2 to 4 ablations were performed in

each embryo and a total of 15 embryos were used. 19 ablations were carried out for both PSB and

+1 junctions. A single ablation was performed in each parasegment and all ablations were confined

to the Vnd and Ind domains along the DV axis of the embryo. The region of interest selected for

ablation was placed over the middle of the chosen junction. 5 images were collected prior to abla-

tion (any longer and the junction would move away from the region of interest due to axis extension

movements) and up to at least 30s after ablation.

Line sections were then manually drawn over ablated junctions and the Dynamic Reslice tool in

ImageJ was used to produce kymographs. The distances between the two vertices at either end of a

junction were measured from 5 time points before ablation until 30s after ablation. Linear regression

was performed on the first 5 time points after ablation. The slope of the regressed line was used as

Table 2. Summary of parasegments analysed for each sqhAX3; sqh-GFP; GAP43-mCherry movie.

Movie Identifier PS4 PS5 PS6 PS7

SG_1 � [ [ [

SG_2 � [ [ [

SG_3 [ [ [ �
SG_4 [ [ [ �
SG_5 [ [ [ �
SG_6 [ [ [ [
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a measure of the vertex recoil velocity. The ’equal slopes’ test function in Prism (GraphPad) was

used to test for significant differences between slopes and thus difference in recoil velocities.

Heat map statistics
Pooling the normalised polarity data from 6 sqhAX3; sqh-GFP; GAP43-mCherry embryos, each grid

square of the heat maps has a distribution, with number of data points per grid square (Figure 3—

figure supplement 1A), mean (Figure 3B,C) and a confidence interval that we can calculate. We

tested whether the mean value in each grid square of contoured heat maps (averaged over the 6

embryos) is significantly different from zero using t-tests. Figure 3—figure supplement 1B,C show

squares in white that are not different from zero at the 95% two-tailed confidence level. In Figure 3—

figure supplement 1C, where unipolarity is significantly different from zero, the direction rather

than the strength of unipolarity (see Figure 3C) is shown.

Calculation of cells per parasegment and stripe width
For each parasegment, we calculated the average width of the parasegment in AP (psw) and the

average width of each cell in that parasegment, also in AP (cw). To give the average number of cells

per parasegment width, we divided psw by cw (Figure 3D). For the number of cells per stripe width,

the numerator was the width of the stripe (Figure 4D).

Assignment of stripe boundaries
We manually defined within-parasegment stripe boundaries, looking for Myosin II accumulation

along DV interfaces linked in cable-like structures parallel to PSBs and classifying cells as being in

stripe S1, S2 or S3 within each parasegment. We checked our stripe classifications by plotting the

locations of stripe boundary (scoring 0) and non-boundary (scoring 1) interfaces against within-para-

segment coordinate (Figure 4C). The peaks in location of boundary interfaces align very well with

the mean location of within-parasegment boundaries S1/2B and S2/3B (black arrows) taken from

Figure 3C and Figure 3—figure supplement 1C.

Classifying productive neighbour exchanges
We registered neighbour exchange events when a cell-cell interface swapped ownership from one

pair of neighbours to an orthogonal pair of neighbours. Most neighbour exchange events were

straightforward, with the reducing interface swapping cleanly into a new growing interface. How-

ever, some swapped repeatedly before resolving, or did not resolve, or reverted to the original cell

connectivity. We therefore set a threshold time window of 5 min over which we ignored repeated

neighbour swaps.

Deviation from Voronoi tessellation
We expected that polarised Myosin II (uni- or bidirectional) at cell junctions would lead to cell shapes

that differed from relaxed geometries of a kind that would be expected if, for example, Myosin II

was either absent or uniformly distributed. We therefore constructed a measure to quantify the

degree of difference from a putative relaxed geometry, both at the scale of cell perimeters and of

individual cell-cell interfaces. We first defined relaxed geometries. We chose a Voronoi tessellation,

based on cell centroid locations, as a simple first approximation to relaxed geometries. A Voronoi

tessellation identifies cell-cell interfaces as the set of points equidistant from two neighbouring cell

centroids. Vertices are located where these interfaces from local pairs of cell centroids intersect

(Figure 5D). The tessellation will stretch with tissue (cell centroid) stretch, so we expected our com-

parisons to be robust to cell elongation per se.

Using existing cell centroids (centres of mass), we used a Voronoi tessellation to obtain expected

vertex locations, cell-cell interface lengths and cell perimeters. We quantified the difference between

actual cell perimeters and those based on Voronoi predictions. By definition, as cell shapes become

geometrically stressed, cell perimeters will on average become longer than those predicted by the

Voronoi tessellation. We subtracted tessellated interface lengths from observed interface lengths to

get a measure of geometric stress. A value near zero indicated a relaxed geometry, with increasing

deviation from zero indicating increasingly stressed geometries (Figure 5—figure supplement 1D).

We expected relaxed cell geometries twenty min before the start of GBE, when cells have finished
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cellularisation but before gastrulation and before polarised Myosin II expression. Indeed, perimeter

stress was low and stable until the start of GBE, when it rose sharply then remained high throughout

GBE (Figure 5E, black line). Mesoderm invagination no doubt introduces some stress from -5 to 5

min (Lye et al., 2015), but the fact that the geometric stress index remained high thereafter shows

that this stress is likely to be actively maintained in the germ-band.

Boundary interfaces behaved differently from non-boundary interfaces, with the latter longer than

expected (Figure 5E). We investigated further, aligning interfaces in time to zero at the point of

neighbour exchange. The deviation of boundary interface length increased prior to exchange events,

coinciding with a similarly increase in interfacial myosin prior to exchange as interfaces shortened

(Figure 5F). Upon neighbour exchange, these interfaces became non-boundary interfaces and

showed an elongated signature. Overall, these data suggest that the active contraction of boundary

interfaces is driving convergence in DV, and that as soon as they become non-boundary interfaces

they take on a passive signature.

Combinatorial receptors patterns
The scoring for each permutation is explained in Figure 6 and Figure 6—figure supplement 1. The

code for generating the permutations is given in Source code 1.

Vertex model of axis extension
We used mathematical modelling to investigate the mechanical implications of actomyosin planar

polarisation during Drosophila axis extension. Vertex models are a particularly successful description

of epithelial mechanics that model the polygonal tessellation that cells’ adherens junctions form in

two dimensions (Farhadifar et al., 2007; Fletcher et al., 2014; Honda and Eguchi, 1980). In such

models, the movement of junctional vertices and the rearrangement of cells are governed by the

strength of cell-cell adhesion, the contractility of the actomyosin cortex and cell elasticity.

Governing equations
We describe the epithelial sheet by a set of connected vertices in two dimensions. Assuming that

the motion of these vertices is overdamped, the position ri tð Þ of vertex i evolves according to the

first-order equation of motion

h
dri tð Þ
dt

¼ Fi tð Þ; (1)

where Fi tð Þ denotes the total force acting on vertex i at time t and h denotes the common drag coef-

ficient. We specify the forces acting on vertices through a ‘free energy’ function U, for which

Fi ¼ � qU

qri
: (2)

Our choice of U is based on that proposed in Farhadifar et al. (2007) and is given by (see

Figure 7A):

U ¼
X

a

K

2
Aa � A0ð Þ2þ

X

a

G

2
P2
a
þ i; jð Þ

X

f lij
� �

: (3)

The first term in this free energy function describes an area elasticity with common elastic coeffi-

cient K, for which Aa is the area of cell a and A0 is a common ‘target’ area, and the sum runs over all

cells at time t. The second term describes the contractility of the cell perimeter Pa by a common

coefficient G, with the sum again running over all cells at time t. The third term represents ‘line ten-

sions’ at cell-cell interfaces, where lij denotes the length of the edge shared by vertices i and j and

the sum runs over the set of cell-cell interfaces at time t. Line tensions can be reduced by increasing

cell-cell adhesion or reducing actin-myosin contractility. The precise functional form of this line ten-

sion energy term varies across our simulations.

In addition to these equations of motion for cell vertices, we need to ensure that cells are always

non-intersecting and to allow cells to form and break bonds. This is achieved through an elementary

operation called edge rearrangement (a T1 transition or swap), which corresponds biologically to

cell intercalation. Mathematically, such arrangements are necessary in the vertex model due to the
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finite forces acting on a cell’s vertices arbitrarily far from equilibrium. We implement a T1 swap

whenever two vertices i and j are located less than a minimum threshold distance dmin apart (taken

to be much smaller than a typical cell diameter). In this case, the two vertices are moved orthogo-

nally to a distance pdmin apart and the local topology of the cell sheet is modified such that they no

longer share an edge.

The configuration of the cell sheet is updated using the following algorithm. Prior to numerical

solution, we non-dimensionalize the model, following previous implementations (Farhadifar et al.,

2007; Kursawe et al., 2015) by rescaling all lengths with
ffiffiffiffiffi

A0

p
and all times with h=KL2; thus, all pre-

sented model results are non-dimensional. Starting from an initial configuration ri 0ð Þ, we update the

state of the system until time T over discrete time steps Dt. At each time step we: implement any

required T1 swaps; compute the forces Fi on each vertex from the free energy U; solve the equation

of motion for each vertex over the time step numerically, using an explicit Euler method; and finally

update the positions of all vertices simultaneously. We implement this model in Chaste

(Fletcher et al., 2013), an open source C++ library that allows for the simulation of vertex models.

The code is given in the file Source code 1.

Simulations
We consider several alternative model simulations of axis extension, which differ only in the hypoth-

esised dependence of the line-tension energy described above on the length and type of cell-cell

interfaces. In each simulation, we model the movement, shape change and neighbour exchange of a

small tissue that is initially comprised of 20 rows and 14 columns of hexagonal cells. Prior to the start

of each simulation, we simulate the evolution of the tissue to mechanical equilibrium under the

assumption that the line-tension energy varies linearly with interface length, f lij
� �

¼ Lijlij, with the

same (constant) coefficient for every interface, Lij ¼ Lint. This avoids compounding the later dynam-

ics by artefacts associated with starting the tissue from a non-equilibrium cell size. The value of Lint

and all other parameters used in the simulations described below are provided in Table 3. We then

simulate the tissue until time T under a different hypothesised dependence of the line-tension

energy, as described below. In each simulation, we introduce four distinct stripes of cell identities

within each parasegment (Figure 7B). Note that both stripes 3 and 4 are initially discontinuous,

reflecting our in vivo finding that these two stripes have a combined initial AP width of 1.5 cells (S3

in Figure 4D).

Simulation 1 (no feedback or supercontractility)
Here, we follow (Farhadifar et al., 2007) in setting the line tension energy to vary linearly with the

length of a cell-cell interface:

f lij
� �

¼ Lijlij: (4)

Table 3. List of parameters and their values used in simulations.

Parameter Description Value Simulations

h Drag coefficient 1.0 All

T Simulation end time 500 All

Dt Time step 0.001 All

dmin T1 swap threshold 0.01 All

p T1 swap distance multiplier 1.5 All

K Elastic coefficient 1 All

A0 Cell target area 1 All

G Contractility coefficient 0.04 All

Lint Line-tension coefficient for non-boundary (or tissue-boundary) interfaces 0.05 1-3

Lbdy Line-tension coefficient for (stripe-) boundary interfaces 2Lint 2-3

Lsup Line-tension coefficient for super-contractile (stripe-) boundary interfaces 8Lint 4

DOI: 10.7554/eLife.12094.037
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In our model, the line-tension coefficient Lij takes one of two values, depending on the type of

interface. If the interface is shared by two cells of the same stripe identity (a non-boundary interface),

or it is contained in a single cell (a tissue-boundary interface), then we set Lij ¼Lint. If the interface is

shared by two cells of different stripes identities (a stripe-boundary interface), then we set Lij ¼Lbdy,

where Lbdy>Lint and thus boundary interfaces are more contractile than non-boundary interfaces

(Figure 7—figure supplement 1A):

f lij
� �

¼
Lint lij; for a non-boundary or tissue-boundary interface;

Lbdylij; for a stripe-boundary interface:

�

(5)

In this simulation, we find that cells are unable to execute neighbour exchanges and hence axis

extension is not achieved (Figure 7—figure supplement 1B).

Simulation 2 (feedback based on individual boundary interfaces)
In our next model, we consider a nonlinear dependence of the line-tension energy f lij

� �

on the cell-

cell interface length. Here, we wish to study the effect of including a feedback or runaway compo-

nent, in which shorter stripe-boundary interfaces become enriched in Myosin II and thus more con-

tractile, on the axis extension process. To this end, we choose the functional form (see Figure 7—

figure supplement 1A):

f lij
� �

¼
Lintlij; for a non-boundary or tissue-boundary interface;

Lbdyloglij; for a stripe-boundary interface:

�

(6)

In this simulation, we find that while some cells exchange neighbours, most 4-way junctions do

not resolve (Figure 7C).

Simulation 3 (feedback based on contiguous boundary interfaces)
To address the resolution of 4-way junctions encountered in Simulation 2, we next consider a more

complex model of line tension, where now the value of the coefficient Lij is computed as follows for

boundary interfaces. For each of the two cells sharing the boundary interface, we sum the lengths of

the (contiguous) boundary interfaces shared by the cell, including the boundary interface of interest.

Having computed this number for each of the two cells, we then compute the smaller of these two

numbers, which we denote by Li;m, the indices reflecting the variable number of contiguous bound-

ary interfaces (Figure 7E). The line-tension coefficient then takes the form:

f lij
� �

¼
Lintlij; for a non-boundary or tissue-boundary interface;

LbdylogLi;m; for a stripe-boundary interface:

�

(7)

This resolves the 4-way junction issue encountered in simulation 2 because cells are able to shear

along boundaries (Figure 7F). However, the initially discontinuous stripes 3 and 4 remain in clumps,

unable to repair their stripe continuity.

Simulation 4 (inclusion of super-contractility)
Our next model builds on Simulation 3 to include super-contractility, in which the line-tension coeffi-

cient Lij now takes a different value for boundary interfaces between stripes whose identities differ

by 2 (for example, an interface between a cell belonging to stripe 2 and a cell belonging to stripe 4)

to those between stripes whose identities differ by 1. We denote these values by Lsup and Lbdy,

respectively, where Lsup> Lbdy to reflect our hypothesis that mismatched or skipped identity bound-

ary interfaces are more contractile than other boundary interfaces:

f lij
� �

¼
Lint lij; for a non-boundary or tissue-boundary interface;

LbdylogLi;m; for a stripe-boundary interface;

LsuplogLi;m; for a skipped stripe-boundary interface:

8

>

<

>

:

(8)

In this simulation stripes 3 and 4 repair their continuity and the patterns of cell and interface

behaviours qualitatively mimic in vivo data (Figure 7G and compare Figure 7—figure supplement

1C with Figure 5I).
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Contractility between Differently Fated Cells Drives Cell Elimination and Cyst Formation. Current Biology 26:
563–574. doi: 10.1016/j.cub.2015.12.063

Blanchard GB, Kabla AJ, Schultz NL, Butler LC, Sanson B, Gorfinkiel N, Mahadevan L, Adams RJ. 2009. Tissue
tectonics: morphogenetic strain rates, cell shape change and intercalation. Nature Methods 6:458–464. doi: 10.
1038/nmeth.1327

Tetley et al. eLife 2016;5:e12094. DOI: 10.7554/eLife.12094 32 of 35

Research article Computational and systems biology Developmental biology and stem cells

http://orcid.org/0000-0002-3689-0522
http://orcid.org/0000-0002-2782-4195
http://dx.doi.org/10.7554/eLife.12094.038
http://dx.doi.org/10.1016/j.cub.2012.03.070
http://dx.doi.org/10.1016/j.cub.2012.03.070
http://dx.doi.org/10.1038/nature02590
http://dx.doi.org/10.1016/j.cub.2015.12.063
http://dx.doi.org/10.1038/nmeth.1327
http://dx.doi.org/10.1038/nmeth.1327
http://dx.doi.org/10.7554/eLife.12094


Blankenship JT, Backovic ST, Sanny JS, Weitz O, Zallen JA. 2006. Multicellular rosette formation links planar cell
polarity to tissue morphogenesis. Developmental Cell 11:459–470. doi: 10.1016/j.devcel.2006.09.007

Bosveld F, Guirao B, Wang Z, Rivière M, Bonnet I, Graner F, Bellaı̈che Y. 2016. Modulation of junction tension by
tumor suppressors and proto-oncogenes regulates cell-cell contacts. Development 143:623–634. doi: 10.1242/
dev.127993

Busturia A, Morata G. 1988. Ectopic expression of homeotic genes caused by the elimination of the Polycomb
gene in Drosophila imaginal epidermis. Development 104:713–720.

Busturia A, Lawrence PA. 1994. Regulation of cell number in Drosophila. Nature 370:561–563. doi: 10.1038/
370561a0

Butler LC, Blanchard GB, Kabla AJ, Lawrence NJ, Welchman DP, Mahadevan L, Adams RJ, Sanson B. 2009. Cell
shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension. Nature Cell
Biology 11:859–864. doi: 10.1038/ncb1894

Calzolari S, Terriente J, Pujades C. 2014. Cell segregation in the vertebrate hindbrain relies on actomyosin cables
located at the interhombomeric boundaries. The EMBO Journal 33:686–701. doi: 10.1002/embj.201386003

Dahmann C, Oates AC, Brand M. 2011. Boundary formation and maintenance in tissue development. Nature
Reviews. Genetics 12:43–55. doi: 10.1038/nrg2902

Devenport D. 2014. The cell biology of planar cell polarity. The Journal of Cell Biology 207:171–179. doi: 10.
1083/jcb.201408039

dos Santos G, Schroeder AJ, Goodman JL, Strelets VB, Crosby MA, Thurmond J, Emmert DB, Gelbart WM.,
FlyBase Consortium. 2015. FlyBase: introduction of the Drosophila melanogaster Release 6 reference genome
assembly and large-scale migration of genome annotations. Nucleic Acids Research 43:D690–697. doi: 10.
1093/nar/gku1099

Dubuis JO, Tkacik G, Wieschaus EF, Gregor T, Bialek W. 2013. Positional information, in bits. Proceedings of the
National Academy of Sciences of the United States of America 110:16301–16308. doi: 10.1073/pnas.
1315642110

Fagotto F, Rohani N, Touret AS, Li R. 2013. A molecular base for cell sorting at embryonic boundaries: contact
inhibition of cadherin adhesion by ephrin/ Eph-dependent contractility. Developmental Cell 27:72–87. doi: 10.
1016/j.devcel.2013.09.004

Fagotto F. 2014. The cellular basis of tissue separation. Development 141:3303–3318. doi: 10.1242/dev.090332
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Fernandez-Gonzalez R, Simoes SM, Röper JC, Eaton S, Zallen JA. 2009. Myosin II dynamics are regulated by
tension in intercalating cells. Developmental Cell 17:736–743. doi: 10.1016/j.devcel.2009.09.003

Fletcher AG, Osborne JM, Maini PK, Gavaghan DJ. 2013. Implementing vertex dynamics models of cell
populations in biology within a consistent computational framework. Progress in Biophysics and Molecular
Biology 113:299–326. doi: 10.1016/j.pbiomolbio.2013.09.003

Fletcher AG, Osterfield M, Baker RE, Shvartsman SY. 2014. Vertex models of epithelial morphogenesis.
Biophysical Journal 106:2291–2304. doi: 10.1016/j.bpj.2013.11.4498

Foe VE. 1989. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107:1–22.
Goodrich LV, Strutt D. 2011. Principles of planar polarity in animal development. Development 138:1877–1892.
doi: 10.1242/dev.054080

Halfon MS, Gisselbrecht S, Lu J, Estrada B, Keshishian H, Michelson AM. 2002. New fluorescent protein
reporters for use with the Drosophila Gal4 expression system and for vital detection of balancer chromosomes.
Genesis 34:135–138. doi: 10.1002/gene.10136

Hassan BA, Hiesinger PR. 2015. Beyond Molecular Codes: Simple Rules to Wire Complex Brains. Cell 163:285–
291. doi: 10.1016/j.cell.2015.09.031

He H, Kise Y, Izadifar A, Urwyler O, Ayaz D, Parthasarthy A, Yan B, Erfurth ML, Dascenco D, Schmucker D. 2014.
Cell-intrinsic requirement of Dscam1 isoform diversity for axon collateral formation. Science 344:1182–1186.
doi: 10.1126/science.1251852

Honda H, Eguchi G. 1980. How much does the cell boundary contract in a monolayered cell sheet? Journal of
Theoretical Biology 84:575–588. doi: 10.1016/S0022-5193(80)80021-X

Jaynes JB, Fujioka M. 2004. Drawing lines in the sand: even skipped et al. and parasegment boundaries.
Developmental Biology 269:609–622. doi: 10.1016/j.ydbio.2004.03.001

Jordan P, Karess R. 1997. Myosin light chain-activating phosphorylation sites are required for oogenesis in
Drosophila. The Journal of Cell Biology 139:1805–1819. doi: 10.1083/jcb.139.7.1805

Kasza KE, Farrell DL, Zallen JA. 2014. Spatiotemporal control of epithelial remodeling by regulated myosin
phosphorylation. Proceedings of the National Academy of Sciences of the United States of America 111:
11732–11737. doi: 10.1073/pnas.1400520111

Keller R. 2002. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298:1950–
1954. doi: 10.1126/science.1079478

Kursawe J, Brodskiy PA, Zartman JJ, Baker RE, Fletcher AG. 2015. Capabilities and Limitations of Tissue Size
Control through Passive Mechanical Forces. PLoS Computational Biology 11:e1004679. doi: 10.1371/journal.
pcbi.1004679

Landsberg KP, Farhadifar R, Ranft J, Umetsu D, Widmann TJ, Bittig T, Said A, Jülicher F, Dahmann C. 2009.
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