1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Membrane Protein Topology: The messy process of guiding proteins into membranes

  1. Stephen H White  Is a corresponding author
  1. University of California, Irvine, United States
Insight
Cite this article as: eLife 2015;4:e12100 doi: 10.7554/eLife.12100
1 figure

Figures

Simulations suggest that membrane proteins take on their final structure after they have been inserted into the membrane.

(A) The topologies of the EmrE monomers first inserted into the cytoplasmic membrane (blue band) at the end of translation (left) do not necessarily reflect the final topologies, which are subsequently achieved through thermodynamics-driven annealing. The interhelical loops in red represent the loops that flip most slowly, and thereby have a major influence on the kinetics of folding. EmrE can take on two different, antiparallel topologies; each row in the figure shows how one of these topologies may develop. (B) Van Lehn et al. used a coarse-grained model to simulate the insertion and folding of the EmrE dual-topology membrane protein (Zhang and Miller, 2012). Coarse-grained beads are assigned approximate hydrophobicity values (indicated by the shadings of the beads). The ribosome (brown) and translocon (green) are also represented as coarse-grained beads. The translocon is negatively charged on the cytoplasmic end and positively charged at the periplasmic end to represent the known charge distribution of the Sec 61 translocon (Goder et al., 2004). The simulation proceeds by adding a bead at the C-terminus of the nascent chain every 125 milliseconds; the panel on the right shows the chain on the left at a later point in time. Figure adapted from Figures 1 and 4 of Van Lehn et al. (2015).

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)