Abstract

Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation.

Article and author information

Author details

  1. Samuel O Skinner

    Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Heng Xu

    Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sonal Nagarkar-Jaiswal

    Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pablo R Freire

    Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas P Zwaka

    Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ido Golding

    Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    For correspondence
    golding@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Version history

  1. Received: October 9, 2015
  2. Accepted: January 28, 2016
  3. Accepted Manuscript published: January 29, 2016 (version 1)
  4. Version of Record published: March 7, 2016 (version 2)

Copyright

© 2016, Skinner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,743
    views
  • 1,828
    downloads
  • 140
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel O Skinner
  2. Heng Xu
  3. Sonal Nagarkar-Jaiswal
  4. Pablo R Freire
  5. Thomas P Zwaka
  6. Ido Golding
(2016)
Single-cell analysis of transcription kinetics across the cell cycle
eLife 5:e12175.
https://doi.org/10.7554/eLife.12175

Share this article

https://doi.org/10.7554/eLife.12175

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.